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Abstract1

Inbreeding results from the mating of related individuals and may be associated with reduced fitness because it2

brings together deleterious variants in one individual. In general, inbreeding is estimated with respect to an ar-3

bitrary base population consisting of ancestors that are assumed unrelated. We herein propose a model-based4

approach to estimate and characterize individual inbreeding at both global and local genomic scales by assum-5

ing the individual genome is a mosaic of HBD (Homozygous-By-Descent) and non-HBD segments. The HBD6

segments may originate from ancestors tracing back to different periods in the past defining distinct age-related7

classes. The lengths of the HBD segments are exponentially distributed with class-specific parameters reflect-8

ing that inbreeding of older origin generates on average shorter stretches of observed homozygous markers. The9

model is implemented in a hidden Markov model framework that uses marker allele frequencies, genetic distances,10

genotyping error rates and the sequences of observed genotypes. Note that genotyping errors, low-fold sequenc-11

ing or genotype-by-sequencing data are easily accommodated under this framework. Based on simulations under12

the inference model, we show that the genome-wide inbreeding coefficients and the parameters of the model are13

accurately estimated. In addition, when several inbreeding classes are simulated, the model captures them if their14

ages are sufficiently different. Complementary analyses, either on data sets simulated under more realistic models15

or on human, dog and sheep real data, illustrate the range of applications of the approach and how it can reveal16

recent demographic histories among populations (e.g., very recent bottlenecks or founder effects). The method17

also allows to clearly identify individuals resulting from extreme consanguineous matings.18
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Introduction19

With his pioneering work on self-fertilization, Darwin early noticed that mating relatives generally leads to off-20

spring with a reduced fitness (Darwin, 1876). This phenomenon now referred to as inbreeding depression may21

mostly result from an increased homozygosity for (recessive) deleterious variants although a lack of heterozygos-22

ity at loci displaying heterozygous advantage (overdominance) might also be involved (Charlesworth & Willis,23

2009). Accordingly, populations displaying high levels of individual inbreeding show a higher prevalence of24

monogenic disorders (e.g., Charlier et al, 2008) or complex diseases (e.g., Rudan et al, 2003). Inbreeding de-25

pression can thus increase the risk of extinction by reducing the population growth rate (Hedrick & Kalinowski,26

2000; Keller & Waller, 2002) although it may be conversely favorable in some conditions by purging deleterious27

variants from the population (Caballero et al, 2017; Estoup et al, 2016). Assessing individual inbreeding is then of28

paramount interest to improve the management of populations under conservation or selection, and from a more29

general evolutionary perspective to better understand the genetic architecture of inbreeding depression.30

The first standard measure for the level of individual inbreeding was introduced by Wright (1922) as the31

coefficient of inbreeding (F) that he defined in terms of correlations between the parents uniting gametes. Further,32

Malécot (1948) proposed an alternative and more intuitive probabilistic interpretation of F as the probability that33

any two genes each randomly sampled in the parents gametes are identical by descent (IBD), i.e., are themselves34

derived from a common ancestor. In practice, estimation of F has long been only feasible using pedigree data and35

was hence limited to a few populations where such information had been recorded. Nevertheless, pedigrees remain36

usually limited to a few past generations leading to downward bias in the estimates of F since remote relationships37

are ignored (Keller et al, 2011), and they might also contain a non negligible proportion of errors even in well38

recorded domestic breeds (Leroy et al, 2012). In addition, whatever the pedigree depth and accuracy, pedigree-39

based estimates of F are only providing the expected proportion of individual genomic inbreeding which might40

departs from the actual genomic inbreeding due to mendelian sampling and linkage (Hill & Weir, 2011). With41

the advent of next generation sequencing and genotyping technologies, using genomic information to estimate the42

(realized) individual inbreeding proved particularly valuable (Wang, 2016) opening new avenues in the study of43

inbreeding in a wider range of populations including wild ones since genealogy is no more required (Hedrick &44

Garcia-Dorado, 2016; Kardos et al, 2016).45

Genomic approaches to estimate F basically rely on the identity by state (IBS) status of genotyped mark-46

ers and may be divided in two broad categories depending on whether or not they use linkage map information.47

3



The first type of methods ranges from simple estimates of individual heterozygosities (e.g., Szulkin et al, 2010)48

or homozygosities (e.g., Bjelland et al, 2013) to more advanced approaches based on the estimation of the re-49

alized genomic relationship matrix (VanRaden, 2008; Yang et al, 2010) or moment-based estimators to correct50

for population-structure in the estimation of population allele frequencies (e.g., Manichaikul et al, 2010). Their51

accuracy depends strongly on the number and informativeness of the genotyped markers (Kardos et al, 2015) but52

they always remain global in the sense that they can only capture the total amount of individual inbreeding. With53

genetic map information, one may alternatively rely on the identification of stretches of homozygous markers also54

referred to Runs of Homozygosity (RoH) (e.g., McQuillan et al, 2008) to estimate individual inbreeding at both a55

local genome scale and genome-wide (as the proportion of the genome contained in locally inbred regions). RoH56

are indeed most often interpreted as homozygous by descent (HBD) or autozygous segments, i.e., made up of57

pairs of haplotypes that were inherited from a common ancestor without recombination (and mutation) in neither58

of them via two different genealogical paths. Assessing the distribution of RoH within individual genomes has59

thus become popular to characterize inbreeding in a wide range of model species including humans (Kirin et al,60

2010; McQuillan et al, 2008; Pemberton et al, 2012), livestock (Bosse et al, 2012; Ferencakovic et al, 2013) or61

wild populations (Kardos et al, 2017). RoH also allows to distinguish between recent and more ancient inbreeding62

(Kirin et al, 2010; Pemberton et al, 2012; Purfield et al, 2012) since HBD segments tracing back to more remote63

ancestors are expected to be shorter because of a higher number of historical recombination events (Thompson,64

2013).65

Several approaches have been proposed to identify HBD segments from stretches of homozygous markers.66

First, empirical rule-based procedures aim at characterizing RoH over the genomes (as proxies for HBD segments)67

and thus rely on the prior definition of specific thresholds for their minimal number of homozygous markers and68

segment length together with the maximum proportion of allowed heterozygous markers (to allow for genotyping69

error). Broman & Weber (1999) proposed a formal statistical approach to assess the actual HBD status of the70

RoH they identified by accounting for population allele frequencies and genotyping error rates. Elaborating on this71

earlier work, likelihood-based approaches were further developed allowing in particular to compute a LOD-score72

to assess the strength of evidence in favor of autozygosity of genomic windows through the genome, the size of the73

window being previously optimized (e.g., Kardos et al, 2017; Pemberton et al, 2012; Wang et al, 2009). Along-74

side these window-based approaches, Leutenegger et al (2003) provided a full probabilistic modeling of the IBD75

process along the chromosomes by developing a Hidden Markov Model (HMM) to identify HBD segments. Such76

a HMM framework allows to make use efficiently of the available genetic information contained in the sequences77
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of both homozygous and heterozygous markers, and the linkage maps. It can also easily handle whole-genome78

sequence data (Narasimhan et al, 2016) including those obtained from low-fold sequencing experiments (Vieira79

et al, 2016). Although powerful, these full model-based approaches all rely on a two-states HMM considering that80

each marker either belongs to an non-HBD or an HBD segment. The transition probabilities between these two81

(hidden) states of successive markers then depend on i) their given genetic distances; ii) a parameter controlling82

the rate of changes per unit of genetic distance; and iii) the individual inbreeding coefficient. Considering only83

two states (HBD or non-HBD) actually amounts to assuming that all the HBD segments within a given individual84

have the same expected length. In other words, all the individual inbreeding is assumed to originate from one or85

several ancestors living in a single generation in the past (with genealogical paths of equal length). However, in86

both natural and domesticated populations, the sources of individual inbreeding are multiple, since they are all87

related to their usually complex past demographic history, making such a hypothesis of a single inbreeding event88

highly unrealistic. As a result, all individuals carry HBD chromosome segments from ancestors across a wide89

range of numbers of generations into the past (with genealogical paths of varying number of generations). Such90

HBD segments of different origins should be modeled with different transition probabilities.91

We herein propose to extend previous two-states HMM by considering several classes for HBD segments. For92

each HBD-class, the length of HBD segments (in Morgan) is assumed exponentially distributed with a distinct rate93

that is related to the age of the inbreeding event (the higher the rate, the shorter the HBD segments and the older the94

inbreeding event). This new model that actually corresponds to an exponential mixture model allows to provide a95

better fit to individual genetic data (either genotyping or sequencing data) and to refine the genomic partitioning96

of inbreeding into stretches of HBD segments from possibly different ancestral origins. To evaluate the accuracy97

of the methods, we carried out comprehensive simulation studies. In addition, three real data sets from human,98

dog and sheep populations were analyzed in more detail to illustrate the range of application of the methods. As a99

by-product of this study, a freely available program, named ZooRoH was developed to implement inferences under100

the model.101

The Models102

In the following we describe our HMM to model individual genomes as mixtures of HBD and non-HBD segments.103

We first consider a model with only two states (one HBD or autozygous class and one non-HBD class) and then104

describe the extension of the model to combine several HBD classes with varying expected HBD segment lengths.105
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To deal with the specificities of Next-Generation Sequencing (NGS) data (whole genome sequencing, low-fold106

sequencing, genotype-by-sequencing) that may provide less accurate genotype call than SNP chip arrays, we also107

propose alternative emission probabilities functions that integrate over the uncertainties of each possible genotype.108

As in previous similar studies (e.g., Leutenegger et al, 2003), it should be noticed that the genetic map is109

assumed to be known without error in the HMM specification. The model further relies on a one order Markov110

process to define the transition probabilities between successive hidden states. Such a model has been shown to111

represent a good approximation of the HBD process along the genome when there is no interference between112

recombination locations (Lander & Green, 1987; Leutenegger et al, 2003; Thompson, 2008).113

The two–states model (1R model)114

We start by describing a simplified HMM that models the transmission of chromosomes from ancestors present115

G generations in the past to an individual from the current generation (each having 2G possible ancestors: two116

parents, four grand-parents, etc.). The paternal and maternal chromosomes of the individual each descend from117

a distinct set of NH = 2G ancestor haplotypes and can hence be described as a mosaic of these haplotypes. To118

describe this process, we can follow Mott et al (2000) that proposed a HMM to model chromosomes of terminal119

lines as a mosaic of founder lines. The probability to descend from a given ancestor haplotype at the marker120

position Ml−1 is 1
NH

and the number of recombinations on the path from the ancestors to the individual between121

two adjacent markers Ml−1 and Ml separated by tl Morgans (l > 1) is distributed as a Poisson random variable with122

mean Gtl (Mott et al, 2000). In the context of HBD modeling, we are interested in the pair of inherited haplotypes123

and their IBD relationship (they either form HBD or non-HBD segments). In total, there are NH
2 possible pairs124

of ancestor haplotypes and the number of recombinations on both paths between the two adjacent markers Ml−1125

and Ml is distributed as a Poisson random variable with mean 2Gtl. This means that in the current generation, the126

length of a diploid segment inherited by an individual without ancestry change (i.e., without recombination in both127

genealogical paths to the ancestor(s) living G generations ago) is exponentially distributed with rate R = 2G (i.e.,128

with expected mean equal to 1
R Morgans). R will be referred to as the rate of ancestry change in our model. Under129

this model, for a given (diploid) individual and chromosome, the maternally and paternally inherited haplotypes130

each consist of a mosaic of segments originating from a distinct set of NH ancestor haplotypes that defines in turn a131

mosaic of either HBD (where maternally and paternally haplotype segments are IBD) or non-HBD segments. Over132

the whole individual genome, the proportion ρ of inherited haplotype pairs that are IBD is closely related to the133

individual inbreeding F defined as the probability that two genes randomly sampled in the paternal and maternal134
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gametes are IBD (i.e., that a randomly chosen position in the genome belongs to an HBD segment).135

Capitalizing on these definitions, the 1R model now assumes that the genome is partitioned in either HBD and136

non-HBD tracts that actually correspond to the two hidden states (K = 2) of the HMM. Let S l denote the (hidden)137

state of Ml with S l = 1 and S l = K = 2 if Ml lies within an HBD and a non-HBD segment respectively. The four138

transition probabilities between the hidden states of every pairs of consecutive markers are then defined as:139



P [S l = 1 | S l−1 = 1] = e−Rtl + (1 − e−Rtl )ρ

P [S l = 1 | S l−1 = 2] = (1 − e−Rtl )ρ

P [S l = 2 | S l−1 = 2] = e−Rtl + (1 − e−Rtl )(1 − ρ)

P [S l = 2 | S l−1 = 1] = (1 − e−Rtl )(1 − ρ)

(1)140

The term e−Rtl represents the probability that there is no recombination on both genealogical paths between two141

consecutive markers Ml−1 and Ml (i.e., the HBD status remains the same). Similarly, 1 − e−Rtl is the probability142

that the pair of inherited haplotypes changes between the two consecutive markers (as a result of recombination).143

In that case, the new pair of inherited haplotypes is either HBD (with probability ρ) or non-HBD (with probability144

1 − ρ) irrespective of the previous state. Because consecutive pairs of inherited haplotypes might belong to the145

same state (with probability ρ and 1−ρ), the overall lengths of tracts of consecutive markers belonging to the HBD146

or to the non-HBD class have expected means equal to 1
R(1−ρ) and 1

Rρ , respectively. This model is an approximation147

of the inheritance of HBD segments and real pedigrees are far more complex. In particular, transition probabilities148

are not so simple and depend on the position in the genealogy of the haplotypes inherited at marker Ml−1 (e.g.,149

Druet & Farnir, 2011). Consequently, R is not strictly identical to the size (in generations) of the inbreeding loop150

connecting the two haplotypes of a HBD segment (approximately equal to 2G for an ancestor living G generations151

ago).152

The proposed transition probabilities are identical to those used by Leutenegger et al (2003) and Vieira et al153

(2016). Leutenegger et al (2003) showed that this HMM is a good approximation of the HBD process and that ρ154

can actually be interpreted as a measure of the individual inbreeding coefficient F (Leutenegger et al, 2003). It155

corresponds indeed to the marginal equilibrium HBD probability (Thompson, 2008). In these studies, the transition156

rate R determines the rate of change between the two states in units of genetic distance (Thompson, 2008) and is157

such that mean length of HBD and non-HBD segments are equal to 1
R(1−ρ) and 1

Rρ , respectively (Leutenegger158

et al, 2003). Although this rate depends on time to common ancestor(s) (Vieira et al, 2016), it is not equal to159
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the generational age of HBD as illustrated by Leutenegger et al (2003) and Leutenegger et al (2011) for a few160

examples.161

Extension to multi-states models (KR models)162

With a unique HBD class, the 1R model described above considers that all the HBD segments have approximately163

the same age either because they originate from a single ancestor (one strong inbreeding event) or from multiple164

ancestors in the same generation (e.g., during a bottleneck). Population history might however lead to far more165

complex patterns and common ancestors tracing back to different generations are probably present in all finite166

populations (e.g., Kardos et al, 2017). This is probably frequent in small populations, in populations under strong167

selection or in endangered populations with declining size. We therefore propose to extend the model to KHBD168

different HBD classes, each characterized by their own mixing coefficient ρc and rate Rc (c ∈ (1,KIBD)). For a169

given state c, the HBD segment length (in Morgan) is assumed exponentially distributed with a mean equal to170

1
Rc(1−ρc) . Hence, larger values of Rc are associated with smaller HBD tracks which might be interpreted as more171

ancient inbreeding events coming from more remote ancestors. For a constant mixing coefficient ρc, doubling the172

rate Rc of the HBD-class amounts to halve the expected HBD segment length (corresponding to approximately two173

times more generations of recombinations). As mentioned above, because the rates of HBD states (Rc) are related174

(but not equal) to the length of the inbreeding loop (in generations), this extension to multiple HBD states can be175

considered as a qualitative age-related classification of HBD segments.176

For the sake of generality, we may include several non-HBD classes but in the present study we only used one177

non-HBD class labeled K (i.e., the total number of classes K = KHBD + 1) with a mixing proportion ρK and a178

change rate RK . The transition probabilities between the hidden states S l−1 and S l of two adjacent loci Ml−1 and179

Ml read:180

P [S l = a | S l−1 = b] =


e−Ratl + (1 − e−Ratl )ρa if a = b

(1 − e−Rbtl )ρa if a , b
(2)181

where a ∈ (1,K) and b ∈ (1,K) represents the identifier of the K different states (recalling that K also represents182

the non-HBD state). It is important to note that when K = 2, i.e. we only consider two states (KHBD = 1 state183

and one non-HBD), the 2R model is slightly different than the 1R model since the two states are not constrained to184

have the same rate R.185
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Emission probabilities and extension to NGS data.186

To complete the specification of the HMM we need to specify the emission probabilities, i.e., the probabilities of the187

data Yl observed at each marker Ml given the underlying state S l of the segment that might either be HBD (S l , K)188

or non-HBD (S l = K). Let Il represent the number of alleles observed for marker Ml (in the rest of the study we189

only considered bi-allelic SNPs i.e., Il = 2 for all l) and Ali the corresponding alleles (i ∈ (1, Il)). Depending on190

the technology and the analyses performed, Yl then either consists of i) a genotype AliAl j (where i ∈ (1, Il) and191

j ∈ (1, Il)) among the Jl =
Il(Il+1)

2 possible genotypes; or ii) a vector of likelihoods P
[
Yl | AliAl j

]
for each possible192

genotype as provided by a genotype calling model as implemented within standard and popular softwares such as193

GATK (McKenna et al, 2010) or SAMTOOLS (Li et al, 2009). This allows to account for the genotype uncertainty194

which is highly recommended when dealing with NGS, particularly with low-fold sequencing data.195

Emission probabilities for genotyping data.196

Let pli be the population allele frequency of allele Ali which is assumed to be known. If Ml belongs to a HBD197

segment (S l , K), we define the emission probabilities of the genotype AliAl j as follows:198

P
[
AliAl j | S l , K, pli, ε

]
=


(1 − ε)pli if i = j

2ε
Il(Il−1) if i , j

(3)199

where ε is the probability (assumed to be known) to observe a heterozygous marker when Ml belongs to a HBD200

segment either resulting from a genotyping error or a recent mutation. In other words, we assume that the vast201

majority of the polymorphic markers were segregating in the population before the common ancestors of the HBD202

segments and thus interpret recent mutations as genotyping errors. For non-HBD segments (tracing back to much203

more ancient ancestors), each genotype emission probabilities are derived assuming Hardy-Weinberg equilibrium204

(HWE) and disregarding genotyping error (or mutation):205

P
[
AliAl j | S l = K, pli, pl j

]
=


p2

li if i = j

2pli pl j if i , j
(4)206

Note that these emission probabilities slightly differ from those considered in Leutenegger et al (2003).207
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Emission probabilities for genotype likelihood data.208

To account for genotype uncertainty, emission probabilities are obtained by integrating over all the possible geno-209

types:210 
P [Yl | S l , K] =

∑
Jl

P
[
Yl | AliAl j

]
P
[
AliAl j | S l , K

]
P [Yl | S l = K] =

∑
Jl

P
[
Yl | AliAl j

]
P
[
AliAl j | S l = K

] (5)211

where P
[
AliAl j | S l , K

]
and P

[
AliAl j | S l = K

]
are as defined in equation 3 above (the error term ε then mostly212

capturing the effect of recent mutations). This modeling is similar to that recently proposed by Vieira et al (2016).213

Materials and Methods214

Inference215

Estimation of model parameters.216

Assuming the population allele frequencies (pli) of each marker Ml and the error term ε are known, the set of217

parameters Θ that needs to be estimated for the defined HBD and non-HBD classes consists of their mixing pro-218

portions ρ and their rates R. Therefore, Θ consists of two parameters (ρ and one rate R) for the 1R model and 2K219

parameters for a multi-classes KR model (with KHBD = K − 1 inbreeding classes). For multiple-HBD models, we220

alternatively consider reducing the parameter space by pre-defining the rates Rk of the K classes leading to only221

estimate the K mixing proportions ρk (hereafter called MixKR model). For all the models, parameter estimation222

was achieved with the Expectation-Maximization (EM) algorithm known as the Baum-Welch algorithm that is223

very popular in the HMM literature (Rabiner, 1989). The program ZooRoH implementing the algorithm for the224

different models is freely available at https://github.com/tdruet/ZooRoH. Unless otherwise stated, model225

parameters were estimated with 1000 iterations of the EM algorithm and setting ε = 0.001 and ε = 0 when analyz-226

ing real and simulated (without genotyping errors) data sets respectively. Marker allele frequencies were estimated227

by the program on the analyzed samples.228

Estimation of the realized local (locus-specific) inbreeding (φl).229

The Baum-Welch algorithm allows to estimate the local state probabilities that correspond in our case to the K230

probabilities P
(
S l = c | Θ̂,Y

)
that the two chromosome segments belong to the HBD class c (c ∈ (1,KHBD)) or to231
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the non-HBD class (c = K) at the marker Ml position given the estimated parameter set Θ̂ and the observed genetic232

data Y. These probabilities can be used to estimate both the realized genome-wide (over all the markers) and233

local (for each and every marker) inbreeding. Indeed, genetic data allows to directly infer the realized IBD status234

between the maternal and paternal chromosomes from a given individual at each locus in the genome and over the235

whole genome as opposed to pedigree-based inbreeding estimates that only infer the corresponding expected IBD236

status. More precisely, the local estimate φ̂l of the realized inbreeding at marker Ml is defined as the probability that237

this marker lies in a HBD segment and may thus be computed by summing over all its local HBD state probabilities238

(i.e., excluding the non-HBD class):239

φ̂l =

KHBD∑
c=1

P
(
S l = c | Θ̂,Y

)
(6)240

Estimation of the realized inbreeding associated with each HBD class (F(c)
g ) and the genome-wide inbreeding241

(Fg).242

As above, the inbreeding F̂(c)
g associated to HBD class c (c ∈ (1,KHBD)) can be defined as the proportion of the243

genome belonging to the class c and is estimated as the average of the corresponding local state probabilities over244

all the L locus:245

F̂(c)
g =

1
L

L∑
l=1

P
(
S l = c | Θ̂,Y

)
(7)246

Finally, the genome-wide estimate of the realized individual inbreeding F̂G is simply the average over the247

genome of the local estimates obtained for the L markers:248

F̂g =
1
L

L∑
l=1

φ̂l =

KHBD∑
c=1

F̂(c)
g (8)249

Model assessment.250

Because the optimal number of states (KHBD or K) is usually unknown, we may be interested in characterizing, for251

a given data set, the strength of evidence for alternative number of states. To that end we relied on the Bayesian252

Information Criterion (BIC) which is a standard criterion for model selection among a finite set of models and was253

computed as:254

BIC = −2ln
(
P
(
Y | Θ̂

))
+ npln(L) (9)255
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where P
(
Y | Θ̂

)
is the maximum of the likelihood function obtained with the estimated parameters Θ̂ (computed256

with the forward algorithm (Rabiner, 1989)), L is the number of markers and np is the number of independent257

parameters, i.e., np = 2K − 1 for a KR model (with K-1 HBD classes) and np = K − 1 for a mixKR model (because258

the K mixing coefficients are constrained to sum to 1.0).259

Simulated data sets260

Simulation under the inference model.261

The model was first tested by simulating data under the inference model. We simulated genotyping data at bi-allelic262

markers (SNPs) for 500 individuals considering a genome that consisted of 25 chromosomes of 100 cM length (i.e.,263

100 Mb length assuming a cM to Mb ratio of 1). The marker density was set to 10, 100 or 1,000 evenly spaced SNPs264

per cM (i.e., 25,000, 250,000 or 2,500,000 SNPs in total). When simulating data under the 1R inference model,265

the individual genome is a mosaic of either HBD or non-HBD segments whose length is exponentially distributed266

with the same rate equals to the simulated R. For each chromosome in turn, we successively generated consecutive267

segments by sampling their length in the corresponding exponential distribution and randomly declaring them as268

HBD or non-HBD with a probability ρ and 1 − ρ (where ρ represents the simulated mixing coefficients). The269

process stops when the cumulative length of the simulated segments was greater than 100 cM (the last simulated270

segment being trimmed to obtain a chromosome length exactly equal to 100 cM). Under the multi-states model with271

several HBD classes, simulations were performed sequentially with successive waves of inbreeding. We started272

by simulating the most ancient HBD class with the process described above. Then, each new HBD class was273

simulated similarly (with its own Ri and ρi) except that new inbreeding (HBD) masked previous classes whereas274

non-HBD segments did not change previously simulated states.275

To simulate genotyping data, we first randomly sampled for each SNP the population frequency of an arbitrarily276

chosen reference allele either i) from an empirical distribution derived from real cattle genotyping SNP assay and277

WGS data (Figure S1), or ii) from a (U-Shaped) distribution β (0.2, 0.2) that mimics NGS data (Figure S1). We278

further refer to these two different Allele Frequency Spectrum (AFS) as i) array-like AFS and ii) NGS-like AFS279

respectively. Given the simulated HBD status of the segments on which each SNP lie (see above), we used these280

sampled allele frequencies to simulate SNP genotypes as described for the emission probabilities above (eqs. 3 and281

4) with ε = 0 (without genotyping errors). Subsequently, we set either ε = 0.001 or ε = 0.01 to introduce random282

genotyping errors (changing one genotype to one of the two other genotypes) and to evaluate the robustness of the283
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models.284

To simulate low-fold sequencing data (50 individuals) we sampled at each marker a number of reads t according285

to a Poisson distribution with mean λ (the average coverage). For homozygote genotypes (simulated as described286

above), the t sampled reads always carried the same allele (no sequencing error) and for heterozygotes, we used287

a binomial distributions (with parameters t and 1
2 ) to sample the read counts for the two possible alleles. We then288

considered for each simulated SNP l, the read counts tl1 and tl2 observed for each of the two alleles to derive the289

three genotype likelihoods of the three genotypes Al1Al1, Al1Al2 and Al2Al2 following Li et al (2010) (with the per290

base sequencing error set to 0):291 

P [Yl | Al1Al1] = 1tl1 0tl2

P [Yl | Al1Al2] =
(

1
2

)tl1+tl2

P [Yl | Al2Al2] = 1tl2 0tl1

(10)292

To assess the impact of variable local recombination rates τ (per Mb) that may typically be disregarded when293

converting physical to genetic distances with an average genome-wide cM to Mb ratio, we performed simulations294

where each 100 Mb chromosome (among the 25 simulated ones) was divided into small segments (10,000 of 10295

kb or 1,000 of 100 kb) with varying τ values. In a first scenario, τ was set to 0.001, 0.002, 0.005, 0.010, 0.020,296

0.050 and 0.100 for a proportion of 0.20, 0.20, 0.20, 0.24, 0.10, 0.04 and 0.02 of the segments (that were randomly297

assigned to their respective category). In other scenarios, the values of τwere randomly set to 0.001, 0.010 or 0.100298

with probability equal to 0.40, 0.56 and 0.04. In all the cases, the value of τ varied over two orders of magnitude299

(from 0.001 to 0.100) but the overall average genome-wide recombination rate remained equal to 0.01 per Mb (1300

Mb corresponding to 1 cM). We used the genetic map to simulate the alternation of HBD and non-HBD segments301

as described above. Parameters and inbreeding were then estimated using either the physical map (consisting of302

evenly spaced markers) as an approximation of the genetic map, or the actual genetic map.303

Finally, to assess the accuracies of the model estimation, we computed the Mean Absolute Error (MAE) for304

each parameter α of interest as:305

MAE(α) =
1
N

N∑
n=1

|̂αn − αn| (11)306

where N is the number of simulated individuals, α̂n is the estimated parameter value for individual n and α is the307

corresponding simulated value.308
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Simulations under a discrete time Wright-Fisher process.309

The inference model we used is based on hypotheses (exponential distribution for HBD segment lengths, HWE310

in non-HBD states, etc.) commonly used and that have been proven to work well (e.g., Leutenegger et al, 2003;311

Vieira et al, 2016). Still, we performed additional simulations relying on population genetics models to obtain312

simulated data less dependent on these assumptions. To that end we used the program ARGON (Palamara, 2016)313

that simulates data under a discrete time Wright-Fisher process.314

With constant and large effective population size Ne, inbreeding is expected to be low and to be spread over315

many generations. To concentrate inbreeding in specific age classes we simulated bottlenecks keeping large Ne316

outside these events to reduce the noise due to inbreeding coming from other generations. In the first scenario317

WF1 (Figure S2), we considered an ancestral population P0 with a constant haploid effective population size318

equal to Ne0=20,000 that splits in two populations P1 and P2 at generation time Ts in the past with respective319

population sizes Ne1=10,000 or 100,000 (according to the scenario) and Ne2=10,000. During four generations320

centered around generation Tb � Ts in the past, P1 experienced a bottleneck with an (haploid) effective population321

size equal to Neb and recovered its initial size. Population P2 that always maintains a constant size is actually used322

to select markers that were also segregating in the ancestral population P0 (markers segregating at MAF > 0.05 in323

both populations P1 and P2 were kept for further analyses). The different simulation parameters are expected to324

have various impacts on the distribution of inbreeding. For instance for larger Ts, inbreeding tends to accumulate325

after the two populations split and selected markers will have an older origin. Similarly, the larger Ne1, the less326

inbreeding is accumulating outside the bottleneck while with smaller Neb, more inbreeding is created during the327

bottleneck. In total, 50 diploid individuals were simulated in both populations P1 and P2 considering a genome328

that consisted of a single chromosome of 250 cM length (i.e., 250 Mb assuming a cM to Mb ratio of 1). The329

mutation rate was set to µ = 10−8 and we use the functionalities of ARGON to identify all the HBD segments > 10330

kb and to obtain their ages (generation time of the most recent common ancestor).331

A second scenario WF2 (Figure S3) was also considered for simulations in which similar parameters were332

used but the bottleneck occurred at generation Tb = 20 and Ne1 was kept constant for subsequent and more recent333

generations (instead of returning to its initial size as in scenario WF1). This scenario with a strong reduction of Ne334

was aimed at mimicking livestock populations for which inbreeding is expected to be mostly due to ancestors in335

the most recent generations.336

In both scenarios, estimation of inbreeding was performed on the 50 diploid individuals from population P1337

and with a marker density of 100 SNPs per cM.338
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Human, dog and sheep real data sets339

For illustration purposes, we used publicly available genotyping data from i) the Human Genome Diversity Panel340

(HGDP) (Li et al, 2008) as downloaded from ftp://ftp.cephb.fr/hgdp_supp10/Harvard_HGDP-CEPH; ii)341

the dog LUPA project (Vaysse et al, 2011) as downloaded from http://dogs.genouest.org/SWEEP.dir/342

Supplemental.html; and iii) the Sheep Diversity panel (Kijas et al, 2012) as downloaded from the WIDDE343

database (Sempere et al, 2015). We then used the software plink (Purcell et al, 2007) to process and filter the344

genotyping data by removing individuals with a genotyping call rate below 90%. As a result, the final data sets345

consisted 620,768, 164,064 and 47,365 SNPs in human, dog and sheep respectively. For each specie, we restricted346

our analysis to a subset of six populations corresponding to i) Karitiana (n=13), Pima (n=14), Melanesian (n=11),347

Papuan (n=17), French (n=28) and Yoruba (n=22) in humans; ii) Doberman Pinschers (n=25), Irish Wolfhounds348

(n=11), Jack Russell Terriers (n=12), English Bulldogs (n=13), Border Terriers (n=25) and Wolves (n=12) for349

the dog data set; and iii) Soay (n=110), Wiltshire (n=23), Dorset Horn (n=21), Milk Lacaune (n=103), Rasa350

Aragonesa (n=22) and Rambouillet (n=102) in sheep.351

Results352

Performance of the different models353

Analyzing data simulated under the 1R inference model.354

We first analyzed individual genomes of 2,500 cM (with a marker density of 10 SNPs per cM) that were simulated355

under the 1R inference model, i.e., the simplest model. Depending on the two chosen simulation parameters (rate356

parameter R and mixing proportion ρ), these individual genomes thus consisted of a mosaic of HBD and non-HBD357

segments (in proportions ρ and 1−ρ respectively) that both originated from the same ancestral generation. In total,358

we analyzed with the 1R, the 2R, the 3R and the 4R models, 500 individuals per simulated scenarios, considering359

in total 33 different scenarios representatives of a wide range of values for both R (from R = 2 to R = 256) and ρ360

(from ρ = 0.0075 to ρ = 0.5). As mentioned in the Model section above, under the 1R model that was used for361

these simulations, ρ is highly similar to the realized individual inbreeding Fg. Strictly speaking, ρ is the proportion362

of segments belonging to the HBD class (see Model section) and Fg is the proportion of markers lying in HBD363

segments. The results obtained from the analyses under the 1R model are detailed in Table 1 for 20 different364

scenarios. In addition, tables S1 and S2 give the results from the analyses under all the four models (1R, 2R, 3R365
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and 4R) for all the 33 different scenarios.366

Overall, estimates of both model parameters (R̂ and ρ̂) and individual inbreeding Fg obtained under the 1R367

model (Table 1 and Table S1) were found virtually unbiased and quite accurate (small MAE) irrespective of the368

considered scenarios. As expected, the 1R model performed even better when the number of HBD segments was369

higher and these were longer (smaller R) since more SNPs are available for their identification. For instance, for a370

given simulated ρ (e.g., ρ ' Fg = 0.100), the MAE of F̂g increased with larger simulated R (e.g., from 1.1 × 10−3
371

when R = 16 to 4.6× 10−3 when R = 256). The performance of the 1R model to estimate local inbreeding (φl) was372

further evaluated by computing the corresponding MAE either for all the SNPs (φ̂l) or for the SNPs lying within373

HBD segments only (φ̂lHBD ) (Table 1 and Table S1). Note that for every simulated SNP l, the actual φl value is374

known (i.e., φl = 0 or φl = 1 if the SNPs is within a non-HBD or a HBD segment respectively). Hence, if the375

model performs well and all the φl are accurately estimated (i.e., φ̂l close to 0 or 1 for SNPs within a non-HBD376

or a HBD segment respectively), the MAE of φ̂l should be close to 0. The MAE of φ̂l are larger than 0 when377

SNPs lying in non-HBD segments have a non-zero probability to be HBD, or vice versa. Besides, inspecting the378

φ̂lHBD MAE allows to restrict attention to the prediction accuracy of truly HBD segments. As shown in Table 1,379

when inbreeding is recent (R < 32, .i.e. average length of HBD segments > 3 cM) MAE for both φ̂l and φ̂lHBD are380

close to 0 indicating that both HBD and non-HBD positions are correctly identified with a high support. Also, at381

constant level of overall (simulated) inbreeding (e.g., ρ ' Fg = 0.125) the accuracy decreases with higher value of382

R (e.g., from 1.0× 10−2 when R = 4 to 2.1× 10−2 when R = 8 for the φ̂lHBD MAE). When considering more ancient383

(and/or) lower simulated inbreeding values, the φ̂lHBD MAE increased faster than the overall φ̂l MAE. This indicates384

that there is not enough information (number of SNPs per HBD segments) to confidently classify some positions,385

in particular those within i) short HBD segments; ii) long stretches of markers homozygous by chance; or iii)386

segments boundaries. It is however important to notice that the local inbreeding estimates φ̂l always remained very387

well calibrated, i.e., for any p ∈ (0, 1), the proportion of SNPs truly lying within HBD segments among the SNPs388

with φ̂l ' p was close to p (Figure S4). Accordingly, and as mentioned above, the global estimators of individual389

inbreeding (Fg) and the model parameters (ρ and R) remained accurate (Table 1).390

[Table 1 about here.]391

As shown in Table S1, the estimates of R for the HBD class under the 2R model started to be substantially392

biased for scenario with R ≥ 128. More interestingly, the performances of the 2R model (Table S1) and both the393

3R and 4R models (Table S2) were highly similar to those of the 1R model for the estimation of both genome-wide394
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(Fg) and local (φl) individual inbreeding.395

Analyzing simulated data with several underlying HBD classes.396

We further evaluated the performances of the different models on simulated data sets with more than one class397

for the underlying HBD segments, i.e. for which inbreeding originated from several sources of different ages398

and contributions to the overall inbreeding. We detail hereafter the analyses of individual genomes of 2,500 cM399

(with a marker density of 10 SNPs per cM) that were simulated under the 3R inference model, i.e., assuming two400

different classes for HBD segments and one non-HBD class. Each simulation scenario was thus defined by rates401

of HBD classes (R1 and R2) and the mixing proportions (ρ1 and ρ2) of the two classes of HBD segments. We402

remind that the simulated mixing proportions (ρ1 and ρ2) directly control (and are generally close to) the amount403

of inbreeding originating from the corresponding HBD class. However, due to the simulation procedure, some404

segments belonging to the first HBD class (with a more recent origin and a mixing proportion ρ1) might overlap405

(and mask) HBD segments belonging to the second one leading to a reduction (by a factor 1 − ρ1 on average)406

of the actual contribution of the latter to the overall inbreeding. As shown in Table 2 for six different scenarios407

(and Tables S3 and S4 for a total of 23 different scenarios), estimates of the overall individual inbreeding (Fg),408

of the rates (R1 and R2) and of the inbreeding contributions (F(1)
g and F(2)

g ) for the two HBD classes were close409

(but slightly biased) to the simulated values providing the differences between the rates of the two HBD classes410

was large enough (e.g., R1/R2 ≥ 16), i.e., the overlap between the distributions of the HBD segments lengths is411

reduced. As the difference between the ratio of successive Ri became smaller, all inbreeding tended to concentrate412

in the first HBD class that had an overestimated rate for small simulated R1 (Table 2 and Table S3). For instance,413

for the scenario with R1 = 4 (ρ1 = 0.125) and R2 = 16 (ρ1 = 0.100), med(F̂(1)
g ) = 0.195 (med standing for median)414

and med(F̂(2)
g ) = 0.004 while med(R̂1) = 7.20 and med(R̂2) = 391 across the 500 simulated individuals (Table 2).415

Strikingly however, the overall individual inbreeding Fg always remained very well estimated with MAE≤ 0.005416

for all scenarios (Table 2 and Table S4). Finally, as for the simulations under the 1R model previously considered,417

accuracy in the estimation of local inbreeding was found to mostly depend on the rates R1 and R2 (Table 2 and Table418

S5), the MAE for both φ̂l and φ̂lHBD lying in a similar range than the one observed previously on data simulated419

under the 1R model. More precisely, given the relatively sparse SNP density considered, MAE remained accurate420

(i.e., ≤ 0.05) while R1 < R2 ≤ 64 but started to increase for higher values probably due to the inclusion of smaller421

HBD segments.422

[Table 2 about here.]423
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To provide insights on the behavior of our model to a misspecification of the underlying number of HBD424

classes, we also analyzed these data simulated under the 3R model with the 1R, the 2R and the 4R models. As425

expected, when considering the 1R and 2R models, the estimated rate of the single assumed HBD class was426

intermediate between the two simulated R1 and R2 actual values (Table S3). In agreement with previous findings,427

the 1R and 2R lead to highly similar estimates except for large R1 and R2 for which the estimated R tended to be428

higher with the 2R than the 1R model (e.g., med(R̂) = 181 and med(R̂) = 201 respectively for the scenario with429

R1 = 128 and GR = 256). More interestingly, using the 1R and 2R models (i.e., with a single HBD class) to analyze430

these data resulted in an underestimation of Fg for scenarios with a marked differences between R1 and R2 (Table431

S4). Conversely, using an over-parameterized model (such as the 4R model) did not introduce any additional bias432

compare to the 3R model. For instance, for the scenario with R1 = 4 (ρ1 = 0.125) and R2 = 256 (ρ1 = 0.100) that433

lead to a median realized inbreeding equal to 0.211 across the 500 simulated individuals, the median estimated434

inbreeding was equal to 0.162 with both the 1R and 2R models while it was equal to 0.208 and 0.209 with the435

3R and 4R models respectively (Table S4). This suggested that the 1R and 2R model failed to capture some436

inbreeding. Accordingly, when focusing on the estimation of local inbreeding (Table S5), although the 1R and 2R437

models displayed a lower MAE for φ̂l (i.e., computed over all the SNPs), this was essentially driven by SNPs lying438

in non-HBD segments. Indeed, both the 3R and 4R resulted in a lower MAE for φ̂lHBD (i.e., computed over SNPs439

lying within HBD segments) suggesting these models allowed to better capture HBD segments at the expense of a440

slightly higher misassignment of SNP lying in non-HBD segments.441

Overall, similar conclusions about the performance of the models to estimate the simulated parameters could442

be drawn when considering data sets with more than two underlying HBD classes (see Table S6 for results on443

data sets simulated and analyzed under the 4R model). It should however be noticed that increasing the number444

of HBD classes in the model also increased misassignment of HBD segments towards incorrect HBD-classes445

(Figure S5). In other words, some HBD segments, although correctly identified as HBD, might display a non-zero446

probability to belong to an incorrect HBD class (most generally a neighboring one). As a result, when increasing447

the number of simulated HBD classes, higher deviations of the estimated inbreeding rate (Rc) and contribution448

(F(c)
g ) of each classes from their actual values could be observed (e.g., Table S6). Nevertheless, for higher ratio449

between successive simulated class rates, these estimates remained fairly good. Importantly and as shown in450

previous simulations, the overall individual inbreeding (Fg) was accurately estimated in all scenarios and MAE for451

local inbreeding mostly depended on the length of the HBD segments.452
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Using a set of K pre-defined HBD-classes (the MixKR model).453

For a given model, instead of estimating the rates Rk of the different HBD classes, an alternative is to use a set454

of pre-defined age-related classes with fixed Rk and to only estimate the mixing proportions (ρk). To illustrate455

and evaluate this strategy we hereby considered models consisting of 9, 11 or 13 HBD-classes depending on456

the simulated marker density (see below) and one non-HBD class leading to the so-called Mix10R, Mix12R and457

Mix14R models according to our nomenclature. For each model, the pre-defined rates of the K − 1 HBD-classes458

always ranged from 2 to 2K−1 (with Rk = 2k for each class k ∈ (1,K − 1)) while the rate of the unique non-HBD459

class was the same as the most ancient HBD class (i.e., RK = RK−1 = 8192). Application of these MixKR models460

to the various data sets previously generated under the 1R, the 3R and the 4R inference models proved highly461

efficient (Table S7 and S8). For instance and in agreement with above results, the Mix10R model provided accurate462

estimation of the overall inbreeding Fg (MAE always lower than 0.005 irrespective of the simulated scenarios) but463

also of the local inbreeding as indicated by MAE’s that were always as good as the best alternative model (e.g.,464

compare Table S7 and Table S5). Moreover, such models with pre-defined rates for the HBD classes allowed to465

provide indications on the actual rates Rk used in simulations. We indeed observed that the estimated inbreeding466

contributions (F(k)
g ) for the K − 1 HBD classes were mainly concentrated in those HBD-classes with pre-defined467

rates close to the true simulated ones as shown in Figure 1 for a dense SNP data sets (1000 SNPs per cM) analyzed468

under the Mix14R models and in Figures S6 to S10 for additional simulated data sets with smaller SNP density469

(either 10 or 100 SNPs per cM) that were analyzed under the Mix10R or Mix12R models.470

[Figure 1 about here.]471

Model comparisons and selection.472

We finally evaluated the BIC criteria to compare the models. When comparing different KR models (from 1R to473

6R) applied to various simulation scenarios (ranging from 1 to 4 simulated HBD-distributions), we observed that474

the BIC criterion tended to support the correct underlying models and never provided support for models with a475

number of classes K higher than the simulated ones (Tables S9 and S10). Nevertheless, for simulations involving476

HBD segments from several classes (i.e., simulated under the 3R to 5R inference models), BIC may favor a model477

with a smaller number of HBD classes than the actual ones when the rates between successive classes are too close,478

although increasing SNP density improves the BIC resolution (Table S10). It should also be noticed that the BIC479

criterion never provided a stronger support in favor of the MixKR model (as defined above) when compared to the480
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6 others models considered (from 1R to 6R), possibly due to its higher number of parameters (e.g., np = 13 for the481

Mix14R model against np = 11 for the 6R model) (Tables S11 and S12). Yet, for simulations with several HBD482

classes (Table S12), the BIC support was generally higher than for the 1R and 2R models.483

Sensitivity of the models to genotyping error, marker informativeness and genetic map inaccuracy484

As only partially investigated above, when analyzing data with different SNP density, we expected that SNP in-485

formation content, both in terms of marker density and genotyping accuracy, might be a key determinant of the486

resolution of the models. As a matter of expedience, we investigated this further by focusing on the 1R model (for487

both simulation and analyses) and evaluated the effect of changing the marker density and the SNP informativeness488

(array-like or NGS-like AFS) on its overall performance. Results confirmed that both the estimation of the rate R489

and the identification of HBD positions associated to shorter HBD tracks (i.e., older inbreeding events) always im-490

proved when increasing marker density and informativeness (Table 3). For instance, when the simulated R = 256,491

the MAE for R̂ (respectively φ̂lHBD ) dropped from 36.9 (respectively 0.7313) with a marker density of 10 SNPs per492

cM and a β (0.2, 0.2) AFS to 8.06 (respectively 0.1994) with a marker density of 100 SNPs per cM and to 5.79493

(respectively 0.0824) if, in addition, AFS was array-like. We also observe a better assignation of HBD segment to494

the correct HBD class with higher marker density (Figure S5). It is interesting to note that, at least for the range of495

parameters considered, Fg was accurately estimated irrespective of the marker densities and informativeness.496

[Table 3 about here.]497

We also investigated the sensitivity of the 1R model to the quality of genotyping or sequencing data. As498

shown in Table S13, when considering genotyping data (analyzed by setting ε = 0 for comparison purposes),499

we found that the presence of genotyping errors (with simulated ε = 0.01 or ε = 0.001) had little impact on500

the estimation of Fg, moderate effects on the estimation of local inbreeding φl but estimates of R were strongly501

affected with an upward bias and an increased MAE. The magnitude of these effects was actually a function of502

the number of incorrect genotypes per HBD segment that increased the probability of observing heterozygotes503

and thus to cut the HBD segment into smaller ROH. As a result, the impact of genotyping errors was stronger for504

more recent inbreeding, at higher marker density and for higher simulated error rate (Table S13). Interestingly,505

when analyzing the genotyping data with an appropriate error term i.e., setting ε = 0.01 (respectively ε = 0.001)506

for data simulated with a genotyping error rate of 0.01 (respectively 0.001), the estimates of R became unbiased507

(Table S13). The accuracy was similar than without error except in the case of data simulated with ε = 0.01 and508
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higher rate (older inbreeding origin) where MAE remained larger. Note that in these limiting cases (e.g., simulated509

G = 256 and ε = 0.01), the performance of the model when increasing SNP density (from 10 to 100 SNP per cM)510

was improved when including an error term in the analysis but decreased when analyzed without error (Table S13).511

More generally, including a small genotyping error term in the model (ε , 0) had little influence in the analysis of512

data simulated without genotyping errors.513

We further evaluated the sensitivity of the 1R model to various confidence levels in genotype calling by sim-514

ulating data that mimic low-fold sequencing (or GBS) data for which several genotypes may have a non-zero515

probability. In these cases, read count data were simulated with a higher SNP density than above (1,000 SNP per516

cM) and variable coverage (from 1 to 10X). For each simulated SNP, the likelihood of the three possible genotypes517

were derived from the read count data as described in the Material and Methods section. The analyzed data sets518

then either consisted of i) the actual SNP genotypes (ideal situation) or ii) vectors of genotype likelihoods. As519

detailed in Table S14, we found that the model performed well in estimating the global parameters R and Fg with520

sequencing data. As expected, the performances improved with higher coverages and were similar than those ob-521

tained with the corresponding genotyping data as coverages > 5X. Lowering sequencing coverages might indeed522

be viewed as decreasing SNP informativeness thereby leading to less accurate estimates for the different parame-523

ters (increased MAE), particularly for simulation in which inbreeding had an older origin (smaller HBD segments).524

For instance, for simulated R > 512 and 1X coverage, both Fg and R were slightly underestimated (and to a lesser525

extent with 2X coverage) while for R 6 256, both global and local (φl) estimates were accurate even with coverage526

as low as 1X (Table S14).527

We finally evaluated the impact of inaccurate genetic maps (i.e., correct marker order but incorrect genetic528

distances between markers) on the performances of our model. We first verified that if the all the genetic distances529

are multiplied by a same constant c, the estimated rate R̂ ' 1
c R (where R is the simulated rate) and the estimated530

inbreeding proportions remain identical (data not shown). This is expected from equation 1 since R is expressed531

on a genetic distance scale. In Table S15, we report the estimated rates R and FG in various simulation scenarios532

in which the genome was divided in blocks of 10 kb (or 100 kb) with recombination rates per unit of physical533

distance ranging from 0.001 to 0.100 (see Material and Methods). Results indicate that analyzing the data with an534

inaccurate genetic map (e.g., using the physical map instead of the genetic map when local recombination rate is535

variable) might introduce a small downward bias in the estimates of R (Table S15). The effect is more pronounced536

when the simulated R is larger (older inbreeding) and the local recombination rate varies over longer distances (100537

kb segments). The overall inbreeding FG was slightly underestimated in the most extreme situations (Table S16).538
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In general, for more recent inbreeding, the average genetic length of HBD segments is higher and thus less affected539

by variable local recombination. Indeed, since the larger the HBD segment, the higher the number of (physical)540

blocks, for large HBD segments, genetic and physical length tend to coincide. Obviously, when the correct genetic541

maps were used, parameters and overall inbreeding were accurately estimated (Tables S15 and S16), confirming542

that the model can handle variable local recombination rate when the genetic map is known.543

Comparison with other methods of inbreeding estimation544

We compared the 1R model with other methods commonly used to estimate inbreeding on a subset of six scenarios545

previously simulated under the 1R inference model and without genotyping errors. We started by running FEstim546

(v 1.3.2) that implements the original HMM proposed by Leutenegger et al. (2003) to verify that it is indeed547

equivalent to our 1R model (Table S17). We regressed estimators obtained by both methods and obtained a perfect548

match between both estimated mixing proportions ρ and rates R. As expected our estimated rates R were equal549

to 100a (a being the rate estimated by FEstim with a map expressed in cM). Since both methods are identical,550

comparisons between FEstim and other methods are valid for our model too. For instance, Polasek et al (2010)551

found that FEstim was superior to estimators based on expected genome-wide homozygosity and locus-based552

homozygosity. Similarly, Narasimhan et al (2016) concluded that HMM based models outperformed rule-based553

ROH as implemented in plink (Purcell et al, 2007) or estimates obtained with Beagle (Browning & Browning,554

2010). In addition, we computed the estimators based i) on the expected genome-wide homozygosity implemented555

in plink (Purcell et al, 2007); ii) the rule-based ROH (with 20 or 50 per ROH and no heterozygous SNP) and; iii)556

the likelihood-based ROH (Pemberton et al, 2012; Wang et al, 2009). The latter approaches compare the (LOD)557

ratio of the probabilities of the genotype data under hypotheses of autozygosity (HBD) and non-autozygosity558

(non-HBD) for sliding windows of n SNPs, n being chosen to obtain a clear bimodal distribution of the LOD559

scores. Here, this was achieved with n = 60, as in Pemberton et al (2012) and Kardos et al (2016), but we also560

considered windows of n = 20 SNPs that worked for most scenarios and allowed to capture smaller ROH. In561

addition, sliding windows were incremented by 1 SNP (we tested all windows of n snps) and the error term was set562

to 0.001. When the expected number of SNPs per HBD segment was large enough, all methods performed equally563

well (Tables S18-S21). Our model was able to identify smaller HBD segments (from more remote ancestors)564

than window-based approaches with 50 or 60 SNPs and had comparable behaviour with that respect as methods565

using 20 SNPs windows (it identified slightly less small segments). The 1R model proved the most accurate566

to estimate FG, followed by the method based on excess of genome-wide homozygosity, particularly when the567
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expected number of SNPs per ROH was smaller (Tables S18-S19). In the most extreme case (R = 256 and with568

10 SNPs per cM), we did not observe a clear bimodal distribution for the likelihood-based approach and could569

thus not apply the method. When the expected number of SNPs per ROH was limiting, approaches using SNP570

windows underestimated the number of HBD segments (this was more pronounced with larger SNP windows). As571

expected smaller SNP windows increased power to detect HBD segments (Tables S20-S21) but false positive rate572

too (increased MAE(φl)). In agreement with above results, in such limiting cases, the HMM approach is still able573

to provide an accurate estimation of the global inbreeding. The estimated probability for local inbreeding were less574

accurate (high MAE), particularly for SNPs lying in HBD segments (the model can not precisely determine which575

positions are HBD or not), but still remained well-calibrated.576

Simulations under a discrete time Wright-Fisher process577

To evaluate the robustness of the model to departure from model assumptions, we analyzed data simulated under578

a discrete-time Wright-Fisher process using the recently developed program ARGON (Palamara, 2016). For our579

purposes, a decisive advantage of ARGON is that it allowed to identify all the HBD segments (here we only580

considered those > 0.01 cM) and to obtain their age (i.e., time to most recent ancestor or TMRCA). Inbreeding581

was generated by assuming population histories with either i) a strong bottleneck in the recent past followed by a582

rapid expansion as might be observed in invasive populations (WF1 scenarios) or ii) a reduced effective population583

size in the last twenty generations as might be observed in some domestic populations (WF2 scenarios). In total we584

considered 12 different WF1 scenarios and two different WF2 scenarios (see Material and Methods) and analyzed585

50 simulated diploid individuals from population P1 per scenario with a marker density of 100 SNPs per cM.586

As illustrated in Figure 2A for one WF1 scenario (see Figures S11 and S12 for all the 12 WF1 and the 2 WF2587

scenarios respectively), the simulated history leads as expected to an enrichment in HBD segments that trace back588

to the bottleneck period within the simulated individual genomes (about 20% on average in Figure 2A). Yet, in589

most scenarios, a substantial proportion of inbreeding was associated to more ancient classes that accumulate590

inbreeding over many more generations. Indeed, a segment was considered HBD if it traced back to an ancestor591

from a generation more recent than the split time (Ts = 103 or Ts = 104 generations depending on the scenarios) of592

two modeled populations (see Material and Methods). Accordingly, in WF1 scenarios, this proportion increased593

with lower effective population size (Ne1), older split time (Ts) and to a lesser extent higher bottleneck population594

size (Neb) and timing (Tb) (Figures S11 and S12).595

We analyzed all these simulated data sets with a Mix14R model that consisted of 13 HBD-classes with pre-596
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defined rates ranging from 2 to 8192 (with Rk = 2k for each class k) and one non-HBD class that had the same597

rate as the older HBD class (i.e., R14 = R13 = 8192). The choice for a MixKR model was motivated by our598

previous findings that demonstrated it was informative regarding the rates of the simulated inbreeding class(es) and599

performed as well as other models in estimating local and overall inbreeding. In addition, it allowed to compare600

all the simulated individuals according to the same age-related partitioning of inbreeding.601

[Figure 2 about here.]602

As shown in Figure 2B (see Figures S13 and S14 for all the 12 WF1 and the 2 WF2 scenarios respectively),603

our HMM always allowed to efficiently identify HBD segments tracing back to common ancestors with TMRCA604

smaller than 80 generations, since the underlying SNPs displayed an estimated local inbreeding probability (φl)605

close to one. In agreement with results obtained on simulations performed under the inference model (see above),606

the power to identify HBD segments of older origin gradually decreased (towards values almost always lower607

than 20% for TMRCA older than 5000 generations). Note that analyses of data sets simulated under the inference608

model showed that although the power was below one, overall inbreeding remained correctly estimated (see above).609

Figures S15 and S16 represent the same average local inbreeding probabilities for HBD-segments as a function of610

their length (instead of TMRCA). Theses probabilities were close to one for HBD-segments longer than 50 Kb,611

above 0.80 for HBD segments from 20 to 50 Kb long and dropped towards 0 for smaller HBD-segments. It is612

important to recall that with higher marker densities, it would be have been possible to identify older and smaller613

HBD segments.614

Interestingly, we further observed that the HBD segments tracing back to the simulated bottleneck period were615

in their vast majority assigned to HBD classes whose pre-defined rates were close to twice the corresponding616

time (in generations). For instance, in the scenario with a bottleneck lasting from generations 17 to 14 in the617

past considered in Figure 2, the estimated proportions of the individual genomes assigned to HBD segments were618

concentrated in the HBD class with pre-defined rates equal to 32 (Rk = 32), 16 (Rk = 16) and to a lesser extent619

in an older HBD-class (Rk > 2048) (Figure 2C and Figures S17 and S18 for all the 12 WF1 and the 2 WF2620

scenarios respectively). Moreover, in the simulated individuals, the HBD segments with a TMRCA ≈ 16 were621

mainly assigned (> 70%) to the two neighboring HBD classes with Rk = 32 and Rk = 16 (Figure 2D). Similar622

patterns were observed in other simulations (Figures S19 and S20). Note that older HBD classes (with Rk > 512)623

also captured a small proportions of the HBD segments that traced back to the bottleneck period (Figures S19624

and S20) together with those with an older TMRCA probably because these older HBD classes have high mixing625
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coefficients. This effect was stronger when the bottleneck contributed less to the overall inbreeding and when the626

bottleneck was older. HBD segments from an individual might also be smaller or larger than expected from the627

age of the bottleneck due to the stochastic nature of the Wright-Fisher process. In all cases however, we observed628

a peak of inbreeding in the HBD-class(es) with a rate close to twice the age corresponding to the period of reduced629

Ne or its neighbors (Figures S17 and S18). Finally, the vast majority of the non-HBD segments (with a TMRCA630

> 10,000 generations) were correctly assigned to the non-HBD class, the remaining ones being assigned to most631

ancient contributing HBD-class (Figures S21 and S22). Overall, this simulation study thus confirmed that our632

model correctly identifies HBD segments and it also provided support in favor of an age-based interpretation of633

the HBD-class rates.634

Note that likehood-based ROH methods with windows of 20 or 60 SNPs were also applied to these simulated635

data sets. The power to identify HBD segments according to the age of the TMRCA or to their length are reported636

in Figures S13-S16. As for simulations under the inference model, our model had comparable behavior than637

methods using 20 SNPs windows and identified smaller HBD segments (associated with more remote ancestors)638

than methods using 60 SNPs windows. The power and false positive rate would largely depend on the definition639

of an arbitrary base population making comparisons difficult. Indeed, at some time in the past, ancestors must be640

considered unrelated or all segments would be HBD. One of the benefits of a Mix14R model is to automatically641

estimate inbreeding relative to several base populations (at different time in the past), making the choice somewhat642

less arbitrary.643

Application to human, dog and sheep real data644

We applied our model to individuals from human, dog and sheep populations, i.e., species representative of a645

wide range of demographic histories. Individuals were genotyped, as part of previous experiments (see Material646

and Methods) with assays containing various number SNPs (ca. 600K, 150K and 50K for human, dog and sheep647

individuals respectively) leading to different SNP density (ca., 1 SNP per 5kb, per 20 kb and per 60 kb respectively).648

The genotyping data were further analyzed with a Mix14R model that consisted of 13 HBD-classes with pre-649

defined rates ranging from 2 to 8192 (with Rk = 2k for each class k) and one non-HBD class that had the same rate650

as the older HBD class (i.e., R14 = R13 = 8192). In all analyses, the estimated mixing proportions of HBD-classes651

with Rk 6 256 were all extremely small (< 0.01) supporting an age-based interpretation of the Rk rates as the length652

of the inbreeding loop or approximately half the age of the underlying ancestor (both measured in generations).653

Indeed, the expected lengths of HBD tracks per class were consequently close to 1
Rk

corresponding to the average654

25



length for HBD segments transmitted by an ancestor living G ≈ 0.5Rk generations ago. It should however be655

stressed that this age-based interpretation is only approximated (see Discussion) and that populations have variable656

ratio between genetic and physical distances when averaged between sexes: 1.16 cM/Mb for human (Kong et al,657

2010), 1.26 cM/Mb for sheep (Johnston et al, 2016) and 0.88 cM/Mb for dog (Campbell et al, 2016). Indeed, we658

used for the analyses the SNP position on the physical maps accompanying the respective data sets. Differences659

with real genetic maps together with variable local recombination rates might introduce some imprecisions in the660

assignment of actual HBD segments to their actual age-related HBD class (see above). The estimated contribution661

of each pre-defined HBD class (averaged over all the individuals) are detailed for each populations and each species662

in Figure 3.663

[Figure 3 about here.]664

Regarding humans, the six populations considered here (French, Yoruba, Melanesian, Papuan, Pima and Kari-665

tiana) have already been thoroughly analyzed (e.g., Jakobsson et al, 2008; Li et al, 2008) and in particular in studies666

aiming at characterizing inbreeding (Leutenegger et al, 2011; Pemberton et al, 2012) or providing a detailed as-667

sessment of the distribution of ROH of different lengths (Kirin et al, 2010). In each population, we observed some668

individuals with more than 1% of recent inbreeding (Rk 6 16) but these were rare in Yoruba (1 out of 22) and669

French (2 out of 28) populations compared to Pima (12 out of 14) and Karitiana (13 out of 13). In these two latter670

populations, there is strong evidence for very recent inbreeding, some of the individuals having more than 10%671

of inbreeding in very young classes from Rk = 2 to Rk = 8 (Figure 4A and Figure S23). Oceanian populations672

displayed intermediate proportions of such individuals (1 out of 11 for Melanesian and 4 out of 17 for Papuan)673

but had higher proportions of inbreeding in intermediate HBD-classes (32 6 Rk 6 128) compared to French and674

Yoruba. Consistently, average cumulated inbreeding at Rk = 16 was high for Karitiana (4.1%) and Pima (2.8%)675

and low for other populations (< 0.5%). When cumulated up to HBD-class with Rk = 128, these values were676

still below 0.5% for Yoruba and French and larger than 1% in Melanesian (2.0%) and Papuan (3.2%) populations.677

These results are consistent with those reported by Leutenegger et al (2011) who concluded that Yoruba and French678

genotyped individuals were in a vast majority originating from unrelated matings (with the same outliers as in our679

study), that Melanesian and Papuan were associated to either unrelated or double-cousins (2C) matings (common680

ancestor 4 generations ago and expected inbreeding equal to 1.56%) and that Pima and Karitiana came from either681

first cousins (1C) (common ancestor 3 generations ago and expected inbreeding equal to 6.25%) and 2C matings682

(with two individuals presenting possibilities of avuncular or double 1C mating). With our model, children of un-683
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related matings presented no trace of recent inbreeding (Rk 6 16), those from 2C and 1C mating had respectively684

1.2% and 7.5% recent inbreeding (the two most extreme individuals having more than 10% inbreeding). Overall,685

as shown in Figure S24, the mean estimated inbreeding estimated by Leutenegger et al (2011) were highly cor-686

related with our estimate of recent inbreeding (r = 0.945) defined as the sum of the contribution of the first four687

HBD-classes (from Rk = 2 to Rk = 16) but less with the overall inbreeding (r = 0.601). It should also be noticed688

that Leutenegger et al (2011) estimated inbreeding using LD-pruned maps of 6,500 SNPs (to get unbiased results)689

whereas we did not perform any LD-based filtering of the data and used more than 600,000 SNPs to partition690

inbreeding in the different classes of our model. Yet, in human populations, our results showed that the largest691

proportion of ROH were associated with the most ancient HBD-classes. Although interpretation of old inbreeding692

must be done with caution (see Discussion), it might be considered as associated with the background LD in the693

population and mostly influenced by the demographic characteristics of the populations (e.g., effective population694

size history). Accordingly, the amount of overall inbreeding increased from Africans to Europeans, Oceanians695

and Native Americans (from Central and Southern America) (Figure 3A,B). More precisely, the rates of the main696

contributing HBD-classes that were generally consistent within population were clearly related to their Ne. Hence,697

inbreeding concentrated in HBD-classes with Rk = 512 for Karitiana, with Rk = 512 and Rk = 1024 for Pima,698

with Rk = 1024 for Papuans and Melanesians, with Rk = 1024 for French and with Rk = 2048 for Yoruba. These699

results are qualitatively in agreement with previous findings by Kirin et al (2010) that suggested the presence of700

both recent (long ROH) and ancient (short ROH) inbreeding in Native Americans. Conversely, they found that701

individuals from Oceanian populations did not display long ROH (several Mb long) but had an excess of ROH702

of intermediate length (between 1 and 2 Mb) indicating a reduced Ne in the past. Finally, European and African703

populations mostly showed inbreeding arising from remote ancestors. One major difference between our results704

and the study by Kirin et al (2010) is that they only considered ROH > 500 kb leading to a lower estimated value705

(most probably downwardly biased) for the overall individual inbreeding. As previously mentioned, the power of706

all approaches to detect short HBD segments is a function of the available marker density which possibly leads to707

an underestimation of their proportions.708

Modern dog breeds present large amounts of inbreeding and are known to have experienced strong bottlenecks709

associated with the recent breed creation from a small number of founders (e.g., Vaysse et al, 2011). In addition,710

strong artificial selection and matings in small closed populations further contributed to increase inbreeding in the711

last decades (Lewis et al, 2015). Accordingly, as shown in Figure 3C,D and Figure S25, we observed massive712

inbreeding (sometimes higher than 20%) in the HBD-class with Rk = 16 (a common ancestor approximately713
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8 generations ago) in all the five breeds we analyzed but the Jack Russell Terrier that has a larger Ne (Vaysse714

et al, 2011). As expected also, wolves that did not experienced domestication did not present such an excess of715

inbreeding in recent generations. In each population (including wolves), some individuals were found to be highly716

inbred with an Fg ≈ 50% and approximately 25% of this inbreeding associated with the first two HBD-classes717

(i.e., a common ancestor living only one or two generations ago) (Figure 4B and Figure S25).718

Finally, among the six sheep populations we investigated, three (the Rasa Aragonesa, Milk Lacaune and Ram-719

bouillet) displayed a large Ne (> 700) as described in Kijas et al (2012). Hence, individuals from the Rasa720

Aragonesa displayed almost no trace of recent inbreeding (≤ 0.5% when summing contributions of HBD-classes721

with Rk ≤ 8) while the cumulative inbreeding remained lower than 6% on average for individuals from the Milk722

Lacaune and Rambouillet breeds up to classes Rk = 32 (Figure 3E,F and Figure S26). Yet, some Rambouillet723

individuals presented high levels (> 20%) of recent inbreeding (Figure 4C and Figure S26). Conversely, the Wilt-724

shire (Ne = 100) and Dorsethorn (Ne = 137) populations that went through a strong reduction in size in the early725

1900’s (Dorsethorn to a lesser extent) were both found to have a high level of recent inbreeding (Figure 3 and726

Figure S26). The main contributing HBD-class was the one with rate Rk = 16 for Wiltshire and Rk = 4 to Rk = 32727

for Dorsethorn. Interestingly, the Wiltshire individuals were sampled from a New-Zealand flock that experienced728

several strong and successive bottlenecks in its recent history. Indeed, its founders were imported in 1974 from729

Australia where the breed had previously been introduced in 1952 and survived as a remnant population of as few730

as 12 ewes (O’Connell et al, 2012). Assuming a generation time of approximately 4 years in sheep, the distribution731

of the contribution of the most recent classes to the overall inbreeding is thus consistent with this demographic his-732

tory. The sixth sheep population we investigated was the well known Soay sheep that had an estimated Ne = 194733

(Kijas et al, 2012) and experienced a strong founder effect since the current population derives from a flock of 107734

individuals that were transferred on the Hirta island in 1932 and then lived in complete isolation (Clutton-Brock735

& Pemberton, 2004). We observed for this population a small amount of recent inbreeding (for HBD classes with736

age Rk ≤ 16), even lower than in Milk Lacaune or Rambouillet, but rather high levels of inbreeding associated737

with HBD classes of rates between between 32 and 64 (Figure 3E,F and Figure S26). Integrating over all the738

classes, the Soay sheep thus appeared on average even more inbred than Dorsethorn, which explains the small739

estimated Ne. However, despite this strong founder effect and the high resulting inbreeding level, we observed740

almost no individual with an inbreeding Fg > 5% in the most recent generations. The Soay breed represents an741

interesting example of a wild population resulting from a founder effect and in expansion. To summarize, our742

model allowed to provide deeper insights into the very different patterns of individual inbreeding observable in the743

28



sheep breeds. Indeed, these inbreeding patterns ranged from small as in the Rasa Aragonesa or limited level (with744

a few overly and recently inbred individuals) as in the Rambouillet breed, to moderate to high inbreeding level that745

either originated from strong bottleneck in the very recent (Wiltshire) or recent (Soay) past, or that resulted from746

the cumulative effect of a less pronounced population size reduction over more generations (Dorsethorn).747

[Figure 4 about here.]748

Importantly, besides providing a global estimator of inbreeding for each individual, the model also informs749

on the partitioning of this individual inbreeding which is highly valuable. For instance, individuals born from ex-750

tremely consanguineous marriages might be easily identified. As an illustration, Figure 4B showed three dogs751

(Dob LU142, Dob LU149 and BoT LU45) that displayed approximately 25% inbreeding associated with the752

Rk = 2 or Rk = 4 HBD-class (ancestors living one or two generations ago) unlike other dogs from the same753

population (Dob LU154 and BoT LU70). These three individuals are likely resulting from matings between a sire754

and its daughter. This indicates that inbreeding is still present in these populations and is not only due to the breed755

creation event but to further management practices. High level of inbreeding associated to parents or grand-parents756

are also observed in sheep (19.2% for Rambouillet RMB63 in Figure 4C) and even in human (8.9% for Karitiana757

HGDP01019 in Figure 4A). For all these individuals, however, these recent events accounts only for a fraction of758

total inbreeding and a substantial proportion of inbreeding is due to more remote ancestors. More generally, by759

partitioning the total amount of inbreeding among ancestors from different generations, our model provides a better760

understanding of the origins of inbreeding in each individual. Hence, individuals with a similar overall inbreeding761

might display a quite different pattern of ancestral contributions captured by our model. For instance, for the three762

sheep individuals (Rambouillet RMB70, Wiltshire WIL2 and Soay SOA2172) represented in Figure 4C that all dis-763

played an overall inbreeding of approximately 20%, the inbreeding is mostly associated to the HBD-class Rk = 16764

for the Wiltshire WIL2, to the two HBD-classes Rk = 32 and Rk = 64 for the Soay SOA2172 whereas for the765

Rambouillet RMB70 individual, ancestors contributing to inbreeding trace back to a wide spectrum of generations766

(from Rk = 4 to Rk = 256). These observations are consistent with patterns at the population level. Interestingly,767

individuals with higher levels of inbreeding (Wiltshire WIL21 and Rambouillet RMB63) display comparable pat-768

terns with inbreeding concentrated in the HBD-class Rk = 16 for Wiltshire WIL21 and associated to several HBD769

classes for Rambouillet RMB63 (Figure 4C). In humans (Figure 4A), Native Americans from Central and Southern770

America were found to display different make-ups than Oceanians with similar levels of overall inbreeding (e.g.,771

Karitiana HGDP01010 vs Melanesian HGDP01027 or Pima HGDP01044 vs Papuan HGDP00555). As expected772
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from previous results, Oceanians actually displayed little traces of very recent inbreeding but accumulated more773

inbreeding in distant generations.774

Computational requirements775

To assess the computational performances of our software, we ran ZooRoH on a cluster with Intel E5649 processors776

at 2.53 GHz to estimate inbreeding in populations of 500 individuals genotyped at 10 or 100 SNPs per cM with777

different models (1R, 4R and MixKR). In total, 1000 iterations of the EM algorithm were realized. Running times778

range from less than 3 hours to process all 500 individuals genotyped with 25,000 SNPs under a 1R model to more779

than a day to process 50 individuals genotyped with 250,000 SNPs under a Mix12R (Table S22). Memory usage780

remained reasonable (below 200 MB) whereas running times were a function of the number of fitted classes and781

the marker density (e.g., 10 times slower to process an individual with 10 times more markers). We are currently782

working on a package working with optimization procedures (to reduce the number of iterations) and including783

parallelization of the analysis over individuals.784

Discussion785

In this study, we developed and evaluated HMM models that use genomic data to estimate and to partition in-786

dividual inbreeding into classes of HBD segments with different lengths which might in turn be interpreted as787

originating from ancestors of different ages. There actually exists a wide variety of methods to estimate individual788

inbreeding and these have different properties. Pedigree-based methods rely on a genealogy (the inbreeding can789

only result from individuals within the genealogy) and predict the expected IBD status at a locus whereas genomic790

measures estimate realized inbreeding (the observed level of inbreeding) (Hill & Weir, 2011; Kardos et al, 2015,791

2016). Genomic estimates can either be global, giving a unique measure per individual, or local. Obviously, these792

latter measures provide more information but require a higher marker density. Assessing the distribution of ROH793

within individual genome have recently become popular to characterize global and local inbreeding (Kirin et al,794

2010; McQuillan et al, 2008; Pemberton et al, 2012). When definition of RoH is rule-based, many parameters795

must be defined and these need to be adapted to the characteristics of the population under study and the geno-796

typing technology used. Alternatively, likelihood-based RoH classification (Broman & Weber, 1999; Pemberton797

et al, 2012; Wang et al, 2009) or HMM modeling (e.g., Leutenegger et al, 2003) make a better use of all the798

information since they take into account the marker allele frequencies and the genotyping error rates. Relying on799
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a full probabilistic HMM framework has several additional advantages. First it allows to directly account for the800

(genetic) map information. Second, as we showed in our study, HMM can be extended to account for uncertainties801

associated with NGS data (Narasimhan et al, 2016), including low-fold sequencing (Vieira et al, 2016) or GBS,802

whereas rule-based ROH are inappropriate in such conditions. Finally, when relying on the Forward-Backward803

algorithm (as in our study), HMM allows to integrate over all the available information to estimate the HBD prob-804

abilities at each marker position in opposition to a binary classification as obtained with window-based approaches805

or HMM methods that rely on the Viterbi algorithm (Narasimhan et al, 2016; Vieira et al, 2016). Overall, using a806

probabilistic model is particularly valuable when information is sparser and classification is more uncertain (e.g.,807

for smaller and older HBD tracts, at lower marker density or informativeness, with higher genotyping error rates808

or with low-fold sequencing).809

The most simple HMM we considered consists of a single HBD state (1R model) and is similar to several810

previously proposed ones (Leutenegger et al, 2003; Narasimhan et al, 2016; Vieira et al, 2016). This amounts811

to either assume that a single common ancestor is responsible for inbreeding or that the vast majority of HBD812

segments trace back to ancestors that lived in the same past generation. However, most populations have complex813

demographic histories, with varying Ne and common ancestors of HBD segments are thus expected to originate814

from many different generations in the past. As shown by our application in real data sets, even in domestic popu-815

lations for which inbreeding might be expected to result from a limited number of founder individuals, individual816

inbreeding generally results from ancestors in different generations back in time probably due to the subsequent817

intense use of some key (selected) breeders. Hence, extending the model to several HBD-classes is highly valuable818

in such cases. The first benefit of a multiple HBD-classes model is to better fit the data and to obtain more accurate819

estimators of inbreeding both locally and globally. Indeed, our simulations under the inference model with several820

HBD classes clearly showed that the 1R (and 2R) model underestimated Fg as some HBD segments were missed821

while the power to detect HBD segments was decreased. In addition, in the presence of ancient inbreeding, the822

1R model will tend to interpret recent (and thus longer) HBD segments as consecutive smaller segments of older823

origins because the estimated rate of the single HBD class would tend to be larger. Of course, in the absence of824

genotyping errors, the entire segment would then be correctly declared HBD and would appear as a long tract.825

However, at higher genotyping error rates (as with NGS data) such segments would be cut into smaller pieces.826

This would not happen when analyzing data with a model with multiple classes since recent HBD segments would827

then be associated to a class with a smaller rate and the penalty in the HMM to leave the HBD-class and start a828

new HBD segment would be too large. With two states HMM (Leutenegger et al, 2003), LD pruning is sometimes829
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used to get rid of background LD and then force the model to concentrate only on recent inbreeding. With multiple830

HBD-classes model (> 2R models), ancient inbreeding associated with background population LD is assigned831

to the oldest HBD classes making LD pruning unnecessary for that purpose. This was illustrated by comparing832

inbreeding estimators obtained for human populations with a LD-pruned map or with a non-filtered map with re-833

spectively a 1R and Mix14R model. Also, HMM with multiple HBD classes allows to determine whether there is834

a single or multiple HBD distribution(s) with a major contribution to overall inbreeding. We can then clearly iden-835

tify individuals from extreme consanguineous matings (sire x daughter, first cousins, etc) because inbreeding due836

to this recent ancestor is distinguished from the background inbreeding of remote origin (see examples with 25%837

inbreeding in class Rk 6 4 in dog and sheep data analyses). Multi-HBD classes models allow in turn to obtain some838

information on the relatively recent demographic history of the population, high levels of inbreeding indicating that839

Ne was reduced at some recent time in the past such as in populations under conservation or invasive populations840

whereas an absence of inbreeding is indicative of a large Ne during the corresponding period. Application to real841

populations then demonstrated that the model can capture very different patterns including presence or absence of842

consanguineous matings, large Ne and low inbreeding, bottlenecks at varying time in the past, founder effects and843

reduced Ne due to isolation in the past (Rk > 100). Our HMM model actually explores more recent generations844

and can be considered as complementary to approaches that infer past Ne (Li & Durbin, 2011). It is however845

not intended to estimate Ne, other methods modeling IBD being better suited to that purpose (e.g., Browning &846

Browning, 2015).847

Using the proposed HMM to obtain information on recent demographic history or to identify extreme consan-848

guineous matings based on the estimated rates of the HBD-classes assumes that there is a link between the rate of849

the HBD-classes and the age of inbreeding. In our model, the transition rate per Morgan is not equal to the gen-850

erational age of HBD but these quantities are related. Indeed, the length (in Morgans) of chromosomal segments851

inherited from ancestors living G generations ago is exponentially distributed with a mean 1
G (Thompson, 2013)852

and 1
2G for HBD segments that consist of a pair of IBD haplotypes inherited from the same ancestor (2G represent-853

ing the size of the inbreeding loop). Unfortunately, the lengths of HBD segments originating from a given ancestor854

are not directly observed because HBD tracts can be the result of the junction of several HBD segments (possibly855

inherited from distinct ancestors). If HBD segments inherited from ancestors G generations ago have a probability856

ω to be followed by another HBD segment inherited from an ancestor of the same age, then the length of the result-857

ing HBD tract would be exponentially distributed with expected length 1
2G(1−ω) . In the present model, the length858

of HBD tracts is expected to be 1
R(1−ρ) . When the difference between ρ and ω is small, R is approximately equal859
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to 2G and is related to the age of the HBD segments. Factors such as the pedigree structure, the distance between860

the markers or the size of the inbreeding loop determine the magnitude of this difference. In some specific mating861

types, ω is almost null (in a first-cousin 1C mating, HBD segments become non-HBD after a single recombination)862

whereas ρ is equal to the inbreeding coefficient (6.25% for a 1C mating). As an example, Leutenegger et al. (2003;863

2011) estimated the expected rate R (named a in their study and expressed according to a genetic map in cM, i.e.,864

R = 100a) for a few specific mating types such as 1C (R=6.3), double first cousins 2x1C (R=6.8), second-cousins865

2C (R=8.0), avuncular AV (R=5.7) and 4 x 2C (R=8.4) matings. Even if R is different from 2G in these cases, both866

values remain close since the size of inbreeding loops (2G) corresponding to these five different mating types are867

equal to 5 (AV mating), 6 (1C and 2x1C matings) and 8 (2C and 4x2C matings). Simply setting ω to 0 for these868

matings (assuming HBD states are followed by non-HBD states after a recombination) and setting 1
2G(1−ω) = 1

R(1−ρ)869

would yield very similar estimates for R to those estimated above (respectively 6.4, 6.9, 8.1, 5.7 and 8.5) indicating870

that for these examples differences between ρ and ω account for a large part of the differences between 2G and871

R. Further using an approach similar to Leutenegger et al (2003), we estimated that the expected value of R to872

be equal to 12.01 and 32.02 for HBD segments originating from a common ancestor living 6 (2G = 12) and 16873

(2G = 32) generations ago. In summary, although the rate R gives at least a qualitative indication and in some874

simple cases a good estimation of the inbreeding age, it should more generally only be viewed as an approximation875

of the true size of the inbreeding loop (in generations). Thompson (2013) stressed that estimating age of inbreeding876

from size of HBD segments (or RoH length) is very difficult due to the inherent stochastic nature of the underlying877

recombination process. As shown by our simulations, the estimation of R might further be influenced by other878

factors such as inaccuracies in the genetic map, genotyping errors (when not accounted for properly), presence of879

several HBD-classes with close rates and/or lower marker density and informativeness.880

Some additional precautions must be taken regarding interpretation of the results because the model relies on881

three important assumptions. First, it assumes that no mutation occurred in HBD segments in the path between882

the individual and its ancestor. With standard mutation and recombination rates (e.g., as in human or cattle), few883

mutations per HBD segment are expected and their number is relatively constant regardless of the age since older884

segments are smaller but have more time for mutations. So, as long as enough SNPs are present per segment,885

the impact of mutations should be low and accounted for by the genotyping error rate parameter. In addition,886

favoring old SNPs (as in genotyping arrays or via MAF filtering) is advisable. The second assumption is that the887

marker allele frequencies in the base populations are known. A special attention must be taken when working with888

several very different populations and markers that have been selected based on their frequencies in only a subset889
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of these. When many markers are not segregating in one population (due to ascertainment bias) but frequencies890

are estimated across populations, they might generate spurious HBD signals. It is therefore important either to891

estimate the frequencies within population (which need a sample size large enough) or use markers segregating892

in a large number of representative populations. Finally, the model assumes that after conditioning on the HBD-893

state, adjacent markers are independent. This is obviously not the case in presence of LD and Polasek et al (2010)894

concluded that ignoring LD leads to upward biases in inbreeding estimates. Note that absence of background LD895

is also implicit in ROH-based methods and approaches using excess of homozygosity or the genomic relationship896

matrix. Ideally, HMM could be extended to explicitly account for background LD (e.g., Tang et al, 2006; Wang897

et al, 2006) but this would increase the complexity of the model (and computational costs). Simpler strategies898

relying on LD-pruning to remove markers in high LD have been proposed (e.g., Gazal et al, 2014; Leutenegger899

et al, 2011). Although applicable with any method, LD-pruning is however not systematically used since some900

authors consider that LD might be the result of the mating of (very distantly) related individuals (Broman & Weber,901

1999) and of ancient coancestry (Thompson, 2013). In addition, from a practical point of view, reducing marker902

density might affect the power to identify the shortest HBD-segment (in particular for RoH-based approaches) and903

their boundaries. As the approach proposed by Pemberton et al (2012), our multiple HBD-classes model actually904

represent a valuable compromise between these two strategies to deal with LD. Indeed, it allows to partition905

inbreeding in different age-related classes so that short HBD segments (belonging to classes with the highest rate906

Rk) capture background LD (of ancient origin and thus of similar contribution across all individuals from the907

population) while long HBD segments capture inbreeding introduced by recent parental relatedness (displaying908

variation among individuals). Simulations under a Wright-Fisher process suggested that our model with multiple909

HBD classes was effective even in the presence of background LD. In addition, comparisons of our estimates with910

those obtained with LD-pruned maps for the analyzed human populations illustrated that the most recent HBD911

classes closely corresponded to the estimators obtained with the LD-pruned maps whereas short ROH associated912

with LD patterns were captured by the more ancient HBD-classes.913

As other approaches identifying HBD-segments of different lengths, our model-based approach actually al-914

lows to explore inbreeding in several dimensions: the global (Fg), the local (φl) and age-variable (F(k)
g ). It has915

been suggested that more ancient inbreeding might be less detrimental since deleterious variants are expected to916

be purged from populations over time (e.g., Hinrichs et al, 2007; Leroy, 2014). Yet, the number of generations for917

this purging to complete depends on the population history (e.g., Hedrick & Garcia-Dorado, 2016). For instance,918

strong bottlenecks tend to reduce the intensity of selection against deleterious variants (”the cost of domestication”)919
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and artificial selection might favor some breeders carrying deleterious variants. With our model we can estimate920

the inbreeding depression associated with different HBD classes. This requires appropriate data sets (individuals921

genotyped at high marker density to capture old inbreeding and with own fitness records) and sufficient variation922

in all HBD-classes. Alternatively, recent and old inbreeding can be compared by functional annotations of differ-923

ent segments. For instance, Szpiech et al (2013) showed that long ROH are enriched for deleterious variants in924

humans. We can also use our model to test for local inbreeding depression and identify regions or variants where925

homozygosity seems more deleterious (e.g., Leutenegger et al, 2006; Wang et al, 2009).926

In practice, several strategies can be used to infer inbreeding in populations with our model. First, when using927

only one HBD class as in Leutenegger et al (2003), we can either estimate a single rate common to both HBD and928

non-HBD classes or a different value for both states. The first option results in a model similar to Leutenegger929

et al (2003) and Vieira et al (2016) (note that the model by Narasimhan et al (2016) does not estimate the rate930

but a single transition parameters combining R and the genetic distances) and results in better estimates of the931

rate. Next, we can select the best number of HBD-classes according to the BIC criterion to compare the different932

models. When evaluated under simulated data, the BIC appeared to be conservative since the selected values were933

smaller or equal to the simulated ones. Note that with this approach we select the number of classes that best fit934

the data (merging several close classes if necessary) and not the real number of classes. Finally, we can use a set of935

HBD (and non-HBD) classes with pre-defined rates (the so-called MixKR models). It is then recommended to well936

separate these rates (e.g., using a ratio of two or more between successive rates to limit the overlap between the937

exponential distributions assumed for the HBD segment lengths) and cover a range of generations compatible with938

the available marker density. That strategy proved particularly efficient in most cases since it provided accurate939

estimates of the overall and local inbreeding while providing insights into the partitioning of inbreeding in the940

different HBD-classes and more easily comparable results across individuals from the same population. Such a941

model was only sub-optimal when a single and rare HBD class was simulated (which might not be usual in real942

populations) but required larger computational resources since more classes are simultaneously fitted.943

Several direction might be followed to improve our model, for instance to better take into account the possibility944

of mutations or to estimate the allele frequencies. Another possible extension to capitalize on individual inbreeding945

for past demographic inference of the whole population would be to explicitly relate the contribution of each946

HBD class to each and every individual inbreeding to the corresponding past effective population size (see e.g.,947

Browning & Browning, 2015) and further consider all the individuals jointly to estimate these (hyper–)parameters.948

Such a development might be viewed as an extension of the model from an individual-oriented framework towards949
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population parameter inference.950
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Figure 1. Estimated inbreeding contributions F(k)
g for 13 HBD classes with pre-defined rates (Mix14R

model) on data simulated under the 5R model (4 HBD classes). The simulated genome consisted of 25
chromosomes of 100 cM with a marker density of 1000 SNPs per cM. Genotyping data for 50 individuals were
simulated under the 5R inference model i.e., with 4 HBD-classes with the following realized rates (inbreeding
contributions) as indicated by a star in the plot: R1 = 4 (F(1)

g = 0.125), R2 = 128 (F(2)
g = 0.08), R3 = 1024

(F(3)
g = 0.04) and R4 = 4096 (F(4)

g = 0.11). The data were analyzed with the mix14R that consisted of 13
HBD-classes with pre-defined rates ranging from 2 to 8192 (with Rk = 2k for each class k) and one non-HBD
class that had the same rate as the older HBD class (i.e., RK = RK−1 = 8192). For each of these 13 HBD classes,

the boxplots give the distribution of the estimated inbreeding contribution (F̂(k)
g ) over the 50 simulated individuals.
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Figure 2. Evaluation of the mix14R model on a data set consisting of 50 diploid individuals simulated under
a Wright–Fisher demographic history with varying population sizes. The population evolved under a WF1
scenario (see the Material and Methods section) with Ne1 = 105, Ts = 104 and a bottleneck lasting from
generations 17 to 14 in the past and during which the population size was Neb = 20. A) Realized distribution of
the proportions of the simulated individual genomes lying within HBD segments as a function of their TMRCA
(the interval G11-20 contains HBD segments tracing back to the bottleneck period, i.e., 14 to 17 generations
backward in time) and within non-HBD segments (background). B) Estimated local inbreeding probabilities (φl)
averaged over all the simulated individuals and markers as a function of the actual TMRCA of the underlying
HBD segments. C) Distributions of the estimated proportion of the individual genomes assigned to each of the 13
pre-defined HBD classes (over the 50 simulated individuals). D) Proportion of the SNPs lying in HBD segments
originating from the bottleneck period (i.e., 14 to 17 generations backward in time) that are assigned to the 14
different HBD and non-HBD classes of the mix14R model (summed over all the 50 individuals).
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Figure 3. Average estimated proportions of inbreeding contribution of a set of 13 pre-defined HBD classes
for human (A), dog (C) and sheep (E) populations and corresponding average cumulative inbreeding (B, D
and F for human, dog and sheep populations respectively). These means were obtained by summarizing
individual values from all individuals from a population / breed.
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Figure 4. Estimated level of inbreeding per HBD class in five humans (A), five dogs (B) and five sheeps (C).
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List of Tables1134

1 Performance of the 1R model on data simulated under the 1R inference model. The simulated1135

genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per cM.1136

Genotyping data for 500 individuals were simulated under the 1R inference model for each of1137

20 different scenarios defined by the simulated R and ρ values reported in the first two columns.1138

The table reports the resulting median realized (true) values (across the 500 simulated individuals)1139

for rate of co-ancestry change (R), the mixing proportions (ρ), the individual inbreeding (Fg) and1140

the number of HBD tracks (#Tracks). Similarly, the table gives the median estimated values and1141

the Mean Absolute Errors (MAE) for the rate of co-ancestry change (R̂), the mixing proportions1142

(̂ρ) and the individual inbreeding (F̂g). Finally, the table gives the MAE for the estimated local1143

inbreeding (φl) either for all the SNPs (φ̂l) or for those actually lying within HBD segments (φ̂lHBD ). 481144

2 Performance of the 3R model on data simulated under the 3R inference model (i.e., two HBD1145

classes and one non-HBD class). The simulated genome consisted of 25 chromosomes of 1001146

cM with a marker density of 10 SNPs per cM. Genotyping data for 500 individuals were simulated1147

under the 3R inference model for each of 6 different scenarios defined by the simulated rates R11148

and R2 (reported in the two first columns) and the corresponding mixing proportions ρ1 and ρ21149

(reported in the third and fourth columns) of the two classes of HBD segments. The table reports1150

the resulting median realized (true) values (across the 500 simulated individuals) for the rates of1151

co-ancestry change (R1 and R2), the amount of inbreeding originating from each HBD class (F(1)
g1152

and F(2)
g ) and the overall individual inbreeding (Fg). The table further gives the median (and their1153

associated MAE) of the estimated values (R̂1, R̂2, F̂(1)
g , F̂(2)

g and F̂g) obtained under the 3R model.1154

The table also gives the MAE for the estimated local inbreeding (φl) either for all the SNPs (φ̂l) or1155

for those actually lying within HBD segments only (φ̂lHBD ). . . . . . . . . . . . . . . . . . . . . . 491156

3 Performance of the 1R model on simulated data sets with different SNP density and informa-1157

tiveness. The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of1158

either 10 or 100 SNPs per cM. Allele frequency spectrum (AFS) of each SNP reference allele were1159

either sampled from an empirical distribution (array-like) derived from a real (cattle) genotyping1160

assay (i.e., close to uniform) or from a β (0.2, 0.2) distribution (U-shaped) that mimics NGS data1161

(NGS-like). Genotyping data for 500 individuals were simulated under the 1R inference model1162

for each of 3 different scenarios defined by the simulated R and ρ values reported in the first two1163

columns. For each simulation, the table reports the resulting realized (true) median value (across1164

the 500 simulated individuals) for the rate of co-ancestry change (R) and the individual inbreeding1165

(Fg) together with the median of their estimated values R̂ and F̂g and corresponding Mean Abso-1166

lute Errors (MAE). Finally, the table gives the MAE for the estimated local inbreeding (φl) either1167

for all the SNPs (φ̂l) or for those actually lying within HBD segments only (φ̂lHBD ). . . . . . . . . . 501168
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Scenario Realized median values Median estimated values (1R model)
R ρ R ρ Fg #Tracts R̂ (MAE) ρ̂ (MAE) F̂g (MAE) MAE for φ̂l (φ̂lHBD )
2 0.500 2.00 0.507 0.500 38.0 2.00 (0.34) 0.503 (0.0325) 0.500 (0.0005) 0.002 (0.002)
3 0.250 3.00 0.249 0.251 25.0 3.00 (0.43) 0.248 (0.0287) 0.251 (0.0005) 0.003 (0.006)
4 0.125 3.90 0.124 0.125 15.0 4.00 (0.57) 0.126 (0.0194) 0.124 (0.0005) 0.003 (0.010)
8 0.125 8.10 0.126 0.124 28.0 8.00 (0.82) 0.124 (0.0148) 0.124 (0.0008) 0.005 (0.021)

16 0.010 16.0 0.009 0.009 4.00 16.7 (10.1) 0.009 (0.0034) 0.009 (0.0005) 0.001 (0.065)
16 0.020 16.7 0.019 0.018 8.00 16.6 (4.02) 0.018 (0.0054) 0.018 (0.0007) 0.003 (0.062)
16 0.050 16.0 0.049 0.049 21.0 16.2 (1.99) 0.050 (0.0080) 0.048 (0.0009) 0.006 (0.055)
16 0.100 16.0 0.099 0.098 42.0 16.0 (1.35) 0.098 (0.0112) 0.097 (0.0011) 0.010 (0.050)
32 0.010 34.3 0.010 0.009 8.00 34.1 (11.9) 0.009 (0.0028) 0.009 (0.0009) 0.003 (0.160)
32 0.020 32.4 0.019 0.019 16.0 32.8 (6.13) 0.019 (0.0037) 0.019 (0.0011) 0.006 (0.141)
32 0.050 32.3 0.049 0.049 41.0 32.7 (3.62) 0.049 (0.0062) 0.049 (0.0014) 0.012 (0.123)
32 0.100 32.1 0.100 0.100 83.0 32.0 (2.26) 0.100 (0.0085) 0.100 (0.0017) 0.021 (0.103)
64 0.010 65.7 0.010 0.010 16.0 63.7 (17.6) 0.009 (0.0025) 0.009 (0.0016) 0.006 (0.326)
64 0.020 66.1 0.020 0.019 32.0 66.7 (11.2) 0.020 (0.0033) 0.020 (0.0017) 0.012 (0.291)
64 0.050 64.4 0.050 0.050 80.5 64.5 (6.17) 0.049 (0.0046) 0.049 (0.0021) 0.024 (0.243)
64 0.100 64.2 0.099 0.099 162 64.3 (4.06) 0.099 (0.0063) 0.099 (0.0024) 0.041 (0.206)
128 0.050 128 0.050 0.050 162 128 (11.8) 0.049 (0.0044) 0.049 (0.0030) 0.044 (0.439)
128 0.100 128 0.101 0.100 323 127 (8.03) 0.100 (0.0058) 0.100 (0.0037) 0.074 (0.368)
256 0.050 257 0.050 0.050 322 259 (26.7) 0.050 (0.0049) 0.050 (0.0043) 0.066 (0.669)
256 0.100 256 0.100 0.100 643 257 (16.7) 0.099 (0.0055) 0.099 (0.0046) 0.113 (0.569)

Table 1. Performance of the 1R model on data simulated under the 1R inference model. The simulated
genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per cM. Genotyping data for
500 individuals were simulated under the 1R inference model for each of 20 different scenarios defined by the
simulated R and ρ values reported in the first two columns. The table reports the resulting median realized (true)
values (across the 500 simulated individuals) for rate of co-ancestry change (R), the mixing proportions (ρ), the
individual inbreeding (Fg) and the number of HBD tracks (#Tracks). Similarly, the table gives the median
estimated values and the Mean Absolute Errors (MAE) for the rate of co-ancestry change (R̂), the mixing
proportions (̂ρ) and the individual inbreeding (F̂g). Finally, the table gives the MAE for the estimated local
inbreeding (φl) either for all the SNPs (φ̂l) or for those actually lying within HBD segments (φ̂lHBD ).
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Scenario Realized median values Median estimated values (3R model)

R1 (ρ1) R2 (ρ2) R1 (F(1)
g ) R2 (F(2)

g ) Fg R̂1 (MAE) R̂2 (MAE) F̂(1)
g (MAE) F̂(2)

g (MAE) F̂g (MAE) MAE for φ̂l (φ̂lHBD )
4 (0.125) 16 (0.100) 4.1 (0.12) 17 (0.09) 0.210 7.20 (3.06) 391 (288) 0.195 (0.075) 0.004 (0.074) 0.210 (0.002) 0.012 (0.025)
4 (0.125) 64 (0.100) 4.1 (0.12) 64 (0.09) 0.211 3.60 (1.01) 64.6 (9.53) 0.123 (0.007) 0.086 (0.007) 0.211 (0.002) 0.038 (0.089)
4 (0.125) 256 (0.100) 4.0 (0.12) 257 (0.09) 0.211 3.60 (0.65) 275 (35.9) 0.120 (0.001) 0.087 (0.004) 0.208 (0.004) 0.101 (0.238)
8 (0.100) 128 (0.100) 8.2 (0.10) 128 (0.09) 0.189 7.20 (1.48) 126 (14.8) 0.098 (0.004) 0.090 (0.005) 0.189 (0.003) 0.069 (0.182)
32 (0.100) 64 (0.100) 32 (0.10) 67 (0.09) 0.190 33.9 (7.08) 102 (140) 0.157 (0.058) 0.030 (0.057) 0.192 (0.003) 0.051 (0.132)
32 (0.100) 256 (0.100) 32 (0.10) 260 (0.09) 0.188 29.6 (4.31) 265 (38.0) 0.097 (0.007) 0.089 (0.007) 0.188 (0.004) 0.114 (0.302)

Table 2. Performance of the 3R model on data simulated under the 3R inference model (i.e., two HBD
classes and one non-HBD class). The simulated genome consisted of 25 chromosomes of 100 cM with a marker
density of 10 SNPs per cM. Genotyping data for 500 individuals were simulated under the 3R inference model for
each of 6 different scenarios defined by the simulated rates R1 and R2 (reported in the two first columns) and the
corresponding mixing proportions ρ1 and ρ2 (reported in the third and fourth columns) of the two classes of HBD
segments. The table reports the resulting median realized (true) values (across the 500 simulated individuals) for
the rates of co-ancestry change (R1 and R2), the amount of inbreeding originating from each HBD class (F(1)

g and
F(2)
g ) and the overall individual inbreeding (Fg). The table further gives the median (and their associated MAE) of

the estimated values (R̂1, R̂2, F̂(1)
g , F̂(2)

g and F̂g) obtained under the 3R model. The table also gives the MAE for
the estimated local inbreeding (φl) either for all the SNPs (φ̂l) or for those actually lying within HBD segments
only (φ̂lHBD ).
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Simulation Realized median value Estimated median value
R ρ SNP per cM AFS R Fg R̂ (MAE) F̂g (MAE) MAE for φ̂l (φ̂lHBD )
4 0.125 10 Array-like 3.90 0.125 4.00 (0.57) 0.124 (0.001) 0.0026 (0.0101)
4 0.125 100 Array-like 4.00 0.123 4.00 (0.51) 0.123 (0.000) 0.0002 (0.0009)
4 0.125 10 NGS-like 4.10 0.119 4.00 (0.64) 0.120 (0.002) 0.0068 (0.0272)
4 0.125 100 NGS-like 4.10 0.120 4.00 (0.55) 0.120 (0.000) 0.0006 (0.0023)

64 0.100 10 Array-like 64.2 0.099 64.3 (4.06) 0.099 (0.002) 0.0410 (0.2056)
64 0.100 100 Array-like 64.6 0.099 64.4 (2.00) 0.099 (0.000) 0.0035 (0.0181)
64 0.100 10 NGS-like 64.2 0.100 64.1 (6.26) 0.100 (0.006) 0.0807 (0.4032)
64 0.100 100 NGS-like 64.1 0.099 64.2 (2.50) 0.099 (0.000) 0.0095 (0.0482)
256 0.100 10 Array-like 256 0.100 257 (16.7) 0.099 (0.005) 0.1134 (0.5689)
256 0.100 100 Array-like 255 0.100 256 (5.79) 0.100 (0.000) 0.0164 (0.0824)
256 0.100 10 NGS-like 257 0.100 252 (36.9) 0.100 (0.008) 0.1462 (0.7313)
256 0.100 100 NGS-like 256 0.100 255 (8.06) 0.100 (0.001) 0.0398 (0.1994)

Table 3. Performance of the 1R model on simulated data sets with different SNP density and
informativeness. The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of either
10 or 100 SNPs per cM. Allele frequency spectrum (AFS) of each SNP reference allele were either sampled from
an empirical distribution (array-like) derived from a real (cattle) genotyping assay (i.e., close to uniform) or from
a β (0.2, 0.2) distribution (U-shaped) that mimics NGS data (NGS-like). Genotyping data for 500 individuals were
simulated under the 1R inference model for each of 3 different scenarios defined by the simulated R and ρ values
reported in the first two columns. For each simulation, the table reports the resulting realized (true) median value
(across the 500 simulated individuals) for the rate of co-ancestry change (R) and the individual inbreeding (Fg)
together with the median of their estimated values R̂ and F̂g and corresponding Mean Absolute Errors (MAE).
Finally, the table gives the MAE for the estimated local inbreeding (φl) either for all the SNPs (φ̂l) or for those
actually lying within HBD segments only (φ̂lHBD ).
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