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Abstract A coupled Electro-Thermo-Mechanical Discontinuous Galerkin (DG)
method is developed considering the non-linear interactions of electrical, thermal,
and mechanical fields. In order to develop a stable discontinuous Galerkin formu-
lation the governing equations are expressed in terms of energetically conjugated
fields gradients and fluxes. Moreover, the DG method is formulated in finite de-
formations and finite fields variations. The multi-physics DG formulation is shown
to satisfy the consistency condition, and the uniqueness and optimal convergence
rate properties are derived under the assumption of small deformation. First the
numerical properties are verified on a simple numerical example, and then the
framework is applied to simulate the response of smart composite materials in
which the shape memory effect of the matrix is triggered by the Joule effect.

Keywords Discontinuous Galerkin Method · Electro-thermo-mechanics ·
non-linear elliptic problems · smart composites

1 Introduction

The emergence of complex multi-physics materials, such as multi-functional and
shape-memory materials, see the reviews [37,36,18,51] as a non-exhaustive list,
has motivated the development of reliable, accurate, and efficient multi-physics
numerical models. As an example, Shape Memory Polymer (SMP) [9,44] can fix a
temporary deformed configuration and recover their initial shape upon application
of a stimulus such as temperature [34], light [35], electric field [17], magnetic field
[56], water [29], or solvent [41]. Temperature triggered SMP take advantage of a
property change at the glass transition temperature Tg: Below Tg, the movement
of the polymer segments is frozen and the polymers are considered to be in a glassy
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state. Once they are heated above Tg the chains become weak and the polymers
are considered to be in a rubbery state, such that the materials can be deformed
with minimal force. However, SMP have the drawback of low strength and stiffness
when they are used for structural applications. This drawback can be overcome
by dispersing continuous or discontinuous reinforcements throughout a polymer
matrix, leading to Shape Memory Polymer Composites (SMPC) [45,14]. Besides
improving the mechanical properties, the fillers can improve the shape memory
recovery stress and, in addition, act as triggering mechanisms. For example, carbon
fibers exhibit conductivity which can be exploited as a shape memory triggering
mechanism since the increase of temperature required to trigger the Shape Memory
effect of the matrix is obtained through Joule effect by applying an electric current.
Henceforth SMPC are seeing a growing interest in the area of deployable structures,
sensors, actuators etc

However, several difficulties arise when modeling the response of this kind
of materials. On the one hand, multi-physics numerical models involving strong
coupling are required. On the other hand, as SMP are capable of large deforma-
tions (high recovery strain) and as the field variations are important, the numerical
methods ought to be formulated in a finite deformation and fields variation setting.
As a result the governing equations involve strong non-linear coupling. Muliana
et al. [47] have studied the time dependent response of active piezoelectric fiber
and polymer composite materials in a multi-scale approach. Rothe et al. [55] have
considered Electro-Thermo-Elasticity in a small strain setting, where they have
focused on the numerical treatment of the monolithic approach, with the develop-
ment of a one dimensional analytical solution in the purpose of code verification.
In particular Zhupanska et al. [74] have discussed the governing equations describ-
ing electromagnetic, thermal, and mechanical field interactions. Nevertheless these
contributions are still limited to small deformation settings.

In this work, a multi-field coupling resolution strategy is used for the reso-
lution of electrical, energy, and momentum conservation equations by means of
the Discontinuous Galerkin (DG) Finite Element Method (FEM) to solve Electro-
Thermo-Mechanical (ETM) coupling. The main idea of the DG formalism is to
approximate the solution by piece-wise continuous polynomial functions, and to
constrain weakly the compatibility between elements. The inter-elements weak en-
forcement of the continuity allows using discontinuous polynomial spaces of high
degree and facilitates handling elements of different types and dynamic mesh mod-
ifications. Indeed, the possibility of using irregular and non conforming meshes in
an algorithm makes it suitable for time dependent transient problems. It also al-
lows having hanging nodes and different polynomial degrees at the interface, with
a view to hp-adaptivity. These DG opportunities and their merits have been illus-
trated and discussed by Kaufmann et al. [32]. In addition, since the DG method
allows discontinuities of the physical unknowns within the interior of the problem
domain, it is a natural approach to capture the jumps across the material inter-
face in coupled problems. Above all, DG methods are also characterized by their
flexibility in terms of mesh design while keeping their high order accuracy [28] and
their high scalability in parallel simulations [50,8] while optimal convergence rates
are still achieved.

However, if not correctly formulated, discontinuous methods can exhibit in-
stabilities, and the numerical results fail to approximate the exact solution. It is,
therefore, important to develop a DG FEM which leads to reliable results for a wide
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variety of problems. By using an adequate inter element flux definition combined
to stabilization techniques, the shortcomings of non-stabilized DG methods can be
overcome [49,52,54]. Since the seminal work of Reed et al. [53], DG methods have
been developed to solve hyperbolic, parabolic, and elliptic problems [13]. Most of
DG methods for elliptic and parabolic problems rely on the Interior Penalty (IP)
method. The main principle of IP, as introduced in [15,69], is to constrain weakly
the compatibility through the use of compatibility and/or stabilization terms, in-
stead of building it into the finite element, which enables the use of discontinuous
polynomial spaces of high degree. The interest in the symmetric interior penalty
(SIPG) methods, in which the compatibility terms symmetrizes the formulation
and which will be considered in this work, has been renewed by Wheeler [69] due
to demands for optimality in the convergence rates with the mesh size hs, i.e. the
rates of the convergence is k in the H1-norm and k + 1 in the L2-norm, where
k is the polynomial approximation degree. However there exist different possible
choices of traces and numerical fluxes as discussed by Arnold et al. [5], who have
provided an analysis of a large class of discontinuous methods for second order
elliptic problems with different numerical fluxes, and demonstrated that correctly
formulated IP, NIPG (Non-Symmetric Interior Penalty), LDG (Local discontin-
uous Galerkin), and other DG methods are consistent and stables methods. In
particular Arnold et al. [5] have proposed a framework for dealing with linear
elliptic problems by means of DG methods and demonstrated that DG methods
which are completely consistent and stable achieve optimal error estimates, and
that the inconsistent DG methods like the pure penalty methods can still achieve
optimal error estimates provided they are super-penalized. Besides, Georgoulis
[19] has derived anisotropic hp-error bounds for linear second order elliptic dif-
fusion convection reaction using Discontinuous Galerkin finite element methods
(SIPG and NIPG), on shape-regular and anisotropic elements, and for isotropic
and anisotropic polynomial degrees for the element bases. He has also observed
optimal order of convergence in the L2-norm for the SIPG formulation when a
uniform mesh size refinement for different values of k is employed. Moreover, he
has shown that the solution of the adjoint problem suffers from sub-optimal rates
of convergence when a NIPG formulation is used. Yadav et al. [71] have extended
the DG methods from a linear self-adjoint elliptic problem to a second order non-
linear elliptic problem. The non-linear system resulting from DG methods is then
analyzed based on a fixed point argument. They have also shown that the er-
ror estimate in the L2-norm for piece-wise polynomials of degree k ≥ 1 is k + 1.
They have also provided numerical results to illustrate the theoretical results. Gudi
et al. [23] have proposed an analysis for the most popular DG schemes such as
SIPG, NIPG, and LDG methods for one dimension linear and non-linear elliptic
problems, and the error estimate has been studied for each of these methods by
reformulating the problems in a fixed point form. In addition, according to Gudi
et al. [22], optimal errors in the H1-norm and in L2-norm are proved for SIPG
for polynomial degrees larger or equal to 2, and a loss in the optimality in the
L2-norm is observed for NIPG and LDG. In that work a deterioration in the order
of convergence in the mesh size hs is noted when linear polynomials are used.

DG FEM have been widely developed to solve mechanical problems such as
non-linear solid mechanics [49,62,61], (nearly) incompressible elasticity [25,39],
strain-gradient elasticity [16], strain gradient plasticity [43] strain gradient damage
models [67], plate equations [24,16,6,66], shell equations [48], as a non-exhaustive
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list. Truster et al. [63,64] have derived a Variational Multiscale Discontinuous
Galerkin (VMDG) method to account for geometric and material non-linearities
in which computable expressions emerge during the course of the derivation for
the stability tensor and numerical flux weighting tensors. Recently, DG has been
used to solve coupled problems. For instance Wheeler and Sun [60] have proposed
a primal DG method with interior penalty (IP) terms to solve coupled reactive
transport in porous media. Liu et al. [40] have developed an incomplete IP method
for convection-dominated thermo-poro-mechanics. Furthermore, Zheng et al. [73]
have proposed a DG method to solve thermo-elastic coupling due to temperature
and pressure dependent thermal contact resistance. In that work the DG method is
used to simulate the temperature jump, and the mechanical sub-problem is solved
by the DG finite element method with a penalty function. In [27], a coupled non-
linear Electro-Thermal DG method, has been derived by the authors in terms of
energetically conjugated fields gradients and fluxes. This conjugated pair has been
obtained by a particular choice of the test functions (δfT = δ( 1

T ), δfV = δ(VT ))

and of the trial functions (fT = 1
T , fV = −V

T ), where T is the temperature and V
is the electrical potential [42,72,38], which has allowed developing a stable non-
linear DG formulation with optimal convergence rate.

The main aim of this work is to derive a consistent and stable DG FEM for
ETM coupling analyzes, which, to the authors knowledge, has not been introduced
yet. To this end, the constitutive equations governing the ETM coupling are for-
mulated in Section 2 as a function of the displacement uuu, the electric potential
V and the temperature T , under the form f(uuu, −VT , 1

T ). In Section 3, the DG
method is first formulated in finite deformations and finite fields variations, re-
sulting into a set of non-linear coupled equations, and then implemented within
a three-dimensional finite element code. In particular, the parallel feature of the
finite element method relies on the ghost elements method developed for DG for-
mulation [8,70]. Afterwards, the uniqueness and optimal numerical properties are
derived for Electro-Thermo-Elasticity stated in a small deformation setting in Sec-
tion 4. In particular, the convergence rates of the error in both the energy and
L2-norms are shown to be optimal with respect to the mesh size hs in terms of
the polynomial degree approximation k (respectively in order k and k + 1). This
section concludes with a numerical test supporting the developed theory, includ-
ing the scalability property of the implementation. Finally the methodology is
applied to study the Electro-Thermo-Mechanical behavior of SMPC in Section 5,
in which a simple transversely isotropic hyperelastic formulation is used to model
carbon fibers and an elasto-viscoplastic large deformation formulation is consid-
ered to model the SMP. In particular, the shape memory effect of SMPC unit cells
electrically activated is studied in the large deformation regime.

2 Strong formulation of the Electro-Thermo-Mechanical problem

In this section an overview of the basic equations that govern Electro-Thermo-
Mechanical coupled phenomena is presented. The body in its reference configura-
tion Ω0 ∈ Rd, where d is the spatial dimension, whose Dirichlet boundary ∂DΩ0

and Neumann boundary ∂NΩ0 are the outer boundaries ∂Ω0 of the domain, is
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Fig. 1 Definition of (a) the reference and current configurations of the body, (b) the body
discretization.

subjected to a deformation mapping x = ϕ (X) defining the current configuration
Ω ∈ Rd, see Fig. 1(a). The deformation gradient tensor is defined as

FFF =
∂x

∂X
= x⊗∇0 with J = det(FFF ) , (1)

its Jacobian, and where ∇0 = ∂
∂X is the gradient with respect to the reference

configuration. The displacement field reads u = x − X. Finally, the material
properties may in general depend on the position X.

2.1 Balance equations

The first balance equation is the equation of motion which is the balance of linear
momentum in the absence of (inertial and external) body forces with respect to
the reference frame

∇0 ·PPPT = 0 ∀X ∈ Ω0 , (2)

where PPP is the first Piola-Kirchhoff tensor, which is expressed in terms of the
Cauchy stress as

PPP = σ ·FFF−TJ . (3)

The second balance equation is the electrical contribution which is the con-
servation of the electric current density flow. Defining the flow of electric current
density with respect to the reference surface

Je = je ·FFF−TJ , (4)

where je is the flow of electric current density with respect to the current surface,
the second balance equation reads

∇0 · Je = 0 ∀X ∈ Ω0 . (5)

The third balance equation is the conservation of the energy flux. The energy
flux with respect to the reference surface reads

Jy = Q+ V Je = jy ·FFF−TJ = (q + V je) ·FFF−TJ , (6)
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where Q and q are respectively the heat flux per unit surface in the reference and
current configurations, V is the electrical potential, and where jy is the energy
flux with respect to the current surface. Then the conservation of energy flux is
stated as

∇0 · Jy = −ρ0ẏ + F̄ ∀X ∈ Ω0 , (7)

where y is the internal energy per unit mass and F̄ represents all the body energy
sources per unit reference volume.

2.2 Constitutive models

The first Piola-Kirchhoff stress tensor is evaluated under the generic form

PPP = P(FFF , ḞFF , V, T ; ξξξ(τ < t)) , (8)

where T is the temperature, and ξξξ(τ < t) is the set of internal variables evaluated
at time τ lower than the current time t. In the applications, we will consider
thermo-mechanical transverse isotropic and SMP thermo-mechanical constitutive
behaviors, see A.

In this work, we consider the thermo-electric coupling written in the current
configuration under the matrix form

jjj =

(
je
jy

)
=

(
lll αlll

V lll + αTlll kkk + αV lll + α2Tlll

)(
−∇V
−∇T

)
, (9)

where kkk denotes the symmetric tensor of thermal conductivity coefficients, lll de-
notes the symmetric tensor of electric conductivity coefficients, and α is the See-
beck coefficient. The coefficients can be temperature and electric potential depen-
dent. Moreover ∇ = ∂

∂x is the gradient with respect to the current configuration.
Using Eqs. (4) and (6), this last set of equations is rewritten

JJJ =

(
Je

Jy

)
=

(
LLL αLLL

VLLL+ αTLLL KKK + αVLLL+ α2TLLL

)(
−∇0V
−∇0T

)
, (10)

where

KKK(FFF , T, V ) = FFF−1 · kkk(T, V ) ·FFF−TJ and

LLL(FFF , T, V ) = FFF−1 · lll(T, V ) ·FFF−TJ ,
(11)

are the coefficient tensors expressed in the reference configuration.
However, in the relation (9), the vectors JJJ and (∇0V

T ∇0T
T)T are not ener-

getically conjugated, see the discussions in [42,72,38,27]. Therefore we define the
fields MMM = (fV fT)T with fV = −VT and fT = 1

T , and the gradients of the fields
vector in the reference frame are defined by ∇0MMM, a 2d× 1 vector in terms of

∇0MMM =

(
∇0fV

∇0fT

)
=

(
− 1
T III

V
T 2III

0 − 1
T 2III

)(
∇0V
∇0T

)
. (12)

As a result the set of Eqs. (10) is rewritten as

JJJ = ZZZ0(FFF , fV, fT)∇0MMM , (13)
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with the coefficient matrix expressed in the reference configuration

ZZZ0(FFF , fV, fT) =

(
LLL1(FFF , fT) LLL2(FFF , fT, fT)

LLL2(FFF , fT, fT) JJJy1(FFF , fV, fT)

)
, (14)

where

LLL1(FFF , fT) =
1

fT
LLL ; LLL2(FFF , fT, fT) = −fV

f2
T

LLL+ α
1

f2
T

LLL ; and

JJJy1(FFF , fV, fT) =
1

f2
T

KKK − 2α
fV

f3
T

LLL+ α2 1

f3
T

LLL+
f2

V

f3
T

LLL . (15)

From Eq. (13), it can be seen that the symmetric coefficients matrix ZZZ0 is positive
definite since LLL1 and JJJy1 −LLL

T
2 ·LLL−1

1 ·LLL2 = 1
f2
T
KKK are positive definite for T > 0.

2.3 Boundary conditions

The body boundary ∂Ω0, see Fig. 1(a), is divided into a Neumann part ∂NΩ0 on
which the surface traction PPP ·N , the electric current density Je ·N , and the energy
density Jy ·N per unit reference surface, are respectively constrained to T̄ , J̄e,
and J̄y, and into a Dirichlet part ∂NΩ0, on which the displacement field u, the
fV-field, and the fT-field are respectively constrained to ū, f̄V, and f̄T. In these
relations, N is the outward unit normal in the reference configuration.

Note that to simplify the notations of the equations we have assumed that the
Neumann and Dirichlet parts coincide for the three fields, but in all generalities
the developed methodology remains applicable if they are different.

2.4 Strong form summary

The set of governing equations (2, 5, and 7) is thus stated as finding u, MMM ∈[
H2(Ω0)

]d ×H2(Ω0)×H2+

(Ω0) such that{
∇0 ·PPPT = 0 ∀X ∈ Ω0 ,

∇T
0 (JJJ) = IIIi ∀X ∈ Ω0 ,

(16)

where ∇0 is also used to represent a vector operator in the reference configuration,

IIIi =
(
0 − ρ0ẏ + F̄

)T
represents the contributions of the internal energy rate and

the body energy sources, and where the notation H2+

(Ω0) is used to consider only
positive values in the Hilbert space H2.

This set of governing equations is completed by the Neumann boundary con-
ditions 

PPP ·N = T̄ ∀X ∈ ∂NΩ0 ,

JJJN =

(
N 0

0 N

)T

JJJ = J̄JJ ∀X ∈ ∂NΩ0 ,
(17)
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where J̄JJ = (J̄e J̄y)T and JJJN is the flux per unit reference surface, and by the
Dirichlet boundary conditions

{
u = ū ∀X ∈ ∂DΩ0 ,

MMM = M̄MM ∀X ∈ ∂DΩ0 ,
(18)

where M̄MM = (f̄V f̄T)T.

Finally, the constitutive Eqs. (13, 8) read

{
PPP = P(FFF , ḞFF , MMM; ξξξ(τ < t)) ,

JJJ = ZZZ0(FFF ,MMM)∇0MMM .
(19)

3 Weak Discontinuous Galerkin formulation

In this section we first derive the weak DG formulation of the problem stated
under the strong form (16-19). Then we introduce a finite-element discretization
of the test and trial functions, before briefly summarizing the resolution process.

3.1 Weak DG form derivation

Let Ω0h be a shape regular family of discretization of Ω0, such that Ω0h = ∪eΩ
e
0,

see Fig. 1(b), with hs = maxΩe
0∈Ω0h

diam(Ωe
0) for Ωe

0 ∈ Ω0h with ∂Ωe
0 = ∂NΩ

e
0 ∪

∂DΩ
e
0 ∪ ∂IΩ

e
0, and where ∂IΩ0h = ∪e∂IΩ

e
0 \ ∂Ω0h, is the intersecting boundary of

the finite elements. Finally (∂DIΩ0)s is a face either on ∂IΩ0h or on ∂DΩ0h, with∑
s (∂DIΩ0)s = ∂IΩ0h ∪ ∂DΩ0h.

Since, at the interface between two elements, Fig. 1(b), each interior edge

(∂IΩ0)s is shared by two elements − and +, where (∂IΩ0)s ⊂ ∂IΩ
e−

0 and (∂IΩ0)s ⊂
∂IΩ

e+

0 , we can define two useful operators, the jump operator J·K =
[
·+ − ·−

]
that

computes the discontinuity between the elements and the average operator 〈·〉 =
1
2

(
·+ + ·−

)
which is the mean between two element values. Those two operators

can be extended on the Dirichlet boundary ∂DΩ0h as 〈·〉 = ·, J·K = (−·).
The discontinuous Galerkin method results from the integration by parts on

the elements of the governing equations multiplied by discontinuous test functions.
Let us multiply the governing equations (16) by discontinuous test functions δu
and δMMM, and integrate on Ω0h, yielding

0 =
∑

e

∫
Ωe

0

(PPP (FFF , MMM) · ∇0) · δudΩ0 ∀δu ∈ Πe

[
H1(Ωe

0)
]d

; (20)

∑
e

∫
Ωe

0

IIITi δMMMdΩ0 =
∑

e

∫
Ωe

0

(
∇T

0 JJJ(FFF ,MMM ,∇0MMM)
)T

δMMMdΩ0

∀δMMM ∈ ΠeH1(Ωe
0)×ΠeH1(Ωe

0) . (21)



Title Suppressed Due to Excessive Length 9

By performing an integration by parts on each element, and by using the divergence
theorem, these equations become∫

∂NΩ0h

δu · T̄dS0 =

∫
Ω0h

PPP (FFF , MMM) : ∇0δudΩ0 +∫
∂IΩ0h

Jδu ·PPP (FFF ,MMM)K ·NNN−dS0

−
∫
∂DΩ0h

δu ·PPP (FFF ,MMM) ·NdS0 ∀δu ∈
[
H1(Ωe

0)
]d

;(22)

−
∫
Ω0h

IIITi δMMMdΩ0 +

∫
∂NΩ0h

δMMMTJ̄JJdS0 =

∫
Ω0h

(∇0δMMM)T JJJ(FFF ,MMM ,∇0MMM)dΩ0 +∫
∂IΩ0h

r
δMMMT

NNNJJJ(FFF ,MMM ,∇0MMM)
z

dS0 −
∫
∂DΩ0h

δMMMT
NNNJJJ(FFF ,MMM ,∇0MMM)dS0

∀δMMM ∈ ΠeH1(Ωe
0)×ΠeH1(Ωe

0) .(23)

where the vector MMMNNN =

(
N - 0
0 N -

)
MMM has been introduced for simplicity, where

N− is defined as the reference outward unit normal of the minus element Ωe−

0 ,
whereas N+ is the reference outward unit normal of its neighboring element, with
NNN+ = −NNN−, and where we have used the Neumann boundary conditions (17).
However, when considering the jump operators, consistency is satisfied as long
as the jump on the test function is accounted for, while the stress terms can be
substituted by a numerical flux such as the average value. The set of Eqs. (22-23)
thus becomes ∫

∂NΩ0h

δu · T̄dS0 =

∫
Ω0h

PPP (FFF , MMM) : ∇0δudΩ0 +∫
∂IΩ0h∪∂DΩ0h

JδuK · 〈PPP (FFF ,MMM)〉 ·N−dS0 ∀δu ∈ Πe

[
H1(Ωe

0)
]d

;(24)

−
∫
Ω0h

IIITi δMMMdΩ0 +

∫
∂NΩ0h

δMMMTJ̄JJdS0 =

∫
Ω0h

(∇0δMMM)T JJJ(FFF ,MMM ,∇0MMM)dΩ0 +∫
∂IΩ0h∪∂DΩ0h

r
δMMMT

NNN

z
〈JJJ(FFF ,MMM ,∇0MMM)〉dS0 ∀δMMM ∈ ΠeH1(Ωe

0)×ΠeH1(Ωe
0) ,(25)

where we have considered the definitions of the operators on the Dirichlet bound-
ary.

In order to define the compatibility and stability terms, we define, on the one
hand, the four-order tensor HHH = ∂PPP

∂FFF (FFF = III, MMM = MMM0) and, on the other hand,

the second order tensor αααth such that αααth : HHH = −∂PPP∂T (FFF = III, MMM = MMM0), with

MMM0 ∈ ΠeH1(Ωe
0) × ΠeH1+

(Ωe
0) the initial values of MMM. As a result both HHH and

αααth : HHH are constant during the simulation as it has been shown that this leads
to accurate results in elasto-plasticity [50]. However, evolving terms could also
be considered as discussed in [63,64]. Moreover, we define the d × d × 2 matrix
YYY(MMM) = ∂PPP

∂MMM . Assuming the stress tensor depends only on fT and not on fV, we

have YYY(MMM)δMMM = αααth :HHH 1

f2
T

δfT, with YYY0 = YYY(MMM0).
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The compatibility of the displacement fields on the element interfaces and on
the Dirichlet boundary is thus added to the weak form (24-25), leading to

∫
∂NΩ0h

δu · T̄dS0 −
∫
∂DΩ0h

ū · (HHH : ∇0δu) ·NdS0 −∫
∂DΩ0h

δu ·
(
YYY(M̄MM)M̄MM−YYY(M̄MM0)M̄MM0

)
·NdS0 =∫

Ω0h

PPP (FFF , MMM) : ∇0δudΩ0 +

∫
∂IΩ0h∪∂DΩ0h

JδuK · 〈PPP (FFF ,MMM)〉 ·N−dS0 +∫
∂IΩ0h∪∂DΩ0h

JuK · 〈HHH : ∇0δu〉 ·N−dS0 +∫
∂DΩ0h

JδuK · 〈YYY(MMM)MMM−YYY(MMM0)MMM0〉 ·N -dS0 ∀δu ∈ Πe

[
H1(Ωe

0)
]d

;(26)

−
∫
Ω0h

IIITi δMMMdΩ0 +

∫
∂NΩ0h

δMMMTJ̄JJdS0 −
∫
∂DΩ0h

M̄MM
T
NNN

(
ZZZ0(F ,M̄MM)∇0δMMM

)
dS0 =∫

Ω0h

(∇0δMMM)T JJJ(FFF ,MMM ,∇0MMM)dΩ0 +

∫
∂IΩ0h∪∂DΩ0h

r
δMMMT

NNN

z
〈JJJ(FFF ,MMM ,∇0MMM)〉dS0

+

∫
∂IΩ0h

r
MMMT

NNN

z
〈ZZZ0(FFF,MMM)∇0δMMM〉dS0 +

∫
∂DΩ0h

r
MMMT

NNN

z 〈
ZZZ0(FFF,M̄MM)∇0δMMM

〉
dS0

∀δMMM ∈ ΠeH1(Ωe
0)×ΠeH1(Ωe

0) .(27)

Some remarks arise from this formulation

– In the compatibility terms, the operatorHHH has been considered as constant but
not the operator ZZZ0. As a result, the optimality of the convergence rate will only
be demonstrated when linearizing the mechanical equations, and when stating
the equations in a small deformation setting. This is due to the complexity of
the mechanical behavior (19a) which is history-dependent, preventing to write
a non-linear equation under a form similar to the considered electro-thermal
coupling (19b).

– The last term of Eq. (26) appears from the fact that the term in JδuK·〈PPP (FFF ,MMM)〉·
N−dS0 acting on the Dirichlet boundary condition prevents a symmetric op-
erator to be obtained and as such would prevent the optimal convergence rate
in the L2-norm to be achieved, as it will be shown in Section 4.

What remains to be done is to stabilize the method through quadratic terms
weighted by a stabilization parameter B and the mesh size hs, leading to state the
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problem as finding u, MMM ∈
[
ΠeH1(Ωe

0)
]d ×ΠeH1(Ωe

0)×ΠeH1+

(Ωe
0) such that

∫
∂NΩ0h

δu · T̄dS0 −
∫
∂DΩ0h

ū · (HHH : ∇0δu) ·NdS0 +∫
∂DΩ0h

ū⊗N :

(
HHHB
hs

)
: δu⊗NdS0 −∫

∂DΩ0h

δu ·
(
YYY(M̄MM)M̄MM−YYY(M̄MM0)M̄MM0

)
·NdS0 =

∫
Ω0h

PPP (FFF , MMM) : ∇0δudΩ0 +∫
∂IΩ0h∪∂DΩ0h

JδuK · 〈PPP (FFF ,MMM)〉 ·N−dS0 +∫
∂IΩ0h∪∂DΩ0h

JuK⊗N :

〈
HHHB
hs

〉
: JδuK⊗NdS0 +∫

∂IΩ0h∪∂DΩ0h

JuK · 〈HHH : ∇0δu〉 ·N−dS0 +∫
∂DΩ0h

JδuK · 〈YYY(MMM)MMM−YYY(MMM0)MMM0〉 ·N -dS0 ∀δu ∈ Πe

[
H1(Ωe

0)
]d

; (28)

−
∫
Ω0h

IIITi δMMMdΩ0 +

∫
∂NΩ0h

δMMMTJ̄JJdS0 −
∫
∂DΩ0h

M̄MM
T
NNN

(
ZZZ0(F ,M̄MM)∇0δMMM

)
dS0 +∫

∂DΩ0h

δMMMT
NNN

(
B
hs

ZZZ0(FFF ,M̄MM)

)
M̄MMNNNdS0 =

∫
Ω0h

(∇0δMMM)T JJJ(FFF ,MMM ,∇0MMM)dΩ0 +∫
∂IΩ0h

r
δMMMT

NNN

z〈 B
hs

ZZZ0(FFF,MMM)

〉
JMMMNNNK dS0+∫

∂DΩ0h

r
δMMMT

NNN

z〈 B
hs

ZZZ0(FFF,M̄MM)

〉
JMMMNNNK dS0 +∫

∂IΩ0h∪∂DΩ0h

r
δMMMT

NNN

z
〈JJJ(FFF ,MMM ,∇0MMM)〉dS0 +∫

∂IΩ0h

r
MMMT

NNN

z
〈ZZZ0(FFF,MMM)∇0δMMM〉dS0 +

∫
∂DΩ0h

r
MMMT

NNN

z 〈
ZZZ0(FFF,M̄MM)∇0δMMM

〉
dS0

∀δMMM ∈ ΠeH1(Ωe
0)×ΠeH1(Ωe

0) ,(29)

where the notation M̄MMNNN =

(
N 0
0 N

)
M̄MM = N̄NNMMMM̄MM has been introduced.

The manifold of the trial functions GGGT = (uT MMMT) is defined as

X(+)
s =

{
GGG ∈

[
L2(Ω0h)

]d × L2(Ω0h)× L2(+)

(Ω0h) such that

GGG|Ωe
0
∈ [Hs(Ωe

0)]d ×Hs(Ωe
0)×Hs

(+)

(Ωe
0) ∀Ωe

0 ∈ Ω0h

}
. (30)

For the future use, we define X(+) as X
(+)
2 and X+ the manifold such that fT > 0,

while X is the manifold for which fT Q 0, with X+ ⊂ X. It should be noted that
the trial functions in the previous equations of the weak formulation belong to[
H1(Ωe

0)
]d ×H1(Ωe

0)×H1+

(Ωe
0); however for the numerical analysis, we will need

to be in
[
H2(Ωe

0)
]d ×H2(Ωe

0)×H2+

(Ωe
0), as it will be discussed in Section 4.
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Therefore the weak form (28-29) is reformulated as finding GGG ∈ X+ such that{
A(FFF , MMM; δu) = B(δu)

C(FFF , MMM; δMMM) = D(FFF ; δMMM)−
∫
Ω0h

δMMMTIIIidΩ0
∀δGGG ∈ X , (31)

where A(FFF , MMM; δu) (B(δu)) is directly deduced from the right-hand (left-hand)
side of Eq. (28), and where C(FFF , MMM; δMMM) (D(FFF ; δMMM)) is directly deduced from the
right-hand (left-hand) side of Eq. (29).

3.2 The finite element discretization of the coupled problem

In the computational model we consider the approximation GGGT
h =

(
uT

h fVh
fTh

)
of the trial function defined in a finite dimensional space of real valued piece-wise
polynomial functions. The following manifold is thus introduced

Xk
(+)

=

{
GGGh ∈

[
L2(Ω0h)

]d × L2(Ω0h)× L2(+)

(Ω0h) such that

GGGh |Ωe
0
∈ [Pk(Ωe

0)]d × Pk(Ωe
0)× Pk

(+)

(Ωe
0) ∀Ωe

0 ∈ Ω0h

}
, (32)

where Pk(Ωe
0) is the space of polynomial functions of order up to k and Pk

+

means
that the polynomial approximation remains positive.

The discretization of the system is carried out using the discontinuous Galerkin
Finite element method by introducing the same shape functions for the trial func-
tions u and MMM, and for the test functions δu and δMMM, which are thus interpolated
as

uh = Na
u uuua , MMMh = NNNaMMM MMMa , (33)

δuh = Na
u δuuu

a , δMMMh = NNNaMMM δMMMa , (34)

where (δ)uuua and (δ)MMMa denote the nodal values of respectively (δ)uh and (δ)MMMh

at node a, and where NNNaMMM =

(
Na

fV 0
0 Na

fT

)
is a matrix of the shape functions.

The finite element approximation of the weak form (31) is thus stated as finding

GGGh ∈ Xk
+

such that{
A(FFF h, MMMh; δuh) = B(δuh)

C(FFF h, MMMh; δMMMh) = D(FFF h; δMMMh)−
∫
Ω0h

δMMMT
h IIIihdΩ0

∀δGGGh ∈ Xk . (35)

3.3 The system resolution in parallel

The set of Eqs. (35) can be rewritten under the form

FFFaext

(
GGGb
)

= FFFaint

(
GGGb
)

+ FFFaI

(
GGGb
)
, (36)

where GGGb is a (d + 2) × 1 vector gathering the unknowns at node b with GGGb =

(uuub
T

MMMbT)T, FFFaext corresponds to the contributions of B(δuh) and D(FFF h; δMMMh) at
node a, FFFaint corresponds to the volume contributions of A(FFF h, MMMh; δuh), C(FFF h,
MMMh; δMMMh), and IIIih , and where FFFaI corresponds to the interface contributions of
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A(FFF h, MMMh; δuh) and C(FFF h, MMMh; δMMMh). The expressions of these forces are detailed
in B.1.

The non-linear Eqs. (36) are linearized by means of an implicit formulation and
solved using the Newton-Raphson scheme using as initial guess the last solution.
To this end, the forces are written in a residual form. The predictor at iteration
0, reads GGGc = GGGc0, and the residual at iteration i reads

FFFaext

(
GGGci

)
−FFFaint

(
GGGci

)
−FFFaI

(
GGGci

)
= RRRa

(
GGGci

)
. (37)

At iteration i, the first-order Taylor development yields the system to be solved,
i.e. (

∂FFFaext

∂GGGb
− ∂FFFaint

∂GGGb
− ∂FFFaI
∂GGGb

)
|GGG=GGGci ∆GGGb = −RRRa

(
GGGci

)
. (38)

The explicit expression of the tangent matrix of the coupled Electro-Thermo-

Mechanical system KKKabGGG =
∂FFFaext
∂GGGb −

∂FFFaint
∂GGGb −

∂FFFaI
∂GGGb is given in B.2. Finally, the resolution

of the system (38) yields the correction ∆GGGb =
(
GGGb −GGGbi

)
.
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Fig. 2 Parallel implementation using ghost elements with (a) the different partitions Ωi0h with

their ghost elements Ωgj
0 corresponding to the elements of the partition Ωj0h having a common

interface, and (b) the exchange of the nodal field GGGb from the element in partition Ωj0h to the

ghost element Ωgj
0 in partition Ωi0h.

The DG method has been implemented in Gmsh [20] in parallel using the ghost
elements method suggested in [8,70]. In this approach, the discretization Ω0h is
divided in partitions Ωi0h using the METIS library [31], see Fig. 2(a). On top of its
own bulk elements Ωe

0, the partition Ωi0h also owns the ghost elements Ωgj
0 which

correspond to the bulk elements of the partition Ωj0h sharing a common partitions
interface, see Fig. 2(a). The resolution steps are thus
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– Step #1: Each partition Ωi0h evaluates the bulk nodal forces FFFaint (36) and stiff-

ness matrix
∂FFFaint
∂GGGb (38) by performing a quadrature rule on its own elements Ωe

0.
There is no need to evaluate the bulk force and stiffness matrix contributions
of the ghost elements Ωgj

0 .
– Step #2: Each partition Ωi0h evaluates the interface nodal forces FFFaI (36) and

stiffness matrix
∂FFFaI
∂GGGb (38) by performing a quadrature rule on an interface

shared either by two elements Ωe
0 belonging to this partition Ωi0h or by an

element Ωe
0 belonging to this partition and a ghost element Ωgj

0 .
– Step #3: The system (38) is then solved using the MUMPS [3] library.
– Step #4: To evaluate correctly the interface forces at partitions boundaries at

Step #2 of the next iteration, the ghost elements Ωgj
0 need to be in the updated

deformation state, which requires their nodal values GGGa to be communicated
from the original element Ωe

0 lying in partition Ωj0h, see Fig. 2(b). This commu-
nication is achieved before each new iteration through the network via Message
Passing Interface (MPI), whichs is the only communications required by the
method.

4 Numerical Properties

The demonstration of the numerical properties for Electro-Thermo-Mechanics cou-
pling is derived following closely the approach developed by Gudi et al. [23] for non-
linear problems under the assumption d = 2, and under the assumptions of temper-
ature independent thermo-mechanical material properties, (however JJJy1

, LLL1, LLL2

remain temperature and electric potential dependent but CCC (the matrix form using
Voigt notations of the material constant tensor HHH), and αααth are temperature and
electric potential in-dependent), and in the absence of the heat source, such that
the term F̄ in Eq. (16) is equal to zero. Finally, we also require a framework in
small deformation and linear thermo-elasticity in order to demonstrate the sta-
bility and convergence rates. Indeed, as explained before the thermo-mechancal
response in the non-linear range is history-dependent, preventing to write a non-
linear equation under a form similar to the onr of the electro-thermal coupling
(19b).

4.1 Strong form in the small deformation setting

Under the discussed assumptions, we can state the weak form (31) under a matrix
form with the vector of the unknown fields GGG. In addition, we can introduce the

coefficient matrix vvv of size (5d − 3) × (5d − 3) such that vvv =

CCC 000 000
000 lll1 lll2
000 lll2 jjjy1

. In

a small deformation setting, we have lll1 ' LLL1, lll2 ' LLL2, and jjjy1
' JJJy1

, and thus
ZZZ ' ZZZ0, the coefficient matrix in the current configuration. Therefore vvv can also be

written as vvv =

(
CCC 000
000 ZZZ

)
. Moreover, assuming that the stress tensor does not depend
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on the electrical potential, we define the matrices ooo(fT) =

000 000
−CCCαααthc

f2
T

000 000 000
000 000 000

 and

ooo0 = ooo(fT0
) of size (5d − 3) × (d + 2). In these matrices, αααthc is a vector of size

(3d − 3) × 1 with, for d = 3, αααthc =
(
αth αth αth 0 0 0

)T
, and CCCαααthc a vector of

size (3d− 3)× 1 and given for d = 3 by (CCCαααthc) =
(

3Kαth 3Kαth 3Kαth 0 0 0
)T

for isotropic materials, with K the bulk modulus and αth the thermal dilatation.

Finally we define hhh a matrix of size (d+2)×(d+2) with, for d = 3, hhh =

000 000 000
0 0 0
0 0 ρcv

.

We can now introduce the matrix www of size (5d−3)×1 as www(GGG,∇GGG) = vvv(GGG)∇GGG.
In this relation ∇GGG is the (5d−3)×1 vector of the gradient of the unknown fields,
which is defined as ∇GGG = (∇)GGG and is written for d = 3, using Voigt rules for the
mechanical contribution, as

(∇GGG) =



εxx

εyy

εzz

2εxy

2εxz

2εyz
∂fV
∂x
∂fV
∂y
∂fV
∂z
∂fT
∂x
∂fT
∂y
∂fT
∂z



=



∂
∂x 0 0 0 0

0 ∂
∂y 0 0 0

0 0 ∂
∂z 0 0

∂
∂y

∂
∂x 0 0 0

∂
∂z 0 ∂

∂x 0 0

0 ∂
∂z

∂
∂y 0 0

0 0 0 ∂
∂x 0

0 0 0 ∂
∂y 0

0 0 0 ∂
∂z 0

0 0 0 0 ∂
∂x

0 0 0 0 ∂
∂y

0 0 0 0 ∂
∂z




ux

uy

uz

fV

fT

 . (39)

Similarly, ΣT =
(
σxx σyy σzz τxy τxz τyz jex jey jez jyx

jyy
jyz

)
represents the en-

ergy conjugated stress.

Using these definitions, the constitutive relations (19) are rewritten as

Σ = vvv(GGG)∇GGG + ooo(GGG)GGG− ooo0GGG0 , (40)

where GGG0 is the vector of the initial values GGGT
0 = (ux0 uy0

uz0 fV0
fT0

). The set of

governing Eqs. (16) is now stated as finding GGG ∈
[
H2(Ω0)

]d ×H2(Ω0)×H2+

(Ω0)
such that

−∇T [www(GGG,∇GGG) + ooo(GGG)GGG− ooo0GGG0] = hhhĠGG ∀x ∈ Ω . (41)

This set of equations is completed with the Dirichlet BC (18) rewritten as

GGG = ḠGG ∀ x ∈ ∂DΩ , (42)

and with the Neumann BC (17) rewritten as

n̄nnT(www + oooGGG− ooo0GGG0) = w̄ww ∀ xxx ∈ ∂NΩ, (43)
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where, for d = 3,

n̄nn =



nx 0 0 0 0
0 ny 0 0 0
0 0 nz 0 0
ny nx 0 0 0
nz 0 nx 0 0
0 nz ny 0 0
0 0 0 nx 0
0 0 0 ny 0
0 0 0 nz 0
0 0 0 0 nx

0 0 0 0 ny

0 0 0 0 nz



, (44)

represents the unit outward normal in the current configuration, ḠGG
T

=
(
ūT f̄V f̄T

)
gathers the constrained fields, and where w̄wwT =

(
t̄T j̄y j̄e

)
gathers the constrained

fluxes.

It can be noticed that the gradient of (ooo(GGG)GGG) consists of zero components and

of the gradient of (− (CCCαααthc)
f2
T

fT). As the variation δ(− (CCCαααthc)
f2
T

fT) = (CCCαααthc)
f2
T

δfT, the

matrix ooo(GGG) can be rearranged in a new form õoo(GGG) of size (d+ 2)× (5d− 3), such
that

∇T (ooo(GGG)GGG) = −õoo(GGG)∇GGG , (45)

with, for d = 3,

õoo(GGG) =


0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0 0

0 0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0

0 0 0 0 0 0 0 0 0 0 0 −3Kαth

f2
T

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 . (46)

The operator ·̃ can be seen as the transpose operator that accounts for the defini-
tion of the ∇ operator in the matrix form. Therefore Eq. (41) becomes

−∇T(www(GGG,∇GGG)) + õoo(GGG)∇GGG = hhhĠGG ∀x ∈ Ω . (47)

4.2 Weak DG form in the small deformation setting

Assuming a quasi-static process from now on, the associated DG form for the
Electro-Thermo-Elasticity problem (47) is defined as finding GGG ∈ X+ such that

a(GGG, δGGG) = b(δGGG), ∀δGGG ∈ X , (48)
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with

a(GGG, δGGG) =

∫
Ωh

(∇δGGG)Twww(GGG,∇GGG)dΩ +

∫
Ωh

δGGGTõoo(GGG)∇GGGdΩ +∫
∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈www(GGG,∇GGG)〉dS +∫

∂IΩh

r
GGGT

nnn

z
〈vvv(GGG)∇δGGG〉dS +

∫
∂DΩh

r
GGGT

nnn

z 〈
vvv(ḠGG)∇δGGG

〉
dS+∫

∂IΩh

r
GGGT

nnn

z〈vvv(GGG)B
hs

〉
JδGGGnnnK dS +

∫
∂DΩh

r
GGGT

nnn

z〈vvv(ḠGG)B
hs

〉
JδGGGnnnK dS−∫

∂IΩh∪∂DΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS +∫

∂NΩh

δGGGTn̄nnT(ooo(GGG)GGG− ooo0GGG0)dS , (49)

and

b(δGGG) =

∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS +∫

∂DΩh

δGGGT
nnn

vvv(ḠGG)B
hs

ḠGGnnn dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS , (50)

where GGGnnn = n̄nn−GGG is a (5d − 3) × 1 vector, which is defined by building n̄nn− using
the unit outward normal of the “-” element, n−, following Eq. (44).

Using the identity JabK = JaK 〈b〉 + 〈a〉 JbK on ∂IΩh, the relation (45), and
performing an integration by parts lead to

∫
Ωh

δGGGTõoo(GGG)∇GGGdΩ = −
∫
Ωh

δGGGT∇T(ooo(GGG)GGG− ooo0GGG0)dΩ =

∑
e

∫
Ωe

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ −
∑

e

∫
∂Ωe

δGGGT
nnn (ooo(GGG)GGG− ooo0GGG0)dS =∫

Ωh

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ −
∫
∂NΩh

δGGGT
nnn (ooo(GGG)GGG− ooo0GGG0)dS

−
∫
∂DΩh

δGGGT
nnn (ooo(GGG)GGG− ooo0GGG0)dS +

∫
∂IΩh

r
δGGGT

nnn

z
〈ooo(GGG)GGG− ooo0GGG0〉dS+∫

∂IΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS.

(51)

Therefore, Eq. (48) can be rewritten as

a′(GGG, δGGG) = b′(δGGG), ∀δGGG ∈ X, (52)
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with

a′(GGG, δGGG) =

∫
Ωh

(∇δGGG)Twww(GGG,∇GGG)dΩ +

∫
Ωh

(∇δGGG)T(ooo(GGG)GGG− ooo0GGG0)dΩ +∫
∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈www(GGG,∇GGG)〉dS +

∫
∂IΩh

r
GGGT

nnn

z
〈vvv(GGG)∇δGGG〉dS+∫

∂DΩh

r
GGGT

nnn

z 〈
vvv(ḠGG)∇δGGG

〉
dS +

∫
∂IΩh

r
GGGT

nnn

z〈vvv(GGG)B
hs

〉
JδGGGnnnK dS+∫

∂DΩh

r
GGGT

nnn

z〈vvv(ḠGG)B
hs

〉
JδGGGnnnK dS +∫

∂IΩh∪∂DΩh

r
δGGGT

nnn

z
〈ooo(GGG)GGG− ooo0GGG0〉 dS

−
∫
∂DΩh

〈
δGGGT

nnn

〉
Jooo(GGG)GGG− ooo0GGG0K dS , (53)

and

b′(δGGG) =

∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS

+

∫
∂DΩh

δGGGT
nnn

vvv(ḠGG)B
hs

ḠGGnnn dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS .

(54)

Henceforth, using Eq. (40), it is shown that Eq. (52), which is derived from Eq.
(48), corresponds to the weak form (31).

Unlike the usual case in DG, where the interface term involves ooo in the average
operator 〈 〉, Eq. (49) shows that ooo is rather involved in the jump operator J K.
This comes from the integration by parts in Eq. (51), in which ooo is GGG dependent.
However, this allows the volume and consistency terms in Eq. (52) to be directly
expressed in terms of the stress Σ = www + (oooGGG− ooo0GGG0), which is convenient when
dealing with a non-linear formulation as in Eqs. (31).

4.3 Consistency

To prove the consistency of the method, the exact solution GGGe ∈
[
H2(Ω)

]d ×
H2(Ω) × H2+

(Ω) of the problem stated by Eq. (47) is considered. This implies
JGGGeK = 0, 〈www〉 = www, Jooo(GGGe)GGGe − ooo0GGG0K = 0 on ∂IΩh, and JGGGeK = −ḠGG = −GGGe,
Jooo(GGGe)GGGe − ooo0GGG0K = −ooo(ḠGG)ḠGG + ooo0GGG0, 〈www〉 = vvv(ḠGG)∇GGGe = vvv(GGGe)∇GGGe, and vvv(GGG) =
vvv(ḠGG) = vvv(GGGe) on ∂DΩh. Therefore, Eq. (48) becomes:∫

∂NΩh
δGGGTw̄wwdS−

∫
∂DΩh

ḠGG
T
nnn vvv(ḠGG)∇δGGG dS +

∫
∂DΩh

δGGGT
nnn

(
ooo(ḠGG)ḠGG− ooo0GGG0

)
dS +∫

∂DΩh
δGGGT

nnn
vvv(ḠGG)B
hs

ḠGGnnn dS =
∫
Ωh

(∇δGGG)Twww(GGGe,∇GGGe)dΩ +∫
Ωh
δGGGTõoo(GGGe)∇GGGedΩ +

∫
∂IΩh

r
δGGGT

nnn

z
〈www(GGGe,∇GGGe)〉 dS−∫

∂DΩh
δGGGT

nnn www(GGGe,∇GGGe)dS−
∫
∂DΩh

GGGeT

nnn vvv(ḠGG)∇δGGGdS +
∫
∂DΩh

δGGGT
nnn
B
hs

vvv(ḠGG)GGGe
nnndS +∫

∂DΩh
δGGGT

nnn (ooo(GGGe)GGGe − ooo0GGG0) dS +
∫
∂NΩh

δGGGTn̄nnT (ooo(GGGe)GGGe − ooo0GGG0) dS ∀δGGG ∈ X .

(55)
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Integrating the first term of the right hand side by parts leads to∑
e

∫
Ωe

(∇δGGG)Twww(GGGe,∇GGGe)dΩ = −
∑

e

∫
Ωe

δGGGT∇Twww(GGGe,∇GGGe)dΩ+

∑
e

∫
∂Ωe

δGGGT
nnn www(GGGe,∇GGGe)dS,

and Eq.(55) becomes∫
∂NΩh

δGGGTw̄wwdS−
∫
∂DΩh

ḠGG
T
nnn

(
vvv(ḠGG)∇δGGG

)
dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS +∫

∂DΩh
δGGGT

nnn

(
B
hs

vvv(ḠGG)
)

ḠGGnnndS = −
∫
Ωh
δGGGT∇Twww(GGGe,∇GGGe)dΩ +∫

∂NΩh
δGGGT

nnn www(GGGe,∇GGGe)dS +
∫
Ωh
δGGGTõoo(GGGe)∇GGGedΩ −

∫
∂DΩh

GGGeT

nnn vvv(ḠGG)∇δGGGdS +∫
∂DΩh

δGGGT
nnn
B
hs

vvv(ḠGG)GGGe
nnndS +

∫
∂DΩh

δGGGT
nnn (ooo(GGGe)GGGe − ooo0GGG0)dS +∫

∂NΩh
δGGGTn̄nnT(ooo(GGGe)GGGe − ooo0GGG0)dS ∀δGGG ∈ X . (56)

The arbitrary nature of the test functions and the use of Eq. (45) lead to recover
the set of conservation laws, Eqs. (41), and the boundary conditions, Eqs. (42-43).

4.4 Second order non-self-adjoint elliptic problem

In this part, we will assume that ∂DΩh = ∂Ωh. This assumption is not restrictive
but simplifies the demonstrations.

Starting from the definition of the matrix vvv(GGG), which is a symmetric and
positive definite matrix since its components CCC and ZZZ are positive definite matrices,
let us define the minimum and maximum eigenvalues of the matrix vvv(GGG) as λ(GGG)

and Λ(GGG); then for all ξ ∈ R(5d−3)
0

0 < λ(GGG)|ξ|2 ≤ ξivvvij(GGG)ξj ≤ Λ(GGG)|ξ|2 . (57)

Also by assuming that ‖ GGG ‖W1
∞
≤ α, then there is a positive constant Cα such

that

0 < Cα < λ(GGG) . (58)

Let us define

YYY =

{
∇GGG ∈

(
(L2(Ω0h))(5d−3)

)
|∇GGG|Ωe∈(H1(Ωe

0))
(5d−3) ∀Ωe

0∈Ω0h

}
. (59)

In the following analysis, we use the integral form of the Taylor’s expansions of
www(GGG,∇GGG) = vvv(GGG)∇GGG, for (VVV,∇QQQ) ∈ X+ ×YYY in terms of (GGG,∇GGG) ∈ X+ ×YYY:

www(VVV,∇QQQ)−www(GGG,∇GGG) =−wwwGGG(GGG,∇GGG)(GGG−VVV)−www∇GGG(GGG)(∇GGG−∇QQQ)+

R̄RRwww(GGG−VVV,∇GGG−∇QQQ)

=− w̄wwGGG(GGG,∇GGG)(GGG−VVV)− w̄ww∇GGG(GGG)(∇GGG−∇QQQ) ,

(60)

where wwwGGG(GGG,∇GGG) = vvvGGG(GGG)∇GGG is the partial derivative of www with respect to GGG
(with vvvGGG(GGG) the partial derivative of vvv with respect to GGG), www∇GGG(GGG) = vvv(GGG) is the
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partial derivative of www with respect to ∇GGG expressed in the matrix form (and using
Voigt notations), and where w̄wwGGG, w̄ww∇GGG, and R̄RRwww are the remainder terms, with in
particular

R̄RRwww(GGG−VVV,∇GGG−∇QQQ) =(GGG−VVV)Tw̄wwGGGGGG(VVV,∇QQQ)(GGG−VVV)+

2(GGG−VVV)Tw̄wwGGG∇GGG(VVV)(∇GGG−∇QQQ) .
(61)

The other remainder terms w̄wwGGG, w̄ww∇GGG, w̄wwGGGGGG, and w̄wwGGG∇GGG are given in C.1. Using the
definition of www, if fT ≥ c2 > 0, then w̄wwGGG, w̄wwGGGGGG ∈ LLL∞ (Ω × R(d+1) × R+

0 × R(5d−3))

and w̄ww∇GGG, w̄wwGGG∇GGG ∈ LLL∞ (Ω × R(d+1) × R+
0 ).

For future use, let us introduce ddd(GGG,∇GGG) = õoo(GGG)∇GGG a (d+ 2)× 1 vector, and
its partial derivatives ddd∇GGG(GGG) = õoo(GGG) a (d + 2) × (5d − 3) matrix, dddGGG(GGG,∇GGG) =
õooGGG(GGG)∇GGG a (d+ 2)× (d+ 2) matrix, dddGGGGGG(GGG,∇GGG) = õooGGGGGG(GGG)∇GGG a (d+ 2)× (d+
2)× (d+ 2) matrix, and ddd∇GGGGGG(GGG) = õooGGG(GGG) a (d+ 2)× (5d− 3)× (d+ 2) matrix.
Similarly to Eqs. (60-61), one has

ddd(VVV,∇QQQ)− ddd(GGG,∇GGG) =− dddGGG(GGG,∇GGG)(GGG−VVV)− ddd∇GGG(GGG)(∇GGG−∇QQQ)+

R̄RRddd(GGG−VVV,∇GGG−∇QQQ)

=− d̄ddGGG(GGG,∇GGG)(GGG−VVV)− d̄dd∇GGG(GGG)(∇GGG−∇QQQ) ,

(62)

where

R̄RRddd(GGG−VVV,∇GGG−∇QQQ) =(GGG−VVV)Td̄ddGGGGGG(VVV,∇QQQ)(GGG−VVV)+

2(GGG−VVV)Td̄ddGGG∇GGG(VVV)(∇GGG−∇QQQ) .
(63)

The other remainder terms d̄ddGGG, d̄dd∇GGG, d̄ddGGGGGG, and d̄ddGGG∇GGG are given in C.1. Using the
definition of ddd, if fT ≥ c2 > 0, then d̄ddGGG, d̄ddGGGGGG ∈ LLL∞ (Ω × R(d+1) × R+

0 × R(5d−3))

and d̄dd∇GGG, d̄ddGGG∇GGG, ∈ LLL∞ (Ω × R(d+2) × R+
0 ).

Finally, we also define the (5d− 3)× 1 vector ppp(GGG) = ooo(GGG)GGG and its first and
second derivatives pppGGG(GGG) of size (5d− 3)× (d+ 2) and pppGGGGGG(GGG) of size (5d− 3)×
(d+ 2)× (d+ 2) respectively. The Taylor’s expansion of this last vector reads

ppp(VVV)− ppp(GGG) = −pppGGG(GGG)(GGG−VVV) + R̄RRppp(GGG−VVV) = −p̄ppGGG(GGG)(GGG−VVV) , (64)

where
R̄RRppp(GGG−VVV) = (GGG−VVV)Tp̄ppGGGGGG(VVV)(GGG−VVV) , (65)

with the other remainder terms p̄ppGGG and p̄ppGGGGGG given in C.1. Using the definition
of ppp, if fT ≥ c2 > 0, then p̄ppGGG, p̄ppGGGGGG, ∈ LLL∞ (Ω × R(d+1) × R+

0 ). However, one has

pppT
GGG = ∂(GGGToooT(GGG))

∂GGG = GGGT ∂oooT(GGG)
∂GGG + oooT(GGG), which once computed explicitly as to

derive Eq. (45) leads to pppGGG = −ooo(GGG), and Eq. (65) becomes

R̄RRppp(GGG−VVV) = −(GGG−VVV)ōooGGG(VVV)(GGG−VVV) . (66)

Since for fT ≥ c2 > 0, www, ooo, and ddd are twice continuously differentiable function
with all the derivatives through the second order locally bounded in a ball around
GGG ∈ [R]d × R× R+

0 as it will be shown in Section 4.5, we denote by Cy

Cy =max
{
‖ www, ddd ‖W2

∞(Ω×R(d+1)×R+
0 ×R(5d−3)) ,

‖ w̄wwGGG, w̄wwGGGGGG, d̄ddGGG, d̄ddGGGGGG ‖L∞(Ω×R(d+1)×R+
0 ×R(5d−3))

‖ w̄ww∇GGG, w̄wwGGG∇GGG, ōooGGG, d̄dd∇GGG, d̄dd∇GGGGGG ‖L∞(Ω×R(d+1)×R+
0 )

}
.

(67)
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Let us define the solution GGGe ∈
[
H2(Ω)

]d × H2(Ω) × H2+

(Ω) of the strong
form stated by Eqs. (41-43). Since JGGGe

nnnK = 0 on ∂IΩ
e and JGGGe

nnnK = −GGGe
nnn = −ḠGGnnn on

∂DΩ
e, and since Eq. (48) satisfies the consistency condition, we have

a(GGGe, δGGG) =

∫
Ωh

(∇δGGG)Twww(GGGe,∇GGGe)dΩ +

∫
Ωh

δGGGTõoo(GGGe)∇GGGedΩ+∫
∂IΩh

r
δGGGT

nnn

z
〈www(GGGe,∇GGGe)〉dS−

∫
∂DΩh

δGGGT
nnn www(GGGe,∇GGGe)dS−∫

∂DΩh

GGGeT

nnn vvv(GGGe)∇δGGGdS +

∫
∂DΩh

GGGeT

nnn
vvv(GGGe)B
hs

δGGGnnndS+∫
∂DΩh

δGGGT
nnn (ooo(GGGe)GGGe − ooo0GGG0)dS = b(δGGG) ∀δGGG ∈ X,

(68)

with

b(δGGG) = −
∫
∂DΩh

ḠGG
T
nnn

(
vvv(ḠGG)∇δGGG

)
dS +

∫
∂DΩh

δGGGT
nnn (ooo(ḠGG)ḠGG− ooo0GGG0)dS+∫

∂DΩh

δGGGT
nnn

(
B
hs

vvv(ḠGG)

)
ḠGGnnndS.

(69)

Therefore, using δGGG = δGGGh ∈ Xk in Eq. (68), subtracting the DG discretiza-
tion (48) from Eq. (68), then adding and subtracting successively the two terms∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈www∇GGG(GGGe)∇δGGGh〉dS, and

∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z 〈
B
hs

www∇GGG(GGGe)
〉
JδGGGhnnn

K dS

to this last relation, and using Jooo(GGGe)GGGe − ooo0GGG0K = 0, JGGGe
nnnK = 0 on ∂IΩh, and

JGGGe
nnnK = −GGGe

nnn = −ḠGGnnn, Jooo(GGGe)GGGe − ooo0GGG0K = −ooo(ḠGG)ḠGG + ooo0GGG0 on ∂DΩh, one gets

0 =

∫
Ωh

(∇δGGGh)T (www(GGGe,∇GGGe)−www(GGGh,∇GGGh)) dΩ

+

∫
Ωh

δGGGT
h (õoo(GGGe)∇GGGe − õoo(GGGh)∇GGGh) dΩ

+

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn

z
〈www(GGGe,∇GGGe)−www(GGGh,∇GGGh)〉dS

+

∫
∂IΩh∪∂DΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈www∇GGG(GGGe)∇δGGGh〉dS

−
∫
∂IΩh∪∂DΩh

r
GGGeT

oooT(GGGe)−GGGT
h oooT(GGGh)

z
〈δGGGhnnn

〉dS

−
∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈(www∇GGG(GGGe)−www∇GGG(GGGh))∇δGGGh〉dS

+

∫
∂IΩh∪∂DΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

www∇GGG(GGGe)

〉
JδGGGhnnn

K dS

−
∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

(www∇GGG(GGGe)−www∇GGG(GGGh))

〉
JδGGGhnnn

K dS ∀δGGGh ∈ Xk.

(70)

Therefore, by applying the Taylor’s expansion (60-66) to the first, second, third,
and fifth terms of Eq. (70), see C.2 for details, the latter expression is rewritten
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as finding GGGh ∈ Xk
+

such that:

A(GGGe;GGGe −GGGh, δGGGh) + B(GGGe;GGGe −GGGh, δGGGh) = N (GGGe,GGGh; δGGGh) ∀δGGGh ∈ Xk .

(71)

In this last expression, we have defined for given ψψψ ∈ X+,ωωω ∈ X and δωωω ∈ X the
following forms:

A(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωTwww∇ψψψ(ψψψ)∇ωωωdΩ +

∫
∂IΩh∪∂DΩh

r
δωωωT

nnn

z
〈www∇ψψψ (ψψψ)∇ωωω〉dS+∫

∂IΩh∪∂DΩh

r
ωωωT

nnn

z
〈www∇ψψψ(ψψψ)∇δωωω〉dS+∫

∂IΩh∪∂DΩh

r
ωωωT

nnn

z〈 B
hs

www∇ψψψ(ψψψ)

〉
JδωωωnnnK dS ,

(72)

B(ψψψ;ωωω, δωωω) =

∫
Ωh

∇δωωωT (wwwψψψ(ψψψ,∇ψψψ)ωωω) dΩ +

∫
Ωh

δωωωTddd∇ψψψ(ψψψ)∇ωωωdΩ

+

∫
∂IΩh∪∂DΩh

r
δωωωT

nnn

z
〈wwwψψψ(ψψψ,∇ψψψ)ωωω〉dS +

∫
Ωh

δωωωTdddψψψ(ψψψ,∇ψψψ)ωωωdΩ+∫
∂IΩh∪∂DΩh

r
ωωωT

nnn dddT
∇ψψψ(ψψψ)

z
〈δωωω〉dS ,

(73)

which gather the terms such that for fixed ψψψ, the form A(ψψψ; ., .) and the form
B(ψψψ; ., .) are bi-linear. The non-linear terms have been gathered in N (GGGe,GGGh; δGGGh)
as

N (GGGe,GGGh; δGGGh) =

∫
Ωh

(∇δGGGh)T(R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh))dΩ

+

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn

z 〈
R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh)

〉
dS

+

∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z
〈(www∇GGG(GGGe)−www∇GGG(GGGh))∇δGGGh〉dS

+

∫
∂IΩh

r
GGGeT

nnn −GGGT
hnnn

z〈 B
hs

(www∇GGG(GGGe)−www∇GGG(GGGh))

〉
JδGGGhnnn

K dS

+

∫
∂IΩh∪∂DΩh

r
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
z
〈δGGGhnnn

〉dS

+

∫
Ωh

δGGGT
h R̄RRddd(GGGe −GGGh,∇GGGe −∇GGGh)dΩ

= I1 + I2 + I3 + I4 + I5 + I6 .

(74)

Compared with the fixed form from Gudi et al. [23] for non-linear elliptic prob-
lems, the formulations A and B are similar, except the last term of B(ψψψ; ., .) in
which ddd∇ψψψ(ψψψ) appears in the J·K operator instead of the 〈·〉 operator. Nevertheless,
this term becomes identical with the one in Gudi et al. [23] for fixed ψψψ. However
the N is different in the fifth and sixth terms, i.e. I5 and I6, so they will require
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a different treatment. Therefore in the following, we report the methodology de-
veloped by Gudi et al. [23] without demonstration, except when these two terms
I5 and I6 explicitly appear, in which case the related demonstration is reported
in Appendix.

4.5 Solution uniqueness

Let us first define the mesh dependent norms, which will be considered in the
following analysis, for GGG ∈ X

|‖GGG ‖|2∗ =
∑

e

‖∇GGG‖2L2(Ωe) +
∑

e

h−1
s ‖ JGGGnnnK ‖2L2(∂Ωe), (75)

|‖GGG ‖|2 =
∑

e

‖GGG‖2H1(Ωe) +
∑

e

h−1
s ‖ JGGGnnnK ‖2L2(∂Ωe), (76)

and

|‖GGG ‖|21 =
∑

e

‖GGG‖2H1(Ωe) +
∑

e

hs ‖GGG ‖2H1(∂Ωe) +
∑

e

h−1
s ‖ JGGGnnnK ‖2L2(∂Ωe) . (77)

Let us first assume ηηη = IhGGG−GGGe ∈ X, with IhGGG ∈ Xk
+

the interpolant of GGGe

in Xk
+

. The last relation (71) thus becomes

A(GGGe; IhGGG−GGGh, δGGGh) + B(GGGe; IhGGG−GGGh, δGGGh) = A(GGGe;ηηη, δGGGh) + B(GGGe;ηηη, δGGGh)

+N (GGGe,GGGh; δGGGh) ∀δGGGh ∈ Xk.

(78)

Now in order to prove the existence of a solution GGGh of the problem stated by Eq.
(70), which corresponds to the DG finite element discretization (48), we state the

problem in the fixed point formulation and we define a map Sh : Xk
+

→ Xk
+

as

follows: for a given yyy ∈ Xk
+

, find Sh(yyy) = GGGyyy ∈ Xk
+

, such that

A(GGGe; IhGGG−GGGyyy, δGGGh) + B(GGGe; IhGGG−GGGyyy, δGGGh) = A(GGGe;ηηη,δGδGδGh) + B(GGGe;ηηη, δGGGh)

+N (GGGe,yyy; δGGGh) ∀δGGGh ∈ Xk.

(79)

The existence of a unique solution GGGh of the discrete problem (48) is equivalent
to the existence of a fixed point of the map Sh, see [23].

For the subsequent analysis, we denote by Ck, a positive generic constant
which is independent of the mesh size, but which does depend on the polynomial
approximation degree k. We also use several Lemmata reported in C.3.

Lemma 1 (Lower bound) For B larger than a constant, which depends on the
polynomial approximation, there exist two constants Ck1 and Ck2 , such that

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck1 |‖ δGGGh ‖|2∗ −Ck2 ‖ δGGGh ‖2L2(Ω)

∀δGGGh ∈ Xk,
(80)

A(GGGe; δGGGh, δGGGh) + B(GGGe; δGGGh, δGGGh) ≥ Ck1 |‖ δGGGh ‖|2 −Ck2 ‖ δGGGh ‖2L2(Ω)

∀δGGGh ∈ Xk.
(81)
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Using the bounds (58) and (67), the Cauchy-Schwartz’ inequality, the trace in-
equality on the finite element space, see Lemma 7, the trace inequality, see Lemma
6, and the inverse inequality, see Lemma 8, the ξ-inequality –ξ > 0 : |ab| ≤
ξ
4a2 + 1

ξb2, as in Wheeler et al. [69] and Prudhomme et al. [52] analyzes, yields to

prove this Lemma. The two constants Ck1 , C
k
2 are independent of the mesh size,

but require the stability parameter B to be larger than a constant, which depends
on the polynomial degree, B > Ck, to be positive .

Lemma 2 (Upper bound) There exist C > 0 and Ck > 0 such that

| A(GGGe;mmm, δGGG) + B(GGGe;mmm, δGGG) | ≤ C |‖mmm ‖|1 |‖ δGGG ‖|1 ∀mmm , δGGG ∈ X, (82)

| A(GGGe;mmm, δGGGh) + B(GGGe;mmm, δGGGh) | ≤ Ck |‖mmm ‖|1 |‖ δGGGh ‖| ∀mmm ∈ X , δGGGh ∈ Xk,

(83)

| A(GGGe;mmmh, δGGGh) + B(GGGe;mmmh, δGGGh) | ≤ Ck |‖mmmh ‖| |‖ δGGGh ‖| ∀mmmh, δGGGh ∈ Xk.

(84)

Applying the Hölder’s inequality and the bound (67) on each term of A(GGGe; mmm,
δGGG)+B(GGGe;mmm, δGGG), then making use of the Cauchy-Schwartz’ inequality, lead to
the relation (82). Finally, Eqs. (83) and (84) are easily obtained from the relation
between the energy norms on the finite element space, Lemma 9.

Using Lemma 1 and Lemma 2, the stability of the method is demonstrated
through the following Lemmata.

Lemma 3 (Auxiliary problem) We consider the following auxiliary problem,

with φφφ ∈
(
L2(Ω)

)d+2
:

−∇T (www∇GGG(GGGe)∇ψψψ + wwwGGG(GGGe,∇GGGe)ψψψ) + ddd∇GGG(GGGe)∇ψψψ + dddGGG(GGGe,∇GGGe)ψψψ = φφφ on Ω,

ψψψ = 0 on ∂Ω.

(85)

Assuming regular ellipticity of the operators and that wwwGGG and dddGGG satisfy the weak

minimum principle [21, Theorem 8.3], there is a unique solution ψψψ ∈
[
H2(Ω)

]d ×
H2(Ω)×H2(Ω) to the problem stated by Eq. (85) satisfying the elliptic property

‖ ψψψ ‖H2(Ωh)≤ C ‖ φφφ ‖L2(Ωh) . (86)

Moreover, for a given ϕϕϕ ∈
[
L2(Ωh)

]d × L2(Ωh)× L2(Ωh) there exists a unique

φφφh ∈ Xk such that

A(GGGe; δGGGh,φφφh) + B(GGGe; δGGGh,φφφh) =
∑
e

∫
Ωe

ϕϕϕTδGGGhdΩ ∀δGGGh ∈ Xk, (87)

and there is a constant Ck such that :

|‖ φφφh ‖|≤ Ck ‖ ϕϕϕ ‖L2(Ωh) . (88)
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The proof of the first part is given in [21], by combining [21, Theorem 8.3] to
[21, Lemma 9.17].

The second part was demonstrated by Gudi et al. [23]: The use of Lemma 1
and Eq. (87) with δGGGh = φφφh allows bounding |‖ φφφh ‖| in terms of ‖ ϕϕϕ ‖L2(Ωh) and

‖ φφφh ‖L2(Ωh); The term ‖ φφφh ‖L2(Ωh) is then evaluated by using φφφ = φφφh ∈ Xk in Eq.
(85), multiplying the result by φφφh and integrating it by parts on Ωh, resulting into ‖
φφφh ‖2L2(Ωh)= A(GGGe;ψψψ,φφφh)+B(GGGe;ψψψ,φφφh); Inserting the interpolant Ihψψψ in these last

terms, i.e. ‖ φφφh ‖2L2(Ωh)= A(GGGe;ψψψ−Ihψψψ,φφφh)+B(GGGe;ψψψ−Ihψψψ,φφφh)+A(GGGe; Ihψψψ,φφφh)+

B(GGGe; Ihψψψ,φφφh), bounding the last two terms by considering δGGGh = Ihψψψ in Eq. (87),
and bounding the first two terms by making successive use of Lemma 2 and of the
energy bound of the interpolant error, Lemma 10, and using the regular ellipticity
Eq. (86) lead to the bound ‖ φφφh ‖L2(Ωh)≤ Ck ‖ ϕϕϕ ‖L2(Ωh), and thus to the proof
of the solution uniqueness.

Theorem 1 (Solution uniqueness to the problem (79)) The solution GGGyyy to

the problem stated by Eq. (79) is unique for a given yyy ∈ Xk
+

with Sh(yyy) = GGGyyy.

In order to prove that the solution GGGyyy is unique for a given yyy ∈ Xk
+

, let us assume
that there are two distinct solutions GGGyyy1 , GGGyyy2 , such that

A(GGGe; IhGGG−GGGyyy1 , δGGGh) + B(GGGe; IhGGG−GGGyyy1 , δGGGh)

= A(GGGe; IhGGG−GGGyyy2 , δGGGh) + B(GGGe; IhGGG−GGGyyy2 , δGGGh) ∀ δGGGh ∈ Xk.
(89)

For fixed GGGe, since A and B are bi-linear, this last relation thus becomes

A(GGGe;GGGyyy1 −GGGyyy2 , δGGGh) + B(GGGe;GGGyyy1 −GGGyyy2 , δGGGh) = 0 ∀ δGGGh ∈ Xk. (90)

Considering ϕϕϕ = δGGGh = GGGyyy1 −GGGyyy2 ∈ Xk in Lemma 3 consists in stating that there
is a unique ΦΦΦh ∈ Xk solution of the problem Eq. (87), with

A(GGGe;GGGyyy1 −GGGyyy2 ,ΦΦΦh) + B(GGGe;GGGyyy1 −GGGyyy2 ,ΦΦΦh) =‖GGGyyy1 −GGGyyy2 ‖
2
L2(Ωh), (91)

and with |‖ ΦΦΦh ‖|≤ Ck ‖ GGGyyy1 −GGGyyy2 ‖L2(Ωh). The choice δGGGh = ΦΦΦh in Eq. (90)
leads to ‖ GGGyyy1 −GGGyyy2 ‖L2(Ωh)= 0, demonstrating that the solution Sh(yyy) = GGGyyy is
unique.

We will now show that Sh maps a ball Oσ(IhGGG) ⊂ Xk
+

into itself and is
continuous in the ball. To this end, we define the ball Oσ with radius σ and
centered at the interpolant IhGGG of GGGe as

Oσ(IhGGG) =
{

yyy ∈ Xk
+

such that |‖ IhGGG− yyy ‖|1≤ σ
}
,

with σ =
|‖ IhGGG−GGGe ‖|1

hεs
, 0 < ε <

1

4
.

(92)

The idea proposed by Gudi et al. [23] is to work on a linearized problem in

a ball Oσ(IhGGG) ⊂ Xk
+

around the interpolant IhGGG ∈ Xk
+

of GGGe. Therefore, the
non-linear terms www and ddd and their derivatives are locally bounded in the ball

Oσ(IhGGG) ⊂ Xk
+

since they are continuous. Applying the energy bound of the
interpolant error, Lemma 10, in combination with Eq. (92) yields

|‖ IhGGG−GGGe ‖|1 ≤ Ckhµ−1
s ‖GGGe ‖Hs(Ωh) and σ ≤ Ckhµ−1−ε

s ‖GGGe ‖Hs(Ωh) , (93)
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with µ = min {s, k + 1}. By assuming GGGe ∈
[
H

5
2 (Ω)

]d
× H

5
2 (Ω) × H

5
2

+

(Ω), and

by considering CG =‖GGGe ‖
H

5
2 (Ωh)

and µ = s = 5
2 , this last relation becomes

|‖ IhGGG−GGGe ‖|1 ≤ Ckh
3
2
s ‖GGGe ‖

H
5
2 (Ωh)

and σ ≤ CkCGh
3
2
−ε

s if k ≥ 2. (94)

Lemma 4 Let yyy ∈ Oσ(IhGGG) and δGGGh ∈ Xk, then for d = 2 the bound of the
non-linear term N (GGGe,yyy; δGGGh) defined in Eq. (74) reads

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖ GGGe ‖Hs(Ωh) hs
µ−2−εσ |‖ δGGGh ‖|1 , (95)

with µ = min {s, k + 1}.

This bound of the non-linear term N (GGGe,yyy; δGGGh) defined Eq. (79) is derived by
bounding every term separately using successively Taylor’s series (60 - 66), the
generalized Hölder’s inequality, the generalized Cauchy-Schwartz’ inequality, the
definition of Cy in Eq. (67), the definition of the ball, Eqs. (92-94), the trace in-
equalities, Lemma 6, the inverse inequalities for d = 2, Lemma 8, and the interpo-
lation inequalities for d = 2, Lemma 5. The proof follows from the argumentation
reported in [23] and the bound of the non-linear term N (GGGe,yyy; δGGGh) is nominated
by the term with the largest bound, see C.4 for details. Moreover, using the re-
lation between energy norms on the finite element space, Lemma 9, this relation
can be rewritten as

| N (GGGe,yyy; δGGGh) | ≤ CkCy ‖GGGe ‖Hs(Ωh) hs
µ−2−εσ |‖ δGGGh ‖| , (96)

with µ = min {s, k + 1}.
Using the previous Lemmata, Gudi et al. [23] have demonstrated the following

two Theorems, which are reported here below without demonstration, since they
strictly follow the methodology in [23], see also [27,26] for details.

Theorem 2 (Sh maps Oσ(IhGGG) into itself) Let 0 < hs < 1 and σ be defined
by Eq. (93). Then Sh maps the ball Oσ(IhGGG) into itself, with

|‖ IhGGG−GGGyyy ‖|≤ Ck
′
σhεs if k ≥ 2. (97)

For a mesh size hs small enough and a given ball size σ, IhGGG −GGGyyy −→ 0, hence
Sh maps Oσ(IhGGG) into itself.

Theorem 3 (The continuity of the map Sh in the ball Oσ(IhGGG)) For yyy1, yyy2 ∈
Oσ(IhGGG), let GGGyyy1 = Sh(yyy1), GGGyyy2 = Sh(yyy2) be solutions of Eq. (79). Then for
0 < hs < 1

|‖ GGGyyy1 −GGGyyy2 ‖| ≤ CkCy ‖ GGGe ‖Hs(Ωh) h
µ−2−ε
s |‖ yyy1 − yyy2 ‖| . (98)

Using the Theorems 2, 3 of the map Sh, we can deduced that for all 0 < hs < 1,
the map Sh has a fixed point GGGh of the ball Oσ(IhGGG), which is the solution of the
non-linear system of Eqs. (48).
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4.6 A priori error estimates

As Sh has a fixed point GGGh, we can use GGGh instead of GGGy in Eq. (97), leading to

|‖ IhGGG−GGGh ‖| ≤ Ck
′
σhεs = Ck

′
|‖ IhGGG−GGGe ‖|1 . (99)

Now, for k ≥ 2, using the relation between energy norms on the finite element
space, Lemma 9, and the energy bound of the interpolant error, Lemma 10, Eq.
(99) leads to an optimal error convergence in terms of hs since

|‖GGGe −GGGh ‖|1 ≤|‖GGGe − IhGGG ‖|1 + |‖ IhGGG−GGGh ‖|1

≤|‖GGGe − IhGGG ‖|1 +Ck
′
|‖ IhGGG−GGGe ‖|1

≤ (1 + Ck
′
) |‖GGGe − IhGGG ‖|1≤ Ck

′′
hµ−1

s ‖GGGe ‖Hs(Ωh),

(100)

where µ = min {s, k + 1}, and Ck
′′

= Ck(1 + Ck
′
).

4.7 Error estimate in the L2-norm

The optimal order of convergence in the L2-norm is obtained by applying the
duality argument based on the dual problem

−∇T(www∇GGG(GGGe)∇ψψψ + dddT
∇GGG(GGGe)ψψψ) + wwwT

GGG(GGGe,∇GGGe)∇ψψψ + dddGGG(GGGe,∇GGGe)ψψψ = eee on Ω,

ψψψ = 000 on ∂Ω ,

(101)

which satisfies the elliptic regularity condition as www∇GGG is positive definite and
assuming that dddT

∇GGG and dddGGG satisfy the weak minimum principle [21, Theorem 8.3].

Therefore ψψψ ∈
[
H2m(Ωh)

]d ×H2m(Ωh)×H2m(Ωh) for p ≥ 2m and

‖ ψψψ ‖Hp(Ωh)≤ C ‖ eee ‖Hp−2m
(Ωh)

, (102)

if eee ∈
[
Hp−2m(Ωh)

]d ×Hp−2m(Ωh)×Hp−2m(Ωh).

Let eee = GGGe−GGGh ⊂
[
L2(Ωh)

]d×L2(Ωh)×L2(Ωh) be the error, multiplying Eq.
(101) by eee, and integrating over Ωh, yields

‖ eee ‖2L2(Ωh)=

∫
Ωh

[www∇GGG(GGGe)∇ψψψ]T∇eeedΩ +

∫
Ωh

[
dddT
∇GGG(GGGe)ψψψ

]T
∇eeedΩ+∫

Ωh

[
wwwT

GGG(GGGe,∇GGGe)∇ψψψ
]T

eeedΩ +

∫
Ωh

[dddGGG(GGGe,∇GGGe)ψψψ]T eeedΩ−

∑
e

∫
∂Ωe

[www∇GGG(GGGe)∇ψψψ]T eeennndS−
∑

e

∫
∂Ωe

[
eeeT
nnn dddT
∇GGG(GGGe)

]
ψψψdS ,

(103)

with

‖ ψψψ ‖H2(Ωh)≤ C ‖ eee ‖L2(Ωh) . (104)
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Since JψψψK = J∇ψψψK = 0 on ∂IΩh and ψψψ = 0 on ∂DΩh, and since www∇GGG is symmetric,
we have by comparison with Eqs. (72-73) that

‖ eee ‖2L2(Ωh)= A(GGGe; eee,ψψψ) + B(GGGe; eee,ψψψ). (105)

From Eq. (71), one has

A(GGGe;GGGe −GGGh, Ihψψψ) + B(GGGe;GGGe −GGGh, Ihψψψ) = N (GGGe,GGGh; Ihψψψ), (106)

since GGGe is the exact solution and Ihψψψ ∈ Xk, and Eq. (105) is rewritten

‖ eee ‖2L2(Ωh)= A(GGGe; eee,ψψψ − Ihψψψ) + B(GGGe; eee,ψψψ − Ihψψψ) +N (GGGe,GGGh; Ihψψψ). (107)

First, using Lemma 2, Eq. (82), the energy bound of the interpolant error,
Lemma 10, and Eq. (100), leads to

| A(GGGe; eee,ψψψ − Ihψψψ) + B(GGGe; eee,ψψψ − Ihψψψ) | ≤ Ck |‖ eee ‖|1 |‖ ψψψ − Ihψψψ ‖|1
≤ Ck |‖ eee ‖|1 hs ‖ ψψψ ‖H2(Ωh)

≤ Ck
′′
hµs ‖GGGe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh),

(108)

with µ = min {s, k + 1}.
Second, proceeding as to derive Lemma 4 and using the a priori error estimate

(99-100), we have, see details in [26]

| N (GGGe,GGGh; Ihψψψ) | ≤ Ck
′′
Cyh

2µ−3
s ‖GGGe ‖2Hs(Ωh)|‖ Ihψψψ ‖| . (109)

Finally, since JψψψK = 0 in Ω, using the energy bound of the interpolant error,
Lemma 10, we have

|‖ Ihψψψ ‖| ≤|‖ Ihψψψ −ψψψ ‖|1 + |‖ ψψψ ‖|1
≤ Ckhs ‖ ψψψ ‖H2(Ωh) + ‖ ψψψ ‖H1(Ωh)≤ C

k(hs + 1) ‖ ψψψ ‖H2(Ωh) .
(110)

Eventually, combining Eqs. (108-110), Eq. (107) becomes

‖ eee ‖2L2(Ωh) ≤ C
k′′hµs

(
1 + hµ−3

s ‖GGGe ‖Hs(Ωh)

)
‖GGGe ‖Hs(Ωh)‖ ψψψ ‖H2(Ωh), (111)

with µ = min {s, k + 1}, or using Eq. (104), the final result for k ≥ 2

‖ eee ‖L2(Ωh)≤ C
k′′hµs ‖GGGe ‖Hs(Ωh) . (112)

This result demonstrates the optimal convergence rate of the method with the
mesh-size for cases in which k ≥ 2, (so that µ ≥ 3).
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ro=0.04 [m]

ri=0.03 [m]

V = 0.05 [V]
T= 20 [oC]

V = 0 [V]

Fig. 3 The schematics and boundary conditions of the quarter of a pipe test

Table 1 Material parameters for the quarter of a pipe test

Parameter Value

Poisson ratio [−] 0.33
Young’s modulus E [Pa] 50× 109

Thermal expansion αααth [1/K] diag(2×10−6)
Thermal conductivity kkk [W/(K ·m)] diag(1.612)
Seebeck coefficient α [V/K] 1.941× 10−4

Electrical conductivity lll [S/m] diag(8.422× 104)

Electric potential [V]
0          0.025       0.05

(a)

Temperature [°C]
20    82.8     145.7

(b)

Fig. 4 The distribution of (a) the electric potential and (b) the temperature for the quarter
of a pipe test

4.8 Numerical verification

We consider a quarter of a pipe with the boundary conditions illustrated in Fig.
3. The geometry is extruded to study a 3D-mesh, with plane-strain out-of-plane
conditions. The initial value for the temperature is T0 = 20 [◦C] and V0 = 0
[V] for the electric potential. The values are also constrained on the inner radius
ri. At the outer radius ro, the applied electric potential is 0.05 [V], Fig. 3. The
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Fig. 5 Error with respect to the mesh size hs/∆r, with ∆r = ro− ri: (a) in the energy-norm,
and (b) in the L2-norm, for the quarter of a pipe test

material parameters are reported in Table 1. The problem is studied for different
mesh refinements of quadratic bricks, and a stabilization parameter B = 100 is
considered.

The results for a mesh of 16 × 16 × 1 elements are reported in Fig. 4. The
resulting electric potential distribution, Fig. 4(a), induces a temperature gradient
from 20 [◦C] at the inner face to 145.7 [◦C] at the outer face, as shown in Fig. 4(b).
Consequently, an expansion of the pipe of 6.35 ×10−6 [m] at the outer radius is
observed.

The convergence of the DGFEM is investigated by considering different uniform
mesh refinements in Fig. 5. In Fig. 5(a), respectively Fig. 5(b), the errors measured
in the energy-norm, respectively in the L2-norm, are reported in terms of the
mesh size hs; the observed convergence rates are quadratic, respectively cubic, for
quadratic polynomial approximations, which agree with the optimal theoretical
convergence rates derived in Section 4.6, respectively Section 4.7.
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Fig. 6 Scalability test in terms of one processor normalized CPU time for (a) a constant total
number of elements divided between the different cores, (b) a constant number of elements per
core.
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In order to assess the scalability of the parallel implementation presented in
Section 3.3, the same numerical application is conducted on a cluster with 43
compute nodes (2752 compute cores). Each compute node contains four 16-core
AMD Bulldozer 6272 processors at 2.1 GHz interconnected with a QDR Infiniband
network. Two parallel simulation strategies are successively considered:

– Constant total number of elements: A mesh of 32 × 32 × 2 = 2048 quadratic
bricks is divided among the different cores of the simulations;

– Constant number of elements per core: The mesh is progressively refined in
order to keep 32 quadratic bricks on each core. For the total cores numbers
corresponding to 4i#, the global mesh has 2i+2 × 2i+2 × 2 quadratic bricks,
while for the total cores numbers corresponding to 2 × 4i#, the global mesh
has 2i+2 × 2i+2 × 4 quadratic bricks.

Since the resolution is conducted using a Newton-Raphson process, two computa-
tional time evolutions are studied:

– DG part: This gathers the computational time required by one core to evaluate

the bulk nodal forces FFFaint (36) and stiffness matrix
∂FFFaint
∂GGGb (38), i.e. Step #1 of

the algorithm reported in Section 3.3, the interface nodal forces FFFaI (36) and

stiffness matrix
∂FFFaI
∂GGGb (38) of the interface elements, i.e. Step #2 of the algorithm

reported in Section 3.3, and the communication of the nodal values GGGa to the
ghost elements, i.e. Step #4 of the algorithm reported in Section 3.3.

– Solver: This corresponds to the computational time required by one core during
the resolution of the system (38), i.e. Step #3 of the algorithm reported in
Section 3.3.

Figure 6 reports the computational time –of one core– evolutions normalized
with respect to the computational time required for a sequential simulation. When
considering a constant total number of elements for the whole structure, see Fig.
6(a), the speed up obtained is close to the theoretical value up to 128 processors for
both the DG and solver parts. For 256 processors, the number of elements per core
–8– becomes too small to ensure the scalability in the DG part, which includes the
nodal values communication. When considering a constant number of elements
per core, see Fig. 6(b), the normalized time related to the DG part exhibits a
slope almost equal to zero, which shows a good scalability since the force and
matrix stiffness evaluations on the cores are not slowed down by the communication
burden. Moreover, the solver part increases linearly with the number of cores
while the size of the global system increases at a quadratic rate, showing a good
scalability. Note that for the latter case two families of points can be seen on Fig.
6(b), which corresponds to the meshes with 2 and 4 layers of elements.

5 Application to Shape Memory Polymer Composites

In this section we model the response of micro-structured Shape Memory Polymers
composites (SMPC) subjected to Electro-Thermo-Mechanical histories under a fi-
nite deformation setting. To this end we consider the two constitutive behaviors
summarized in A: carbon fibers (CF) modeled using a transversely isotropic hyper-
elastic model with the material properties reported in Table 2, and thermally trig-
gered Shape Memory Polymer (SMP), modeled by an elasto-visco-plastic model,
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with the material properties reported in Table 3. The CF mechanical properties are
given in [70], while the approximated electrical and thermal parameters are taken
from [30,33,11,68]. The thermo-mechanical parameters of the SMP have been cal-
ibrated by Srivastava et al. [59] to fit the experimental data of tert-butyl acrylate
(90% by weight) with crosslinking agent poly (ethylene glycol) dimethacrylate
(10% by weight). The parameters related to the conductivity are assumed to cor-
respond to nano-composites and consist of values of the order of magnitude that
can be found in [65].

1

3

4

e

s

T

2

Fig. 7 Thermo-Mechanical cycle of a Shape Memory Polymer

The considered thermally triggered SMP takes advantage of a property change
at the glass transition temperature Tg, such that the material can be deformed with
minimal force at temperatures above their Tg (hysteretic rubber state), where the
polymers are considered as viscous materials. Once cooled below the Tg (glassy
state) the SMP becomes rigid again and the polymers are considered as elastic
materials. As a result they can maintain the shape that were given to them in their
viscous states as long as the temperature remains lower than their glass transition.
The typical Thermo-Mechanical cycle for SMP consists of the following steps as
shown in Fig. 7:

1. Deforming the polymer at temperature above the glass transition Tg.
2. Fixing the polymer at constant deformation by cooling it to a temperature

below Tg

3. Releasing the constraint upon the completion of cooling, to obtain the tempo-
rary pre-deformed shape. The polymer holds this temporary shape as long as
the temperature remains lower than the glass transition temperature.

4. Heating back the deformed structure above Tg, in order to recover the original
shape

The following tests focus in applying the proposed ETM DG formulation to
simulate the conductive SMPC behavior at large-deformation regime, when trig-
gered by Joule effect.
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Table 2 Carbon fiber properties, see A.1

Parameter Value

Density ρ [Kg/m3] 1750
Longitudinal Young’s modulus EL [GPa] 230
Transverse Young’s modulus ET [GPa] 40
Transverse Poisson ratio νTT [−] 0.2
Longitudinal-transverse Poisson ratio νLT [−] 0.256
Transverse shear modulus GTT [GPa] 16.7
Longitudinal shear modulus GLT [GPa] 24
Thermal expansion αth [1/K] 2×10−6

Thermal conductivity kkk [W/(K ·m)] diag(40)
Seebeck coefficient α [V/K] 3× 10−6

Electrical conductivity lll [S/m] diag(10)× 104

Heat capacity cv [J/(kg ·K)] 712
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Z
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(b) Boundary Conditions
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(c) SMP temperature
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Fig. 8 SMPC unit-cell compression test: (a) Schematics of the unit cell, and (b) boundary
conditions in terms of the average deformation gradient and of the applied electric potential
difference; (c) Time evolution of the uniform temperature in the SMP, (d) time evolution of
the unit cell uniaxial average stress. The vertical ’-·-’-lines correspond to the changes of applied
electric potential, and the vertical ’··’-lines to the changes of applied displacement gradient.

5.1 Electro-Thermo-Mechanical coupling on unit-cell compression test

The geometry of a SMPC unit cell is illustrated in Fig. 8(a) and the applied
boundary conditions are the following:
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Table 3 Shape memory polymers parameters, see A.2, with β the integration point in the
finite increment scheme of the hardening laws, see [26] for details.

Parameter Value Parameter Value

εr 5.2× 10−4 ρ [kg/m3] 1020

ε̇
(1)
0 [1/s] 1.73× 1013 w 0.6
c0 [J/(Kg ·K)] 1710 c1[J/Kg] 4.
Tr [K] 310 n [K] 2.1

αgl [1/K] 13× 10−5 αr [1/K] 25× 10−5

Ggl [Pa] 156× 106 Gr [Pa] 13.4× 106

LGgl
[Pa/K] 7.4× 106 LGr [Pa/K] 0.168× 106

Qgl [J] 1.4× 10−19 Qr [J] 0.2× 10−21

LQgl
[J/K] 0. LQr [J/K] 0

Hgl [Pa] 1.56× 106 Hr [Pa] 0.76× 106

LHgl
[Pa/K] 0.44× 106 LHr [Pa/K] 0.006× 106

νgl 0.35 νr 0.49
Lνgl [1/K] 0. Lνr [1/K] 0

∆ 2.6 m(1) 0.17
ha 230 g 5.8
b [Pa] 5850× 106 V ′ [m3] 2.16× 10−27

z 0.083 r 1.3
s 0.005 a 0.5
d [1/K] 0.015 ζgl 0.14
Sa0 [Pa] 0 Sb0

[Pa] 0
αp 0.058 ϕ0 0
β 0.5 ha 230

I
(2)
m 6.3 N [1/K] 0.045

µg [Pa] 1.38× 106 m(2) 0.19

S
(2)
gl [Pa] 58× 106 S

(2)
r [Pa] 3× 102

L
S
(2)
gl

= L
S
(2)
r

[Pa/K] 0 ε̇
(2)
0 [1/s] 5.2× 10−4

I
(3)
m 5 µ(3) [Pa] 0.75× 106

hg 10−9 α [V/K] 3× 10−7

kkk [W/(K ·m)] diag(0.2) lll [S/m] diag(0.1)

– The displacement is constrained along the three perpendicular faces as follows:
the nodes along the XY-plane are fixed in the Z-direction, the nodes along the
YZ-plane are fixed in the X-direction, and the nodes along the XZ-plane are
fixed in the Y-direction.

– The other three faces are restrained in order to get a uniform deformation, the
top face is restrained along the Z-direction, the infront face is restrained along
the Y-direction and the right face is restrained along the X-direction.

– The temperature is restrained on the Shape Memory Polymer volume to get a
uniform distribution of the temperature.

– The initial value of the electric potential is 0 [V] and the initial value of the
temperature is 21 [◦C].

– The test is implemented with displacement control in order to simulate a uni-
axial compression along the X-direction, following the time evolution reported
in Fig. 8(b).

– Simultanously to the displacement control, an electric potential difference is
applied between the front and back face following the time evolution reported
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in Fig. 8(b), and the initial temperature is constrained at the center of one face
of the CF.

A finite element mesh of 2 layers of 40 quadratic bricks is considered and the
value of the stabilization parameter is B= 40. Because of the BC, the unit cell is
subjected to indirect heating by applying the electric potential with the following
Electro-Thermo-Mechanical history:

– Apply an electric field of 0.28 [V] in order to heat the cell above the glass
transition temperature of 37 [◦C].

– Compress the sample above glass transition.
– Reduce the electric field to 0 [V], in order to cool the cell down to room

temperature, while the cell is still under a constrained strain.
– Increase the electric field back to 0.28 [V], which causes an increase in the

temperature of the sample to a temperature above the glass transition, and
maintain the deformation constant until the cell reaches a value above the
glass transition temperature of 37 [◦C].

– Once the glass transition temperature is reached in the SMP material, keep
increasing the applied potential difference and unload the SMPC unit cell in
order to recover the original shape.

The resulting temperature evolution history of the SMP volume versus time
is plotted in Fig. 8(c). The particular behavior of SMPC is illustrated through
the homogenized stress shown in Fig. 8(d). Deformed shapes of the SMPC unit
cell and the corresponding stress distribution along the compression direction are
illustrated in Fig. 9. It appears that the force starts to increase (in absolute value)
during the heating by Joule effect due to thermal dilation, and a sudden drop can
be observed once the temperature reaches the glass transition temperature Tg.
Then the force increases slightly under the deformation constraint above the glass
transition temperature Tg. Since the deformation is applied above the glass tran-
sition temperature, Fig. 9(a), the stress remains limited in the cell, see Fig. 9(b).
Once the temperature starts to decrease, there is an increase of the force as the
deformation constraint is still applied. When the temperature is minimal, see Fig.
9(c), the force has almost vanished, which represents a fixation of the deformation,
see also the limited stress distribution in Fig. 9(d). Once the temperature starts
to increases and reaches back the glass transition temperature Tg, see Fig. 9(e),
the force starts to sharply decrease and to change sign as the SMPC enters the
recovery phase, meaning it tends to recover the original shape, see the important
stress distribution in Fig. 9(f). The displacement control is then released and the
force tends to vanish as the SMPC cell recovers its original shape above the glass
transition temperature Tg at around 1200 [s], see Fig. 9(h).

5.2 Electro-Thermo-Mechanical coupling on extruded unit-cell bending test

The aim of the following test is to study the free recovery of a SMPC unit cell
subjected to indirect heating by applying an electric potential difference. To this
end we study the bending behavior of an extruded unit cell, as illustrated in Fig.
10. the applied boundary conditions are the following:

– The back side of the cell is clamped.
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Fig. 9 Snapshots of the temperature (left column) and stress (right column) distributions of
the of the SMPC unit-cell under compression test during the Electro-Thermo-Mechanical cycle.
#1 (t = 750 s): after compression above the glass transition temperature. #2 (t = 900 s):
after having released the voltage difference. #3 (t = 1135 s): after having applied again a
voltage difference to reheat above the glass transition temperature with partial compression.
#4 (t = 1500 s): after having removed the compression above the glass transition temperature.
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Fig. 10 Schematics of the extruded unit cell under bending
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Fig. 11 Time evolution histories of the (a) boundary conditions and (b) temperature at the
mid-length of the beam in terms of the applied electric potential difference for the extruded
unit cell under bending. The vertical ’-·-’-lines correspond to the changes of applied electric
potential, and the vertical ’··’-lines to the changes of applied force.

– The displacements of the side faces are constrained along the X-direction.
– The temperature is constrained at 25 [◦C] on the two extremity faces.
– An electric potential difference is applied between the two extremity faces

following the time evolution reported Fig. 11(a).
– A uniform tangential pressure is applied on the front face following the time

evolution reported in Fig. 11(a).
– The initial value of the temperature is 25 [◦C] and the initial value of the

electric potential is 0 [V].

A finite element mesh of 90 quadratic bricks is considered, and the value of the
stabilization parameter is B = 100. The applied boundary condition for the force
and electric potential versus time are illustrated in Fig. 11(a), with the following
Electro-Thermo-Mechanical history:
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– Apply an electric field of 0.35 [V] to generate heat and increase the temperature.
– Apply a tangential load per unit surface p on the free in-front face.
– Reduce the electric field to 0 [V], in order to cool the cell down under a con-

strained strain.
– Remove the force at 25 [◦C].
– Increase the electric field back to 0.35 [V] to increase the temperature of the

composite cell in order to recover freely the original shape.
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Fig. 12 (a) The distributions of the temperature and electric potential along the extruded
unit cell length at configuration #1, and (b) the history of the extruded unit cell under bending
triggered by Joule effect

The resulting temperature history is evaluated at the mid-length of the beam
and is shown in Fig. 11(b); the electric potential and temperature distributions
along the extruded unit-cell length at time t=500 [s] are illustrated in Fig. 12(a).
When an electric potential of 0.35 [V] is applied, the temperature increases inside
the beam and reaches 60.5 [◦C], which is above the glass transition temperature,
at the extruded unit-cell mid-length. The distribution of the electric potential is
close to linear but the distribution of the temperature is almost quadratic with a
maximum value of 60.5 [◦C]. Therefore, only a part of the extruded unit-cell has
a shape memory effect that can be triggered during the test.

The displacement history of the extruded unit-cell extremity is illustrated in
Fig. 12(b), and the successive configurations are reported in Fig. 13. It can be
noticed that the cell recovers part of the deformation as the force is removed
since, on the one hand, the carbon fibers remain elastic, and, on the other hand,
only one part of the beam reaches a value higher than the glass transition. Upon
reapplying the electric potential difference, part of the remaining deformation is
recovered.

6 Conclusions and perspectives

In this work a DG method has been developed to study non-linear Electro-Thermo-
Mechanical coupled problems. Starting from the first principles of solid mechanics,
electrical and thermal field theories formulated in terms of energetically conjugated
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Fig. 13 Snapshots of the extruded unit cell under bending during the Electro-Thermo-
Mechanical cycle. #1: after applying an electric potential of 0.35 [V] to heat the unit cell
above the glass transition temperature. #2: after applying the load to bend the beam. #3:
after removing the load at 0 [V] of electric potential. #4: after reapplying an electric potential
of 0.35 [V] to recover the initial configuration.

pairs of fluxes and fields gradients, the SIPG method has been derived as a consis-
tent weak form to solve the various interacting physics in the coupled simulations.

In particular, the stability of the method and its optimal convergence rate
with the mesh-size have been demonstrated in the context of linearized mechanical
equations, but with non-linear electro-thermal coupling. A numerical simulation
was carried out to verify these properties.

Moreover, advantage has been taken of the DG feature to develop an effi-
cient parallel implementation of the method based on the concept of ghost ele-
ments. This implementation only requires as communication –besides the system
resolution– the exchange of the nodal values of these ghost elements correspond-
ing to neighboring elements on other processors, ensuring a good scalability of the
method.
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Finally the DG method has been used to study the behavior of shape memory
polymer composite unit-cells. A multi-physic micro-model of unidirectional carbon
fibers embedded in a shape memory polymer matrix was formulated by considering
the interaction of electrical, thermal, and mechanical fields, and it was shown that
when mechanical and electrical loads are applied, the heat induced due to the
Joule effect triggers the shape memory behavior.

In the future it is intended to formulate the multi-physic micro-model, in par-
ticular the constraints on the boundary conditions, to embed it in a computational
multi-scale framework with a view to the simulation of smart structures.
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A Constitutive behaviors

The objective of this section is to summarize large deformation constitutive theories in order to
model the response of Shape Memory Polymers composites (SMPC) subjected to a variety of
Electro-Thermo-Mechanical histories. The composite material system is obtained by defining
two separate models, one for carbon fiber and another one for shape memory polymers. For
carbon fibers, a transversely isotropic hyperelastic model is considered while an elasto-visco-
plastic model is considered for the shape memory polymers.
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A.1 Material model of carbon fiber

Carbon fiber is a transversely isotropic material and subsequently the number of mechanical
constants is reduced to 5 because of the in-plane isotropy:

ET = E1 = E2 6= E3 = EL, νTT = ν12 = ν21 6= ν13 = ν23 = νTL

GLT = G13 = G23 = G3 = GL .
(113)

The missing in-plane shear modulus GTT is obtained from νTT and ET, with

GTT = G12 =
ET

2(1 + νTT)
. (114)

In the previous relations, the subscript 3 or the superscript L refers to the fiber direction and
1, 2, or T is a direction transverse to the fiber direction. Along the longitudinal direction the
Poisson ratios are not symmetric but instead satisfy

νij
Ei

=
νji
Ej

.

In order to model the carbon fiber, we have considered the equation proposed by Bonet
et al. [10], with some modifications proposed by Wu et al. [70], since the original formulation
considered that νTL = νTT, to describe the isotropic hyperelastic solids in the large strain
regime. In addition, we have added the thermal contribution, characterized by the thermal
expansion term αth. In this formulation, the strain energy density ψ consists of an isotropic
component ψis and of an orthotropic transversely isotropic component ψtr such that ψ =
ψis + ψtr. The Neo-Hookean equation is used to model the isotropic part, such that

ψis =
1

2
GTT(trCCC − 3)−GTTlnJ +

1

2
λ(lnJ − 3α′th(T − T0))2, (115)

where this energy density function has been defined by C. Miehe in [46], and where α′th =

αth
λ+2/3GTT

λ
in order to recover the usual dilation coefficient definition of isotropic materials.

The orthotropic transversely isotropic component is obtained from a generalization of the
model proposed by Bonet et al. [10] and enhanced by Wu et al. [70]:

ψtr =
[
αtr + 2βtr(lnJ − 3α′th(T − T0)) + γtr(I4 − 1)

]
(I4 − 1)−

1

2
αtr(I5 − 1), (116)

where I4 and I5 denote the two new pseudo invariants of CCC expressed as [57,58],

I4 = A ·CCC ·A and I5 = A ·CCC2 ·A , (117)

with the unit vector A defining the main direction of orthotropy (fiber direction) in the unde-
formed configuration.

The parameters of the model Eq. (116), λ, GTT, αtr, βtr and γtr are obtained from the
measured properties Eqs. (113, 114) as

λ =
ET(νTT + nνTL2

)

m(1 + νTT)
, GTT =

ET

2(1 + νTT)
, αtr = GTT −GLT ,

βtr =
ET

[
nνTL(1 + νTT − νTL)− νTT

]
4m(1 + νTT)

, γtr =
ET(1− νTT)

8m
−
λ+ 2GTT

8
+
αtr

2
− βtr,

m = 1− νTT − 2nνTL2
, n =

EL

ET
.

(118)

The second Piola-Kirchhoff stress tensor can be obtained by differentiating the free energy

in terms of the right Cauchy-Green strain tensor SSS = 2 ∂ψ
∂CCC

leading to

SSS = SSSis +SSStr, with (119)

SSSis = λlnJCCC−1 +GTT(III −CCC−1)− 3λα′th(T − T0)CCC−1, (120)
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where III is the identity tensor, and with

SSStr = 2βtr(I4 − 1)CCC−1 + 2
[
αtr + 2βtr(lnJ − 3α′th(T − T0)) + 2γtr(I4 − 1)

]
A⊗A

− αtr(CCC ·A⊗A+A⊗CCC ·A).
(121)

Then the first Piola-Kirchhoff stress tensor is evaluated from the second Piola-Kirchhoff stress
tensor as

PPP = FFF ·SSS. (122)

The stiffness is computed following [10,70].

A.2 Elasto-visco-plastic formulation for SMP

In this section, we summarize the work of Srivastava et al. [59] to model the shape memory
polymer behavior above and below glass transition.

A.2.1 Kinematics

To model the inelastic response of the amorphous polymeric materials, it is assumed that the
deformation gradient FFF may be multiplicatively decomposed into elastic and plastic parts

FFF = FFF e(α) ·FFFp(α) with detFFF e(α) = Je(α) = J > 0 and detFFFp(α) = 1 , (123)

where FFF e(α) is the elastic distortion and FFFp(α) is the inelastic distortion with FFFp(α)(X, 0) =
III. In these equations we have considered the possibility to account for several mechanisms
α = 1, 2, 3. Moreover, the elastic decomposition of the deformation gradient can be written as

FFF e(α) = RRRe(α) ·UUUe(α) , (124)

with the elastic right and left Cauchy-Green strain tensors respectively equal to

CCCe(α) = UUUe(α)2 = FFF e(α)T ·FFF e(α) and BBBe(α) = FFF e(α) ·FFF e(α)T . (125)

A.2.2 Elasto-visco-plasticity

The material may be idealized to be isotropic. Accordingly, all constitutive functions are pre-
sumed to be isotropic in character. Let us assume that the free energy has the separable form

ψR =
∑
α

ψ(α)(ΦCCCe(α) , T ), (126)

where Φccce(α) represents a list of the principle invariants of CCCe(α) and T is the temperature.

The Cauchy stress is decomposed in terms of the mechanisms σσσ =
∑

(α) σσσ
(α) with

σσσ(α) =
1

J
FFF SSS(α) FFFT =

1

J
FFF e(α) SSSe(α) FFF e(α)T, (127)

where SSSe(α) is the symmetric elastic second Piola-Kirchhoff stress

SSSe(α) = 2
∂ψ(α)(Φccce(α) , T )

∂CCCe(α)
. (128)

Moreover, the first Piola-Kirchhoff stress tensor can be computed following

PPP (α) = J σσσ(α)FFF−T = FFF e(α) SSSe(α) FFFp(α)−T = FFF FFFp(α)−1 SSSe(α) FFFp(α)−T . (129)
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The driving stress of the plastic flow is the symmetric Mandel stress, which is defined as

MMMe(α) = J RRRe(α)Tσσσ(α)RRRe(α) = UUUe(α)SSSe(α)UUUe(α) = CCCe(α)SSSe(α), (130)

where MMMe(α) is the elastic Mandel stress, RRRe(α) is the rotation matrix, and where it has been
assumed that CCCe(α) and SSSe(α) permute. The corresponding equivalent shear stress is given by

τ̄ (α) =
1
√

2
|MMMe(α)

0 |, (131)

where MMM
e(α)
0 is the deviatoric part of the Mandel stress

MMM
e(α)
0 = MMMe(α) + pIII , with p = −

1

3
trMMMe(α) , (132)

and |MMMe(α)
0 |=

√
MMM

e(α)
0 : MMM

e(α)
0 is the norm of the deviatoric part of the Mandel stress.

In order to account for the major strain-hardening and softening characteristics of poly-
meric materials observed during visco-plastic deformation, Srivastava et al. [59] have intro-

duced macroscopic internal variables ξξξ(α) to represent important aspects of the microstructural
resistance to plastic flow. The plastic flow follows

ḞFF
p(α)

= DDDp(α)FFFp(α), (133)

where each FFFp(α) is to be regarded as an internal variable part of ξξξ(α), and which is defined
as a solution of the differential equation

DDDp(α) = ε̇p(α)(
MMM

e(α)
0

2τ̄α
), (134)

whereDDDp is the plastic stretching tensor, and ε̇p(α) =
√

2|DDDp(α)| is the equivalent plastic shear
strain rate.

Therefore for given τ̄ (α) and ΛΛΛ(α) = (CCCe(α),BBBp(α), ξξξ(α), T ) a list of constitutive variables,

the equivalent plastic shear strain rate ε̇p(α) is obtained by solving a scalar strength relation
such as

τ̄ (α) = Υ (α)(ΛΛΛ(α), ε̇p(α)), (135)

where the strength function Υ (α)(ΛΛΛ(α), ε̇p(α)) is an isotropic function of its arguments.

A.2.3 Partial differential governing equations

In order to complete Eq. (7), y, the internal energy per unit mass, is defined as y = cvT , where
the volumetric heat capacity per unit mass is a function of the glass transition temperature,
and is defined as follows

cv =

{
c0 − c1(T − Tg) ifT ≤ Tg

c0 ifT > Tg.
(136)

Moreover, F̄ , the body source of heat, is expressed as

F̄ = Qr +
∑
α

τ̄ (α)ε̇p(α) + T
∂2ψe(α)

∂CCCe(α)∂T
: ĊCC

e(α)
, (137)

where Qr is the scalar heat supply measured per unit reference volume and the last term of the
right hand side is the thermo-elastic damping term which is neglected. Instead it is assumed
that only a fraction v of the rate of the plastic dissipation contributes to the temperature
change

F̄ = Qr + v
∑
α

τ̄ (α)ε̇p(α), (138)

where 0 ≤ v ≤ 1.
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The glass transition in amorphous polymers depends on the equivalent shear strain rate
ε̇ =
√

2|DDD0| to which the material is subjected, where DDD0 = DDD − 1
3

trDDD III denotes the total
deviatoric stretching tensor, with

DDD =
1

2
(ḞFF FFF−1 +FFF−TḞFF

T
) . (139)

Eventually, the glass transition Tg is calculated from the following expression

Tg =

 Tr if ε̇ ≤ εr,

Tr + n log (
ε̇

εr
) if ε̇ > εr,

(140)

where Tr is the reference glass transition temperature at low strain rate, ε̇ is the shear strain
rate, and εr is the reference strain rate.

A.2.4 The first micromechanism (α = 1)

The first micromechanism (α = 1) represents an elastic resistance due to intermolecular en-
ergetic bond-stretching and a dissipation due to the thermally-activated plastic flow following
chain segment rotation and relative slippage of the polymer chains between neighboring cross-
linkage points.

The following simple generalization of the classical strain energy function of infinitesimal
isotropic elasticity is considered, and uses a logarithmic measure

EEEe(1) =
1

2
lnCCCe(1) , (141)

of the finite elastic strain [4]. The form of the elastic free energy is thus defined as

ψe(1) = G|EEEe(1)
0 |2 +

1

2
K
(

trEEEe(1)
)2
− 3K

(
trEEEe(1)

)
αth(T − T0) + f̃(T ) , (142)

where the deviatoric part of the logarithmic strain is denoted by EEEe
0, f̃(T ) is an entropy con-

tribution to the free energy related to the temperature dependent specific heat of the material,
and where the temperature dependent parameters G(T ), K(T ), αth(T ) are respectively the
shear modulus, bulk modulus, and the coefficient of thermal expansion.

The Mandel stress is thus obtained from

MMMe(1) = 2CCCe(1) ∂ψ
e(1)(EEEe(1),T)

∂CCCe(1)
=
∂ψe(1)(EEEe(1), T )

∂EEEe(1)
, (143)

if CCCe(1) and MMMe(1) permute. It should be noted that in this work EEEe(1) is computed by using
a Taylor series approximation of Eq. (141), and not through the eigenvalue decomposition.

Substituting Eq. (142) in Eq. (143), as |EEEe(1)
0 |= EEE

e(1)
0 : EEE

e(1)
0 one can get directly MMMe(1) as

MMMe(1) = 2GEEE
e(1)
0 +K

(
trEEEe(1)

)
III − 3Kαth(T − T0)III . (144)

The thermal expansion is taken to have a bilinear temperature dependence, with the slope
αth = αr above the glass transition temperature and the slope αth = αgl below it.

Moreover, the evaluation equation for FFFp(1) follows Eqs. (133-134) with the thermally-
activated relation for the equivalent plastic strain rate following

ε̇p(1) =


0 if τe(1) ≤ 0,

ε
...(1)
0 exp (−

1

ξ
) exp (−

Q(T )

KBT
)[sinh(

τe(1) V ′

2KBT
)]1/m

(1)
if τe(1) > 0,

(145)

where ε̇p(1) is the plastic strain rate, the parameter ε
...(1)
0 is a pre-exponential factor with

units of 1/time, KB is Boltzmann’s constant, V ′ is an activation volume, m(1) is the sensitive
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parameter for the strain rate, Q(T ) is the temperature dependent activation energy, and τe(1)

denotes a net shear stress for the thermally activated flow

τe(1) = τ̄ (1) − (Sa + Sb + αpp̄), (146)

with αp > 0 a parameter introduced to account for the pressure sensitivity. The term exp (−
1

ξ
)

in Eq. (145) represents a concentration of flow defects, with

ξ =

{
ξgl if T ≤ Tg ,
ξgl + d(T − Tg) if T > Tg .

(147)

For the first micromechanism, besides the plastic strain gradient, the list ξ1 = (ϕ, Sa, Sb)
of internal variables consists of three positive scalars, where the variable ϕ ≥ 0 and Sa ≥ 0 are
introduced to model the yield peak which is observed in the stress-strain response of glassy
polymers and Sb ≥ 0 is introduced to model the isotropic hardening at high strain. The
evolution equations of Ṡa and ϕ̇ are governed by

Ṡa = ha [b(ϕ∗ − ϕ)− Sa] ε̇p(1) with initial value Sa = Sa0 , (148)

ϕ̇ = g(ϕ∗ − ϕ)ε̇p(1) with initial value ϕ = ϕ0 , (149)

with ϕ∗ as

ϕ∗(ε̇p(1), T ) =


z

(
(1−

T

Tg
)r + hg

)
(
ε̇p(1)

εr
)s if T ≤ Tg and ε̇p(1) > 0 ,

z hg (
ε̇p(1)

εr
)s if T > Tg and ε̇p(1) > 0 ,

(150)

which represents the temperature and strain rate dependency of ϕ, where z, r, hg, and s are
taken to be constants. In particular we have introduced hg to get a small value for ϕ∗ when
T > Tg, instead of 0 in order to improve the convergence of the numerical model. Then the
evolution of Sb is governed by

Sb = Sb0 +Hb(λ̄− 1)a, λ̄ =
√

trCCC/3, (151)

where λ̄ is an effective stretch which increases or decreases as the overall stretch increases or
decreases, and where Hb(T ) is a temperature dependent hardening parameter.

The temperature evolutions of Hb, Q(T ), G(T ), and of the Poisson ratio ν(T ) follow a law

·(T ) =
1

2
(·gl + ·r)−

1

2
(·gl − ·r) tanh(

1

∆
(T − Tg))− L·(T − Tg) , (152)

where ·gl and ·r are the values in glassy and rubbery regions, and where L· represents the
slope of the temperature variation of ·, and takes the value of L· = L·gl if T ≤ Tg and

L· = L·r if T > Tg. The temperature dependence of the bulk modulus K(T ) is then obtained

by using the standard relation for isotropic materials K(T ) = G(T )
2(1+ν(T ))

3(1−2 ν(T ))
.

A.2.5 The second micromechanism (α = 2)

The second micromechanism (α = 2) represents the molecular chains between mechanical
crosslinks. At temperatures below Tg the polymer exhibits a significant amount of mechanical
crosslinking which disintegrates when the temperature is increased above Tg.

Only deviatoric contributions are considered in the free energy function

ψ(2) = ψ̄(2)(C̄CC
e(2)

, T ) = −
1

2
µ(2)I

(2)
m ln(1−

trC̄CC
e(2) − 3

I
(2)
m

) , (153)
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where C̄CC
e(2)

= F̄FF
e(2)T

F̄FF
e(2)

= J−
2
3CCCe(2) denotes the distrotional (or volume preserving) right

Cauchy strain tensor, the parameter I
(2)
m is taken to be temperature constant, and where µ(2)

is the rubbery shear modulus, which follows

µ(2) = µgexp(−N(T − Tg)) , (154)

with µg the value of µ(2) at the glass transition temperature, andN a parameter that represents
the slope of temperature variation on a logarithmic scale.

The corresponding Mandel stress is evaluated from Eq. (130) and Eq. (153) as

MMMe(2) = CCCe(2) 2
∂ψ̄(2)

∂CCCe(2)
= µ(2)(1−

trC̄CC
e(2) − 3

I
(2)
m

)−1C̄CC
e(2)
0 , (155)

where C̄CC
e(2)
0 = C̄CC

e(2)− 1
3

trC̄CC
e(2)

III is the deviatoric part of CCCe(2) the right Cauchy Green tensor.

Clearly, as C̄CC
e(2)

and CCCe(2) permute, MMMe(2) and C̄CC
e(2)

permute as well.
For the second mechanism, the equivalent plastic strain rate follows

ε̇p(2) = ε̇
(2)
0 (

τ̄ (2)

S(2)
)

1

m(2) , (156)

where ε̇
(2)
0 is a reference plastic shear strain rate, m(2) is the positive valued strain rate sensi-

tivity parameter, and S(2) is a temperature dependent parameter which follows (152).

A.2.6 The third micromechanism (α = 3)

The third micromechanism (α = 3) introduces the molecular chains between chemical crosslinks
and represents the resistance due to changes in the free energy upon stretching of the molecular
chains between the crosslinks.

The free energy is a function of the deviatoric tensor C̄CC = F̄FF
T
F̄FF = J−

2
3CCC, and is given by

a deviatoric form

ψ(3) = ψ̄(3)(C̄CC) = −
1

2
µ(3)I

(3)
m ln(1−

trC̄CC − 3

I
(3)
m

), (157)

where the material constants µ(3) > 0 and I
(3)
m > 0 are assumed to be temperature-independent.

The free energy (157) yields the corresponding second Piola stress SSS(3) as

SSS(3) = 2
∂ψ̄(3)

∂C̄CC
:
∂C̄CC

∂CCC
= J−

2
3 µ(3)(1−

trC̄CC− 3

III
(3)
m

)−1[III −
1

3
(trC̄CC)C̄CC

−1
] . (158)

A.2.7 Finite increment form of the Shape Memory Polymer constitutive law

The constitutive laws are formulated in a finite strain setting and solved following the predictor-
corrector scheme during the time interval [tn; tn+1], where we use the subscript n for the
previous time tn and n+ 1 for the current time tn+1. The formulation can be summarized as
follows:
– Prediction step: The plastic deformation gradient is initialized to the value at the previous

step FFF
p(α)
(pr)

= FFF
p(α)
n , and the elastic deformation follows

FFF
e(α)
n+1 = FFFn+1FFF

p(α)−1

n . (159)

– Correction step: In this step we solve the system of equations that has been presented
for each mechanism. To extract the plastic increment using the evaluation equation of the
plastic deformation gradient during the time step between the configurations n and n+ 1,
we consider

FFF
p(α)
n+1 = exp(∆DDDp(α))FFF

p(α)
n , (160)

with

∆DDDp(α) = (ε
p(α)
n+1 − ε

p(α)
n )

MMMe(α)

2τ̄ (α)
= ∆εp(α)

(
MMMe(α)

2τ̄ (α)

)
. (161)

More details about the predictor-corrector algorithm and the stiffness computation can be
found in [26].
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B The finite element formulation

Using the interpolations (33-34), the gradients are readily obtained by:

∇0uh = uuua ⊗∇0N
a
uuu , ∇0MMMh = ∇0NNNaMMM MMMa , (162)

∇0δuh = δuuua ⊗∇0N
a
uuu , ∇0δMMMh = ∇0NNNaMMM δMMMa , (163)

where ∇0Na
uuu and ∇0NNNaMMM =

(∇0Na
fV

0

0 ∇0Na
fT

)
are the gradients of the shape functions at

node a.

B.1 Nodal forces

The expressions of the nodal forces (36) are obtained by substituting the interpolations (33-34)
and (162-163) in the weak formulation (31).

First the mechanical contribution reads

FFFauuuext =
∑

s

∫
(∂NΩ0)s

Na
uuu T̄dS0 −

∑
s

∫
(∂DΩ0)s

(ū⊗N :HHH) · ∇0N
a
uuu dS0

+
∑

s

∫
(∂DΩ0)s

(
ū⊗N :

HHHB
hs

)
·NNa

uuu dS0

−
∫
∂DΩ0h

(
YYY(M̄MM)M̄MM−YYY(M̄MM0)M̄MM0

)
·NNa

uuu dS0 , (164)

FFFauuuint =
∑

e

∫
Ωe

0

PPP (FFFh, MMMh) · ∇0N
a
uuu dΩ0, and (165)

FFFa±uuuI = FFFa±uuuI1 + FFFa±uuuI2 + FFFa±uuuI3 , (166)

with the three mechanical contributions to the interface forces related to the degrees of freedom
of the nodes a± on each side of the interface elements reading1

FFFa±uuuI1 =
∑

s

∫
(∂IΩ0)s

(±Na±
uuu ) 〈PPP (FFFh, MMMh)〉 ·N−dS0, (167)

FFFa±uuuI2 =
1

2

∑
s

∫
(∂IΩ0)s

JuhK⊗N− :HHH± · ∇0N
a±
uuu dS0, (168)

FFFa±uuuI3 =
∑

s

∫
(∂IΩ0)s

(JuhK⊗N−) :

〈
HHHB
hs

〉
·N−(±Na±

uuu )dS0. (169)

Secondly, the electro-thermal contributions read

FFFaMMMext
=
∑

s

∫
(∂NΩ0)s

NNNaMMMJ̄JJdS0 −
∑

s

∫
(∂DΩ0)s

∇0NNNa
T

MMM ZZZ0(FFFh,M̄MM)M̄MMNNNdS0

+
∑

s

∫
(∂DΩ0)s

NNNaMMMN̄NN
T
MMMZZZ0(FFFh,M̄MM)

B
hs

M̄MMNNNdS0 , (170)

FFFaMMMint
=
∑

e

∫
Ωe

0

∇0NNNa
T

MMM JJJ(FFFh, MMMh,∇MMMh)dΩ0 +
∑

e

∫
Ωe

0

NNNa
T

MMM IIIidΩ0, and (171)

FFFa±MMMI
= FFFa±MMMI1

+ FFFa±MMMI2
+ FFFa±MMMI3

, (172)

1 The contributions on ∂DΩ0h can be directly deduced by removing the factor (1/2) accord-
ingly to the definition of the average flux on the Dirichlet boundary and by using ZZZ0(FFFh,M̄MM)

instead of ZZZ0(FFFh,MMMh). However, there is one more additional term in FFFa±uuuI1 in the Dirichlet

boundary, which is
∑

s

∫
(∂DΩ0)s (−Na

uuu ) (YYY(MMM)MMM−YYY(MMM0)MMM0) ·N−dS0.
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with the three electric contributions to the interface forces1

FFFa±MMMI1
=
∑

s

∫
(∂IΩ0)s

(±NNNa±MMM )
(
N̄NN
−
MMM

)T
〈JJJ(FFFh, MMMh, ∇MMMh)〉 dS0, (173)

FFFa±MMMI2
=

1

2

∑
s

∫
(∂IΩ0)s

(
∇0NNNa±

T

MMM ZZZ±0 (FFFh, MMMh)
) q

MMMhNNN

y
dS0, (174)

FFFa±MMMI3
=
∑

s

∫
(∂IΩ0)s

(±NNNa±MMM )
(
N̄NN
−
MMM

)T
〈
ZZZ0(FFFh, MMMh)

B
hs

〉 q
MMMhNNN

y
dS0 . (175)

B.2 Tangent operators

In order to derive the tangent matrix KKKabGGG =
∂FFFaext
∂GGGb

− ∂FFFaint
∂GGGb

− ∂FFFaI
∂GGGb

, the system (38) is rewritten

(
KKKuuuuuu KKKuuuMMM

KKKMMMuuu KKKMMMMMM

)(
∆uuu
∆MMM

)
= −

(
RRRuuu(uuu,MMM)
RRRMMM(uuu,MMM)

)
. (176)

The stiffness matrix has been decomposed into four sub-matrices as shown in Eq. (176) with
respect to the discretization of the five independent field variables (d for displacement uuu, and 2
for MMM (for fV, and fT)), and can be obtained in a straighforward way from the internal forces,
see details in [26].

C Derivation of the numerical properties

C.1 Taylor’s remainders

The remainder terms of Eqs. (60-61) are obtained by defining VVVt = GGG + t(VVV −GGG), ∇QQQt =
∇GGG + t(∇QQQ−∇GGG). They can thus be evaluated by

w̄wwGGG(GGG,∇GGG) =

∫ 1

0
wwwGGG(VVVt,∇QQQt)dt, w̄ww∇GGG(GGG) =

∫ 1

0
www∇GGG(VVVt)dt , (177)

and by

w̄wwGGGGGG(VVV,∇QQQ) =

∫ 1

0
(1− t)wwwGGGGGG(VVVt,∇QQQt)dt , w̄wwGGG∇GGG(VVV) =

∫ 1

0
(1− t)wwwGGG∇GGG(VVVt)dt , (178)

with the partial derivatives wwwGGGGGG(GGG,∇GGG) = vvvGGGGGG(GGG)∇GGG, and wwwGGG∇GGG(GGG) = vvvGGG(GGG) of www(GGG,∇GGG),
since www∇GGG∇GGG(GGG) = 0.

The remainder terms of Eqs. (62-63) read

d̄ddGGG(GGG,∇GGG) =

∫ 1

0
dddGGG(VVVt,∇QQQt)dt, d̄dd∇GGG(GGG) =

∫ 1

0
ddd∇GGG(VVVt)dt , (179)

and

d̄ddGGGGGG(VVV,∇QQQ) =

∫ 1

0
(1− t)dddGGGGGG(VVVt,∇QQQt)dt , d̄ddGGG∇GGG(VVV) =

∫ 1

0
(1− t)dddGGG∇GGG(VVVt)dt . (180)

Finally, the remainder terms of Eqs. (64-65) read

p̄ppGGG(GGG) =

∫ 1

0
pppGGG(VVVt)dt, p̄ppGGGGGG(VVV) =

∫ 1

0
(1− t)pppGGGGGG(VVVt)dt . (181)



52 Lina Homsi, Ludovic Noels

C.2 Application of the Taylor’s expansion

The first term of Eq. (70) is rewritten, using the Taylor’s expansion defined in Eq. (60), as

∫
Ωh

(∇δGGGh)T(www(GGGe,∇GGGe)−www(GGGh,∇GGGh))dΩ =

∫
Ωh

(∇δGGGh)T(wwwGGG(GGGe,∇GGGe)(GGGe −GGGh))dΩ

+

∫
Ωh

(∇δGGGh)T(www∇GGG(GGGe)(∇GGGe −∇GGGh))dΩ −
∫
Ωh

(∇δGGGh)T(R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh))dΩ .

(182)

Similarly, the second term of Eq. (70) is rewritten, using the Taylor’s expansion defined in Eq.
(62), as

∫
Ωh

δGGGT
h (õoo(GGGe)∇GGGe − õoo(GGGh)∇GGGh) dΩ =

∫
Ωh

δGGGT
h (ddd(GGGe,∇GGGe)− ddd(GGGh,∇GGGh)) dΩ

=

∫
Ωh

δGGGT
h dddGGG(GGGe,∇GGGe)(GGGe −GGGh))dΩ +

∫
Ωh

δGGGT
h ddd∇GGG(GGGe)(∇GGGe −∇GGGh))dΩ

−
∫
Ωh

δGGGT
h R̄RRddd(GGGe −GGGh,∇GGGe −∇GGGh)dΩ .

(183)

Likewise, the third term is rewritten, using the Taylor’s expansion defined in Eq. (60), as

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn

z
〈www(GGGe,∇GGGe)−www(GGGh,∇GGGh)〉 dS =∫

∂IΩh∪∂DΩh

r
δGGGT

hnnn

z
〈wwwGGG(GGGe,∇GGGe)(GGGe −GGGh)〉 dS+∫

∂IΩh∪∂DΩh

r
δGGGT

hnnn

z
〈www∇GGG(GGGe)(∇GGGe −∇GGGh)〉 dS−∫

∂IΩh∪∂DΩh

r
δGGGT

hnnn

z 〈
R̄RRwww(GGGe −GGGh,∇GGGe −∇GGGh)

〉
dS.

(184)

The fifth term of Eq. (70) is developed by using the definition of pppT(GGG) = GGGToooT(GGG) and using
the Taylor’s expansion defined in Eq. (64), leading to

−
∫
∂IΩh∪∂DΩh

r
GGGeToooT(GGGe)−GGGT

h oooT(GGGh)
z
〈δGGGhnnn 〉 dS =

−
∫
∂IΩh∪∂DΩh

r
(GGGeT −GGGT

h )pppT
GGG(GGGe)

z
〈δGGGhnnn 〉 dS +

∫
∂IΩh∪∂DΩh

r
R̄RR

T
ppp (GGGe −GGGh)

z
〈δGGGhnnn 〉 dS.

(185)

However, as pppT
GGG = −oooT(GGG), using Eq. (66), this last term is also rewritten as

−
∫
∂IΩh∪∂DΩh

r
GGGeToooT(GGGe)−GGGT

h oooT(GGGh)
z
〈δGGGhnnn 〉 dS =∫

∂IΩh∪∂DΩh

r
(GGGeT −GGGT

h )oooT(GGGe)
z
〈δGGGhnnn 〉dS

−
∫
∂IΩh∪∂DΩh

r
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
z
〈δGGGhnnn 〉dS.

(186)
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Finally, using the definition of the ·̃ operator GGGToooT(GGG′)δGGGnnn = GGGT
nnn õooT(GGG′)δGGG2, and Eq. (186)

is rewritten as

−
∫
∂IΩh∪∂DΩh

r
GGGeToooT(GGGe)−GGGT

h oooT(GGGh)
z
〈δGGGhnnn 〉 dS =∫

∂IΩh∪∂DΩh

r
(GGGeT

nnn −GGGT
hnnn

)õooT(GGGe)
z
〈δGGGh〉 dS

−
∫
∂IΩh∪∂DΩh

r
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
z
〈δGGGhnnn 〉 dS.

(187)

C.3 General properties of the finite element method and Hilbert spaces

The following properties will be used in the numerical properties derivation.

Lemma 5 (Interpolation inequality) For all GGG ∈ (Hs(Ωe))n there exists a sequence GGGh ∈(
Pk(Ωe)

)n
and a positive constant CkD depending on s and k but independent of GGG and hs,

such that

1. for any 0 ≤ n ≤ s

‖GGG−GGGh ‖Hn(Ωe)≤ CkDh
µ−n
s ‖GGG ‖Hs(Ωe), (188)

2. for any 0 ≤ n ≤ s− 1 + 2
r

‖GGG−GGGh ‖Wn
r (Ωe)≤ CkDh

µ−n−1+ 2
r

s ‖GGG ‖Hs(Ωe), if d = 2, (189)

3. for any s > n+ 1
2

‖GGG−GGGh ‖Hn(∂Ωe)≤ CkDh
µ−n− 1

2
s ‖GGG ‖Hs(Ωe), (190)

where µ = min {s, k + 1}.
The proof of the first and third properties can be found in [7], and the proof of the second
property in the particular case of d = 2 can be found in [1,2], see also the discussion by [23].
Remarks
i) The approximation property in (2) is still valid for r =∞, see [1].
ii) For GGG ∈ Xs, let us define the interpolant IhGGG ∈ Xk by IhGGG|Ωe = GGGh(GGG|Ωe ), which means
IhGGG satisfies the interpolant inequality property provided in Lemma 5 on Ωh, see [28].

Lemma 6 (Trace inequality) For all GGG ∈
(
Hs+1(Ωe)

)n
, there exists a positive constant

CT , such that

‖GGG ‖rWs
r(∂Ωe)≤ CT

(
1

hs
‖GGG ‖rWs

r(Ωe) + ‖GGG ‖r−1
Ws

2r−2(Ωe)
‖ ∇s+1GGG ‖L2(Ωe)

)
, (191)

where s = 0, 1 and r = 2, 4, or in other words

‖GGG ‖2
L2(∂Ωe)

≤ CT

(
1

hs
‖GGG ‖2

L2(Ωe)
+ ‖GGG ‖L2(Ωe)‖ ∇GGG ‖L2(Ωe)

)
,

‖GGG ‖4
L4(∂Ωe)

≤ CT

(
1

hs
‖GGG ‖4

L4(Ωe)
+ ‖GGG ‖3

L6(Ωe)
‖ ∇GGG ‖L2(Ωe)

)
.

(192)

The first equation, s = 0 and r = 2, is proved in [52], and the second one, r = 4 and s = 0,
is proved in [22].

2 In this case GGGToooT(GGG′)δGGGnnn = GGGT
nnn õooT(GGG′)δGGG = − 3K

f2
′

T

fTαthn
−
x δux − 3K

f2
′

T

fTαthn
−
y δuy −

3K

f2
′

T

fTαthn
−
z δuz
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Lemma 7 (Trace inequality on the finite element space) For all GGGh ∈
(
Pk(Ωe)

)n
there

exists a constant CkK > 0 depending on k, such that

‖ ∇lGGGh ‖L2(∂Ωe)≤ CkKh
− 1

2
s ‖ ∇lGGGh ‖L2(Ωe) l = 0, 1, (193)

where CkK = supGGGh∈(Pk(Ωe))n
hs‖∇GGGh‖2L2(∂Ωe)

‖∇GGGh‖2L2(Ωe)

is a constant which depends on the degree of the

polynomial approximation only with hs =
|Ωe|
|∂Ωe| , see [25] for more details.

Lemma 8 (Inverse inequality) For GGGh ∈
(
Pk(Ωe)

)n
and r ≥ 2, there exists CkI > 0, such

that

‖GGGh ‖Lr(Ωe)≤ CkIh
d
r
− d

2
s ‖GGGh ‖L2(Ωe), (194)

‖GGGh ‖Lr(∂Ωe)≤ CkIh
d−1
r
− d−1

2
s ‖GGGh ‖L2(∂Ωe),

(195)

‖ ∇GGGh ‖L2(Ωe)≤ CkIh
−1
s ‖GGGh ‖L2(Ωe) . (196)

The proof of these properties can be found in [12, Theorem 3.2.6]. Note that Eqs. (194-195)
involve the space dimension d.

Lemma 9 (Relation between energy norms on the finite element space) From [69],
for GGGh ∈ Xk, there exists a positive constant Ck, depending on k, such that

|‖GGGh ‖|1≤ Ck |‖GGGh ‖| . (197)

The demonstration directly follows by bounding the extra terms
∑

e hs ‖ GGG ‖2
H1(∂Ωe)

of the

norm defined by Eq. (77), in comparison to the norm defined by Eq. (76), using successively
the trace inequality, Eq. (192), and the inverse inequality, Eq. (196), for the first term, and
the trace inequality on the finite element space, Eq. (193), for the second term.

Lemma 10 (Energy bound of interpolant error) Let GGGe ∈ Xs, s ≥ 2, and let IhGGG ∈ Xk,
be its interpolant. Therefore, there is a constant Ck > 0 independent of hs, such that

|‖GGGe − IhGGG ‖|1≤ Ckhµ−1
s ‖GGGe ‖Hs(Ωh), (198)

with µ = min {s, k + 1}. The proof follows from Lemma 5, Eq. (188), and Eq. (190), applied
on the mesh dependent norm (77).

C.4 The bound of the non-linear term N (GGGe,yyy; δGGGh)

C.4.1 Intermediate bounds

To bound the terms of N (GGGe,yyy; δGGGh), we have recourse to the following intermediate bounds,
which are derived for the particular case of d = 2.

Lemma 11 (Intermediate bounds) Let ξξξ = IhGGG − yyy, δGGGh ∈ Xk, ηηη = GGGe − IhGGG ∈ X and
ζζζ = ξξξ + ηηη. The terms in ξξξ can be bounded by recourse to the trace inequality, see Lemma 6,
and to the inverse inequality, see Lemma 8, while bounding the terms in ηηη makes use of the
trace inequality, see Lemma 6 and of the interpolation inequality, see Lemma 5 for d = 2.
Using the definition of the ball (92-93) thus leads to the different contributions, see [23,26]
for details, (∑

e

‖ ζζζ ‖2
L2(Ωe)

) 1
2

≤ Ckσ ≤ Ckhµ−1−ε
s ‖GGGe ‖Hs(Ωh) , (199)

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4

≤ Ckh−
1
2

s σ ≤ Ckhµ−
3
2
−ε

s ‖GGGe ‖Hs(Ωh) , (200)
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(∑
e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2

≤ Ckσ ≤ Ckhµ−1−ε
s ‖GGGe ‖Hs(Ωh) , (201)

(∑
e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4

≤ Ckh−
3
4

s σ ≤ Ckhµ−
7
4
−ε

s ‖GGGe ‖Hs(Ωh) , (202)

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4

≤ Ckh
1
4
s σ ≤ Ckh

µ− 3
4
−ε

s ‖GGGe ‖Hs(Ωh) , (203)

(∑
e

‖ ∇ζζζ ‖4
L4(∂Ωe)

) 1
4

≤ Ckh−
3
4

s σ ≤ Ckhµ−
7
4
−ε

s ‖GGGe ‖Hs(Ωh) (204)

with µ = min {s, k + 1}. Moreover, using the inverse inequality, see Lemma 8, one has‖ δGGGh ‖W1
4(Ωe) ≤ CkIh

− 1
2

s ‖ δGGGh ‖H1(Ωe) ,

| δGGGh |W1
4(Ωe) ≤ CkIh

− 1
2

s | δGGGh |H1(Ωe) .
(205)

C.4.2 Bounds of the different contributions

The bound of N (GGGe,yyy; δGGGh) follows from the argumentation reported in [23] and is nominated
by the term with the largest bound.

The first term of N (GGGe,yyy; δGGGh), defined in Eq. (74), can be expanded using Eq. (61) as

I1 =

∫
Ωh

(∇δGGG)T
h R̄RRwww(ζζζ,∇ζζζ)dΩ =

∑
e

∫
Ωe

(∇δGGGh)T(ζζζTw̄wwGGGGGG(yyy,∇yyy)ζζζ)dΩ

+ 2
∑

e

∫
Ωe

(∇δGGG)T
h

(
ζζζTw̄wwGGG∇GGG(yyy)∇ζζζ

)
dΩ = I11 + 2I12.

(206)

The two term of the right hand side of Eq. (206) are bounded by using the generalized Hölder’s
inequality, the generalized Cauchy-Schwartz’ inequality, the definition of Cy in Eq. (67), and
the bounds (199, 200, 201, and 205) as

| I11 | ≤ Cy

∑
e

‖ ζζζ ‖L4(Ωe)‖ ζζζ ‖L2(Ωe)‖ ∇δGGGh ‖L4(Ωe)

≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ζζζ ‖2
L2(Ωe)

) 1
2
(∑

e

‖ ∇δGGGh ‖4L4(Ωe)

) 1
4

≤ CkCyh
µ−2−ε
s σ | δGGGh |H1(Ωh)‖GGGe ‖Hs(Ωh) ,

(207)

| I12 | ≤ Cy

∑
e

‖ ζζζ ‖L4(Ωe)‖ ∇ζζζ ‖L2(Ωe)‖ ∇δGGGh ‖L4(Ωe)

≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2
(∑

e

‖ ∇δGGGh ‖4L4(Ωe)

) 1
4

≤ CkCyh
µ−2−ε
s σ | δGGGh |H1(Ωh)‖GGGe ‖Hs(Ωh) .

(208)

Combining the above results leads to

| I1 |≤ CkCyh
µ−2−ε
s σ | δGGGh |H1(Ωh)‖GGGe ‖Hs(Ωh) . (209)

The second term of N (GGGe,yyy; δGGGh), defined in Eq. (74), becomes by using Eq. (61),

I2 =

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn

z〈
ζζζTw̄wwGGGGGG(yyy,∇yyy)ζζζ

〉
dS

+ 2

∫
∂IΩh∪∂DΩh

r
δGGGT

hnnn

z〈
ζζζTw̄wwGGG∇GGG(yyy)∇ζζζ

〉
dS = I21 + 2I22 .

(210)
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The two terms of the right hand side of Eq. (210) are bounded by using the generalized Hölder’s
inequality, the generalized Cauchy-Schwartz’ inequality, the definition of Cy in Eq. (67), and
the bounds (202, 204), yielding

| I21 | ≤ Cyh
1
2
s

(∑
e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
2
(∑

e

h−1
s ‖

r
δGGGT

hnnn

z
‖2

L2(∂Ωe)

) 1
2

≤ CkCy ‖GGGe ‖Hs(Ωh) h
µ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

,

(211)

| I22 | ≤ Cyh
1
2
s

(∑
e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ∇ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

h−1
s ‖

r
δGGGT

hnnn

z
‖2

L2(∂Ωe)

) 1
2

≤ CkCy ‖GGGe ‖Hs(Ωh) h
µ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

.

(212)

We now substitute Eqs. (211, 212) in Eq. (210) to obtain the final bound of the second term
of N (GGGe,yyy; δGGGh) as

| I2 |≤ CkCy ‖GGGe ‖Hs(Ωh) h
µ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

. (213)

Furthermore, for the third term of N (GGGe,yyy; δGGGh) as decomposed in Eq. (74), using Taylor’s
expansion as in Eqs. (60-61), the generalized Hölder’s inequality, the generalized Cauchy-
Schwartz’ inequality, the definition of Cy in Eq. (67), and the bounds (202, 203), leads to

| I3 |≤
∑

e

|
∫
∂IΩ

e

r
ζζζT

nnn

z(
ζζζTw̄ww∇GGGGGG(yyy)∇δGGGh

)
dS |

≤ Cyh
− 1

2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

hs ‖ ∇δGGGh ‖2L2(∂Ωe)

) 1
2

≤ CyC
k ‖GGGe ‖Hs(Ωh) h

µ−2−ε
s σ

(∑
e

hs | δGGGh |2H1(∂Ωe)

) 1
2

.

(214)

Likewise, the fourth term of N (GGGe,yyy; δGGGh) defined in Eq. (74) is bounded using a Taylor’s
expansion as in Eqs. (60-61), the generalized Hölder’s inequality, the generalized Cauchy-
Schwartz’ inequality, the definition of Cy in Eq. (67), and the bounds (202, 203) leading to

| I4 |≤
∑

e

|
∫
∂IΩ

e

r
ζζζT

nnn

z( B
hs
ζζζTw̄ww∇GGGGGG(yyy)

)
JδGGGhnnnK dS |

≤ Cyh
− 1

2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

≤ CkCy ‖GGGe ‖Hs(Ωh) h
µ−2−ε
s σ

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

.

(215)

Then the bound of the fifth term of N (GGGe,yyy; δGGGh) defined in Eq. (74) is derived using Eq.
(231) developed in C.4.3, following

| I5 | ≤ 2Cy

∑
e

|
∫
∂IΩ

e∪∂DΩe

r
(GGGe −GGGh)T

z
III(GGGe −GGGh)δGGGhnnndS |

+
1

8
Cy

∑
e

|
∫
∂IΩ

e

r
(GGGe −GGGh)T

z
III JGGGe −GGGhK JδGGGhnnnK dS |=| I51 | + | I52 | ,

(216)
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where III is a matrix of unit norm and has the same size of ōooT
GGG. Using the generalized Hölder’s

inequality, the generalized Cauchy-Schwartz’ inequality, and the bounds (202, 203) one has

| I51 | ≤ 2Cy

∑
e

|
∫
∂Ωe

r
ζζζT

z
III (ζζζδGGGhnnn ) dS |

≤ 2Cyh
− 1

2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(∂Ωe)

) 1
4
(∑

e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

≤ 2CyC
k ‖GGGe ‖Hs(Ωh) h

µ−2−ε
s σ

(∑
e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

,

(217)

| I52 | ≤
1

8
Cy

∑
e

|
∫
∂Ωe

r
ζζζT

z
III JζζζK JδGGGhnnnK dS |

≤
1

8
Cyh

1
2
s

(∑
e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

‖ JζζζK ‖4
L4(∂Ωe)

) 1
4
(∑

e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

≤
1

8
CyC

k ‖GGGe ‖Hs(Ωh) h
µ−ε
s σ

(∑
e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

.

(218)

Combining Eqs. (217 and 218) leads to the final bound

| I5 | ≤ 2CyC
k ‖GGGe ‖Hs(Ωh) h

µ−2−ε
s σ

(∑
e

hs ‖ δGGGh ‖2L2(∂Ωe)

) 1
2

+
1

8
CyC

k ‖GGGe ‖Hs(Ωh) h
µ−ε
s σ

(∑
e

h−1
s ‖ JδGGGhK ‖2

L2(∂Ωe)

) 1
2

.

(219)

Finally to bound the last term of N (GGGe,yyy; δGGGh) defined in Eq. (74), we rewrite it using
Eq. (63) as

I6 =

∫
Ωh

δGGGT
h R̄RRddd(ζζζ,∇ζζζ)dΩ =

∑
e

∫
Ωe

δGGGT
h (ζζζTd̄ddGGGGGG(yyy,∇yyy)ζζζ)dΩ

+ 2
∑

e

∫
Ωe

δGGGT
h (ζζζTd̄ddGGG∇GGG(yyy)∇ζζζ)dΩ = I61 + 2I62.

(220)

The two contributions are bounded using the generalized Hölder’s inequality, the generalized
Cauchy-Schwartz’ inequality, the definition of Cy in Eq. (67), the bounds (200, 201), and the
inverse inequality of Lemma 8, following

| I61 | ≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ δGGGh ‖2L2(Ωe)

) 1
2

≤ CkCyh
µ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) .

(221)

| I62 | ≤ Cy

(∑
e

‖ ζζζ ‖4
L4(Ωe)

) 1
4
(∑

e

‖ ∇ζζζ ‖2
L2(Ωe)

) 1
2
(∑

e

‖ δGGGh ‖4L4(Ωe)

) 1
4

≤ CkCyh
µ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) .

(222)

Substituting Eqs. (221, 222) in Eq. (220) leads to

| I6 | ≤ CkCyh
µ−2−ε
s σ ‖ δGGGh ‖L2(Ωh)‖GGGe ‖Hs(Ωh) . (223)
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Combining Eqs. (209, 213, 214, 215, 216, and 223), yields

| N (GGGe,yyy; δGGGh) |≤ CkCy ‖GGGe ‖Hs(Ωh) h
µ−2−ε
s σ

[
‖ δGGGh ‖H1(Ωh) +(∑

e

hs ‖ δGGGh ‖2H1(∂Ωe)

) 1
2

+

(∑
e

h−1
s ‖ JδGGGhnnnK ‖2

L2(∂Ωe)

) 1
2

 . (224)

Finally, using the definition of the energy norm (77), this results yields the bound (95) of
N (GGGe,yyy; δGGGh).

C.4.3 Declaration related to the fifth term of N (GGGe,yyy; δGGGh)

Using the identities JabK = JaK 〈b〉+ 〈a〉 JbK and 〈a〉 〈b〉 = 〈ab〉 − 1
4

JaK JbK on ∂IΩh, the termq
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
y
〈δGGGhnnn 〉 can be rewritten with an abuse of notations on the

product operator as

r
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
z
〈δGGGhnnn 〉 =

〈
(GGGe −GGGh)TōooT

GGG(GGGh)δGGGhnnn

〉
JGGGe −GGGhK

−
1

4

r
(GGGe −GGGh)TōooT

GGG(GGGh)
z

JGGGe −GGGhK JδGGGhnnnK +
r

(GGGe −GGGh)TōooT
GGG(GGGh)

z
〈GGGe −GGGh〉 〈δGGGhnnn 〉 .

(225)

Now, we need to solve explicitly the term
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
, where ōooGGG(GGGh) corresponds

to −p̄ppGGGGGG(GGGh) defined in Eq. (181) with pppGGGGGG(VVVt) = −oooGGG(VVVt), yielding

ōooGGG(GGGh) =

∫ 1

0
(1− t)oooGGG(VVVt)dt, (226)

with VVVt = GGGe + t(GGGh − GGGe). As oooGGG only involves terms in 2
f3T

, we compute ᾱ the nonzero

component.

ᾱ = 3Kαth

∫ 1

0
(1− t)(

2

[feT + t(fT − feT)]3
)dt. (227)

For simplicity, let us define λ as

λ =

∫ 1

0
(1− t)

2

[feT + t(fT − feT)]3
dt =

1

fTfe
2

T

. (228)

It can be noticed that to evaluate
q
(GGGe −GGGh)TōooT

GGG(GGGh)
y
, we need λ(feT − fT) which reads

λ(feT − fT) =
1

fTfe
2

T

(feT − fT) =
1

feT
(

1

fT
−

1

feT
), (229)

and the jump of the last result is

Jλ(feT − fT)K =


1
feT

( 1

f+T
− 1

feT
− 1

f−T
+ 1

feT
) = − 1

feTf+T f−T

q
fT − feT

y
on ∂IΩh

1

fTfe
2

T

(fT − feT) = − 1

fTfe
2

T

q
fT − feT

y
on ∂DΩh.

(230)



Title Suppressed Due to Excessive Length 59

Hence considering this equation in the matrix form, then substituting it in Eq. (225), and
using the definition of Cy in Eq. (67), lead to

|
∑

e

∫
∂IΩ

e∪∂DΩe

r
(GGGe −GGGh)TōooT

GGG(GGGh)(GGGe −GGGh)
z
〈δGGGhnnn 〉 dS |

≤ Cy

∑
e

|
∫
∂IΩ

e
(GGGe −GGGh)TIII JGGGe −GGGhK δGGGhnnndS |

+
1

8
Cy

∑
e

|
∫
∂IΩ

e

r
(GGGe −GGGh)T

z
III JGGGe −GGGhK JδGGGhnnnK dS |

+ Cy

∑
e

|
∫
∂IΩ

e

r
(GGGe −GGGh)T

z
III(GGGe −GGGh)δGGGhnnndS |

+ Cy

∑
e

|
∫
∂DΩ

e

r
(GGGe −GGGh)T

z
III(GGGe −GGGh)δGGGhnnndS | ,

(231)

where III is a matrix of unit norm and has the same size of ōooT
GGG.


