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Résumé

Cette these étudie la dynamique des écoulements autour de corps non-profilés et les charges
aérodynamiques en résultant. Ces aspects sont primordiaux, entre autres dans le contexte de
I'ingénierie du vent. Deux géometries sont considérées: un cylindre de section rectangulaire 4:1 et
une plaque plane, soit immobile et a grande incidence, soit soumise a un mouvement de tangage
d’amplitude élevée. Des expériences et des simulations sont réalisées, leurs résultats étant com-
parés a l'aide de la “Proper Orthogonal Decomposition” et la “Dynamic Mode Decomposition”.

L'écoulement autour du cylindre de section rectangulaire 4:1 est étudié a l'aide de mesures
de pression dynamique sur une section et de résultats provenant de simulations dites “Unsteady
Reynolds-Averaged Navier Stokes” (Urans) et “Delayed-Detached Eddy Simulation” (ppEs). Cette
étude poursuit deux buts: i) enrichir les connaissances a propos de la physique de 'écoulement,
des charges aérodynamiques qui en découlent et de leur variation avec l'incidence et la vitesse de
I'écoulement amont, et ii) déterminer si les simulations URANS et DDEs estiment avec précision les
variations spatio-temporelles de I'’écoulement ainsi que les charges aérodynamiques, et ce pour
plusieurs incidences. On montre que 'écoulement est alternativement séparé et réattaché, et tres
sensible au nombre de Reynolds (Re). En particulier, la pente du coeflicient de portance ¢;,, aug-
mente rapidement dans la gamme 3.1 x 10* < Re < 7.6 x 10%. On montre aussi que les
simulations URANS et DDEs n'estiment pas 'écoulement avec suffisamment de précision. La UrANS
permet de déterminer quantitativement 1'évolution des tourbillons pour une incidence inférieure
al'angle de décrochage v = 4°, une valeur pouvant étre estimée par la bDEs uniquement.

Les écoulements autour de la plaque plane permettent de tester une technique de mesure in-
directe des charges aérodynamiques a partir de champs de vitesse obtenus par vélocimétrie par
images de particules (p1v). Cette technique est particulierement adaptée a I'étude de phénomenes
impliquant des corps en mouvement pour lesquels la réponse de la structure peut entacher les
charges mesurées directement. Deux formulations basées sur un bilan de quantité de mouvement
sont testées. La premiére utilise la forme intégrale des équations de Navier-Stokes et la seconde
est basée sur la “flux equation” proposée par Noca et al. (1999). Cette seconde méthode est étendue
au calcul indirect des moments qui n'était pas possible avec la formulation originale. Les effets des
parametres d’entrée nécessaires aux méthodes indirectes sur I'estimation des charges sont étudiés.
De plus, des résultats numériques sont utilisés pour mieux comprendre les limitations des ap-
proches indirectes. On montre que ces approches fournissent des résultats similaires pour les
écoulements détachés considérés. Les charges moyennées en temps sont estimées avec précision
et celles moyennées en phase sont déterminées raisonnablement, pour autant que les champs prv
correspondant a chaque phase soient suffisamment convergés. Des effets tridimensionnels et une
faible répétabilité des phénomenes impactent généralement négativement les résultats instation-
naires. Les parameétres d’entrée les plus critiques sont identifiés et des recommandations guidant
le choix de l'utilisateur sont proposées.

Cette thése démontre qu'il est tres utile de combiner des approches numériques et expéri-
mentales, en particulier dans le cadre de l'ingénierie du vent, ou I'aérodynamique des structures
non profilées utilisées en génie civil est tres difficile & étudier numériquement. Les deux approches
sont complémentaires et permettent une meilleure compréhension de la physique du phénomene.
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Abstract

This thesis investigates the dynamics of detached flows around bluff bodies and the resulting aero-
dynamic loads, which are of primary importance in wind engineering. Two canonical geometries
are considered: a 4:1 rectangular cylinder and a flat plate that is either fixed at large incidence
or undergoing a large pitching motion. The different studies are conducted through both exper-
imental measurements and numerical simulations. Their results are compared by using Proper
Orthogonal Decomposition and Dynamic Mode Decomposition.

The flow around the 4:1 rectangular cylinder is studied through dynamic pressure measure-
ments along a cross-section combined with Unsteady Reynolds-Averaged Navier-Stokes (URANS)
and Delayed-Detached Eddy Simulation (ppEs) results. The main objectives are two-fold: i) to
improve the general knowledge about the spatio-temporal flow features, the resulting aerody-
namic loads, and their variations with the incidence angle and the freestream velocity, and ii) to
assess the capabilities of URANS and DDEs approaches to provide a sufficiently accurate estimation
of the flow and aerodynamic loads at several incidences. It is shown that the rectangular cylinder
involves complex separation-reattachment phenomena that are highly sensitive to the Reynolds
number (Re). Consequently, the mean lift slope ¢;,, increases rapidly in the investigated range
3.1x10* < Re < 7.6 x 10*%. Additionally, it is shown that both uraNs and DDEs simulations fail
to accurately approximate the flow at the different incidence angles considered. Only the URANS
approach is able to qualitatively estimate the spatio-temporal variations of vortices for incidences
below the stall angle v = 4°. Nonetheless, this stall angle is only captured by pDEs.

The flows around a flat plate with different configurations are selected as test cases to assess
an indirect load measurement technique that uses Particle Image Velocimetry (p1v) velocity fields.
This technique is well suited to analyze phenomena involving moving bodies where direct load
measurements could be contaminated by the structural response. The capabilities of two formu-
lations based on the momentum balance are tested. The first method uses the integral form of the
Navier-Stokes equation (1Nsg), and the second is based on the flux equation derived by Noca et al.
(1999) (noca). This second method is extended to the indirect estimation of aerodynamic mo-
ments that is not provided by the original formulation. The user-defined parameters required by
the INsE and Noca methods are studied to evaluate their effects on the indirect estimation. Addi-
tionally, numerical results are used to better understand the limitations of the indirect approaches.
It is shown that the INsSE and the Noca methods perform similarly for the detached flows consid-
ered. They are able to accurately estimate the mean loads, and the phase-averaged time responses
are also estimated with a reasonable accuracy as long as the corresponding p1v phase-averaged
fields are sufficiently converged. The unsteady results are generally negatively impacted by three-
dimensional effects and the lack of a clear single shedding frequency. The user-defined parameters
that have the most significant effects on the accuracy of the indirect load estimations are identified
and guidelines for their setting are proposed.

Overall, this thesis demonstrates the added-value of integrating numerical and experimen-
tal studies, especially in the context of wind engineering where the aerodynamics of bluff civil
engineering structures is very challenging to study numerically. The two approaches are comple-
mentary and enable a deeper understanding of the physics.
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CHAPTER 1

Context and motivation

This chapter explains the context and motivation of this thesis. It also exposes the different pursued
objectives and presents the outline of this work.

1.1 Context

Fluid flows are ubiquitous in nature, everyday life and industrial problems. The study of fluid me-
chanics is thus necessary to understand physical phenomena but also to provide improvements
in a large field of domains. For instance, the air flow within street canyons is studied to under-
stand the dispersion of traffic induced pollution in cities (Leitl and Meroney, 1997). The creation
of river meanders is investigated in order to better understand the river dynamics and provide
help to safely decide the location of new bridges or homes (Edwards and Smith, 2002). The water
waves forming a tsunami are studied to improve the monitoring of such events and help the gov-
ernments better react to them (Stefanakis et al., 2011). The dynamic of blood flow is investigated
to help doctors identify weak spots on a vessel that may lead to a failure (Messaris et al., 2016).
Water-repelling properties of the lotus plant leaves or of some aquatic insects can provide new
friction drag reduction strategies for numerous applications (Xu et al., 2014). Another example is
the study of the wind flow around large football stadiums to assess the comfort of pedestrians on
the circulation deck of the building and the surrounding streets and squares (Blocken and Persoon,
2009).

Aerodynamics is a particular topic of fluid mechanics. It is dedicated to the study of the fluid
motion and particularly how the fluid interacts with moving objects. It aims to understand how
the fluid motion along a body generates aerodynamic forces and moments. It has impacted con-
siderably the development of aviation from the historical first flight of the Wrigth brothers (An-
derson, 2010) to the new double-deck airliner Airbus A380 (Reckzeh, 2003). The importance of
aerodynamics for such streamlined bodies is obvious as obtaining optimal aerodynamic proper-
ties is the main purpose of their design. Conversely, the architectural design of civil engineering
buildings aims to satisfy structural requirements, aesthetic considerations, functional aspects or
environmental sustainability goals. Therefore, the relevance of applying aerodynamic studies to
such structures may not seem evident. Nonetheless, the consideration of wind induced loads is
crucial, particularly for large structures or new construction methods. This is the purpose of wind
engineering.

In the context of wind engineering, the air flow is often not able to follow smoothly the walls
of the structures. Such flows are said to be detached and one of their features is the formation of
large regions of rotating flow called vortices. Detached flows and vortices are characterized by
their intrinsic unsteadiness and their turbulent behavior. Such flows induce aerodynamic excita-
tions to the structure which might lead to undesirable phenomena. A first example is the alternate

1



Context and motivation

(b) The Burj Khalifa in Dubai. (c) The Tacoma Narrows bridge.

Figure 1.1: Examples of civil engineering structures subjected to severe aerodynamic excitations.

excitations created by the vortex shedding behind a tall building. This may induce a large dynamic
response and in turn result in small amplitude motions of the building called vortex induced vibra-
tions. These motions may cause in the best case discomfort to the occupants and in the worst case
structural problems (Irwin, 2008). A number of suspension bridges such as the Normandie bridge
depicted in Fig. 1.1a have been reported to experience wind-induced vibrations of long suspenders
nearby the towers. Because the suspenders represent the major connecting component for force
transmission, their integrity directly impacts the integrity of the whole bridge structure (Li et al.,
2017). Skyscrapers are also subject to vortex induced vibrations. As an example, the design of
the Burj Khalifa, the tallest building in the world depicted in Fig. 1.1b, includes a variation of the
cross section with the height. This helps to mitigate the coherence of the shed vortices along the
entire height of the tower and thus prevent large resulting loads (Irwin, 2010). Another example
of wind-induced phenomenon is the ice galloping of power lines. It is caused by the asymmet-
ric modification of the cable section due to frozen water. The wind on the iced section causes a
lift force that can lead to high amplitude oscillations of the power lines in the crosswind direc-
tion (Paidoussis et al., 2014). The power lines can then hit each other, damage themselves enough
to cause a power outage, or even fall to the ground (Chan et al., 2009). Wind can also induce tor-
sional flutter, the phenomenon that caused the famous failure of the Tacoma Narrows bridge in
1940 (Billah and Scanlan, 1991). Torsional flutter is characterized by a self induced aerodynamic
excitation that leads to a large amplitude pitching motion, as depicted in Fig. 1.1c. All these exam-
ples involve a complex interplay between the structural and flow dynamics, and are thus part of the
field of fluid-structure interaction and aeroelasticity. Because the occurrence of such phenomena
is typically undesirable, studying the aerodynamic and aeroelastic behavior of civil engineering
structures is critical.

2



1.2 Motivation and objectives

The description of aerodynamic phenomena first relied on a combination of theoretical and
experimental tools. Experiments have been used from the early history of aerodynamics to ob-
serve phenomena and verify hypothesis (Anderson, 1999). Nowadays, they enable qualitative and
quantitative studies mainly conducted in wind tunnels. A wind tunnel, whose first design and
operating is credited to Frank H. Wenham in 1871 (Anderson, 1999), is a facility that creates a
flow in which a model of the body of interest is placed. Large bodies or structures can be tested
since scaled models can be used, as long as the key parameters describing the problem are con-
served. This is called scale-similarity. By using wind tunnels, the actual physics is represented
and information can be collected about different variables (Barlow et al., 1999). The flow can be
visualized by using smoke visualization (Bomphrey et al.,, 2009) and global flow parameters such
as aerodynamic loads or shedding frequency can be measured through load balances or velocity
probes (Barlow et al., 1999). Local information, such as velocity and pressure fields, can also be
measured by using for instance Particle Image Velcometry (Raffel et al., 2013) and pressure sen-
sors (Barlow et al., 1999), respectively. Therefore, wind tunnels and more generally experimental
aerodynamics have been and are still now a cornerstone in fundamental research and industrial
development. However, experiments have also some limitations such as the unavoidable mea-
surement errors and the imperfect control of the conditions. Many flows depend on several key
parameters and it is not always possible to achieve scale-similarity. In some cases, it is very diffi-
cult if not impossible to acquire data without disturbing the flow with the measuring equipment.
In other cases, some quantities simply cannot be measured, or with only insufficient accuracy,
even by state-of-the-art techniques. Finally, the use of experimental facilities are costly and time
consuming. This is particularly true for the early development phases of industrial projects where
many different configurations need to be considered.

Computational fluid dynamics, known as cFp, can nowadays be used as a complement to ex-
periments. CFD consists in a set of methodologies to simulate the flow (Hirsch, 2007), i.e., to solve
numerically the governing equations, which have most of the time no analytical solution. cFp was
born in the end of the 60s. The rapid growth of computer power and affordability enabled it to
evolve from an initial tool to a strategic factor in industrial developments. It overcomes many
limitations of experiments. In particular, all parameters can be fully controlled and information
about all variables is available everywhere. The use of cFp shortens the design process and, in
some cases, eliminates the need for experimental testing. It also allows access to design solutions
that were previously unreachable. For these reasons, crp plays nowadays a major role in indus-
trial R&D (Johnson et al.,, 2005). Nonetheless, despite its tremendous variation, cFD has not come
close to replacing experiments in development of projects involving aerodynamic problems. Many
complex phenomena remain very challenging to solve numerically, such as, for instance, turbulent
detached flows. More generally, crp simulations always impose a trade-off between fidelity and
computational cost. Lower fidelity approaches are easily feasible in an industrial context, but their
accuracy is limited. On the other hand, high-fidelity methods provide a very accurate solution, but
their cost is prohibitive for most realistic applications.

Beyond their intrinsic differences, experimental measurements and numerical simulations are
very complementary. Numerical results guide the design of experiments. Conversely, experiments
are essential for the validation of numerical models. As such, leveraging the synergistic properties
of both simulations and experiments in an integrated approach can provide an invaluable insight
into the flow physics.

1.2 Motivation and objectives

The main concern of this thesis is the investigation of the dynamics of detached flows around
bluff bodies, and of the resulting aerodynamic loads. The analysis leverages both experimental
measurements and numerical simulations. In particular, this work focuses on two canonical ge-
ometries: a rectangular cylinder, and a flat plate that is either fixed at large incidence or undergoing
a large pitching motion. Despite their geometrical simplicity, these cases involve rich and chal-

3
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lenging flow physics that are representative of more complex configurations typically found in
civil engineering applications.

The first aspect investigated in this work is the fundamental flow around a 4:1 rectangular
cylinder. The cross-section of this cylinder is a rectangle whose width is four times longer than
its height. This very basic geometry approximates several elongated civil engineering buildings
such as bridges and towers. Despite the simple two-dimensional body shape, the subsequent flow
is three-dimensional. Moreover, unsteady flow separation and reattachment occur along the up-
per and lower surface of the rectangular cylinder. The flow can also be sensitive to the veloc-
ity and turbulent intensity of the incoming flow. All this makes the flow around a rectangular
cylinder highly complex. This case is studied both experimentally and numerically. As crp sim-
ulations, and in particular those based on the Reynolds-averaged Navier-Stokes equations, are
largely used in industrial applications, it is important to determine if these techniques are able
to provide a sufficiently accurate estimation of such detached flows (Huang et al., 2007; Patruno,
2015). A comparison of computational and experimental global and local results is therefore re-
quired. The integration of numerical and experimental approaches is an important but difficult
step, particularly in the case of local quantities related to unsteady flows. This comparison is made
through two decomposition methods: the Proper Orthogonal Decomposition and the Dynamic
Mode Decomposition.

In the context of civil engineering, the study of the dynamic interaction between the flow
and the structure requires the determination of the aerodynamic loads. Numerically, this type of
study remains very challenging (Lohner et al., 2015) and therefore experimental studies are of-
ten more appropriate. However, the direct measurement of loads with force balance can become
challenging when the body is moving. In such cases the load sensor is also moving, which might
impact the measurements. Moreover, the load sensor cannot differentiate the aerodynamic from
the structural loads, which are not negligible in wind tunnel experiments. For phenomena in-
volving structural motion, another possible approach is to determine the loads directly from the
flow field. This can be done by using the pressure field measured through pressure sensitive paint,
Pitot tube wake rakes or pressure taps (Barlow et al., 1999). An interesting alternative to these
methods is to use the velocity field to indirectly calculate the aerodynamic loads. This motivates
the second field of investigation of this thesis, which is mostly experimental and aims to study the
indirect estimation of loads from the velocity field. Practically, the velocity field can be measured
through Particle Image Velocimetry (p1v), from which the loads can be indirectly computed by us-
ing a momentum balance. In particular, this thesis compares the capabilities of two formulations:
i) a formulation based on the integral Navier-Stokes equations and ii) a formulation derived by
Noca et al. (1999) called the flux equation. The accuracy and efficiency of these formulations are
tested in the context of detached flows. To this end, they are applied to the flow around a 16:1
plate that is either fixed at large incidence or undergoing a forced large pitching motion.

To summarize, the research presented in this thesis is conducted in the context of detached
flows. It is based both on experimental and numerical techniques and its main objectives are:

+ To improve the general knowledge of the flow around a 4:1 rectangular cylinder and, in
particular, the effect of the rectangle incidence and freestream velocity on the variation of
the flow topology and the aerodynamic loads.

+ To assess the capability of two crp techniques to provide a sufficiently accurate estimation
of the flow around a 4:1 rectangular cylinder at incidence and the subsequent aerodynamic
loads. In particular, the two crp approaches chosen are the Unsteady Reynolds-Averaged
Navier-Stokes simulation (Urans) and the Delayed-Detached Eddy simulation (DDEs).

+ To evaluate the accuracy of two methods based respectively on the integral Navier-Stokes
equations and the flux equation proposed by Noca et al. (1999) to indirectly estimate the
aerodynamic loads on a flat plate from the velocity fields acquired by p1v.

+ To extend the methodology based on the flux equation proposed by Noca et al. (1999) to
the indirect estimation of the aerodynamic moments.



1.3 Outline

« To provide guidelines for efficiently applying the indirect load measurements based on p1v
data.

1.3 Owutline

This thesis is composed of five chapters, including the present introduction. Chapter 2 is dedi-
cated to the presentation of the theoretical background and the fundamental tools used through-
out this work. First, some basics of the physics occurring in detached flows are presented. Then,
the different cFp techniques used in this thesis are detailed by explaining how the different ap-
proaches represent turbulence. The piv methodology is then described as it is used to measure
the flow velocity field required to indirectly estimate the aerodynamic loads. This is followed by
the presentation of the key equations underlying the indirect force calculation. In this context,
an extension of the method proposed by Noca et al. (1999) is also derived. Finally, the Proper
Orthogonal Decomposition (pop) and the Dynamic Mode Decomposition (Dmb) are presented as
two possible techniques enabling the comparison of numerical and experimental data.

Chapter 3 focuses on the analysis of the flow around the 4:1 rectangular cylinder. In par-
ticular, the effects of a variation of incidence are investigated and the capabilities of UraNs and
DDEs simulations to estimate this effect are studied. Chapter 3 starts by reviewing the main re-
sults of previous research conducted on the flow around a rectangular cylinder. The setups of the
performed measurements and simulations are then described and the main flow features are pre-
sented. The aerodynamic load and pressure coefficients obtained numerically are then compared
to experimental results by using statistics together with decomposition methods. This enables
to determine the accuracy of the numerical estimations. Finally, the impact of a variation of the
freestream velocity is investigated experimentally. In particular, Chap. 3 aims to answer the fol-
lowing key questions:

» How does a variation of incidence impact the flow?

» How does a variation of the freestream velocity impact the flow?

« How does the flow evolve within a shedding cycle?

» Do uraNs and ppEs simulations provide a sufficiently accurate estimation of the flow?

+ Are UrANs and DDEs able to accurately determine the effect of a modification of incidence?

» Do ppEs simulations enable a better estimation of the flow than urans?

Chapter 4 discusses the capability of two indirect approaches to calculate the loads from the
velocity fields obtained through piv. In particular, the method based on the integral Navier-Stokes
equations is tested together with an approach based on the flux equation proposed by Noca et al.
(1999). Experimental data are obtained in a water channel for both a plate undergoing a large am-
plitude imposed pitching motion and a static plate at high angle of attack. These two flows are used
as test cases to apply the indirect calculation of loads. Chapter 4 begins therefore with the descrip-
tion of the experimental measurements and an overview of the flow dynamics involved in the test
cases. Then, the effect of the user-defined parameters required for the two indirect methodologies
are investigated. Finally, the capabilities of these methods to provide an accurate estimation of the
loads are compared and discussed by integrating direct measurements and numerical results. In
particular, the goal of Chap. 4 is to answer the following key questions:

« How accurate are the indirect computations of loads compared to direct measurements?

+ Does one of the two methodologies tested perform better?

« How do the setup of the p1v experiment and the user-defined parameters impact the accu-
racy of the results?

» How do the flow features impact the accuracy of the results?

+ How should the user-defined parameters be chosen?



Context and motivation

Chapter 5 concludes this thesis. It provides a summary of each chapter and highlights the
main original contributions of this thesis. Finally, some directions for future work are proposed.



CHAPTER 2

Theoretical background and fundamental tools

This chapter introduces the theoretical concepts and tools needed in the context of this thesis. It is
divided into four main parts. First, the physics associated with the flows studied is described and the basic
concepts used throughout this work are exposed. Then, the different models chosen to perform numerical
simulations are detailed. Subsequently, the basic idea behind p1v is explained and two methodologies
chosen to indirectly calculate aerodynamic loads are described. Finally, the last part of this chapter is
dedicated to the description of the decomposition methods selected to analyze and compare the spatio-
temporal data obtained numerically or experimentally.

2.1 Fundamental principles of the flow physics

The basic equations describing the physics of flows are known since the second part of the 19™
century. The conservation of mass, momentum and energy leads to a complicated system of non-
linear partial differential equations that, for most cases, has no analytical solution. For some appli-
cations, several simplifications can be introduced and the complexity of the fluid motion equations
can be reduced.

The Mach number is a dimensionless quantity defined as the ratio of the flow velocity to the
local speed of sound. For a freestream flow of velocity Uy, the freestream Mach number reads

_Ue

[£759)

M (2.1)

The term ao is the speed of sound defined as aoy = /v R1, where 7 is the specific heat ratio
of a gas, R is the specific gas constant and Tt is the temperature of the freestream. The value
taken by this Mach number indicates the local flow regime. Depending on the value of M, the
flow can be subsonic if M < 1, sonic if M = 1 or supersonic if M > 1. Moreover, the value
of the Mach number is related to the importance of the compressibility effects. In particular, for
subsonic flows with My, < 0.3, these effects can be neglected and the aerodynamic problem can
be modeled as being incompressible. The fluid density p can then be considered as a constant
without any loss of accuracy (Anderson, 2010). The cases considered in the present work can be
considered as incompressible. Moreover, heat transfer phenomena can be neglected, so that the
fluid remains isothermal. This simplification leads to the decoupling of the energy equation from
the mass and momentum equations.

Therefore, the equations governing the flows considered in this work are the incompressible
Navier-Stokes equations. For a Newtonian fluid, the viscous shear stress 7;; reads

Tij = p (G + djui), 2.2)
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where u; is the ¢-component of the velocity vector u and p the dynamic viscosity. In that context,
the Navier-Stokes equations are written in a Cartesian coordinate system as

aiui e O7
) (2.3)
pOsu; + pu;Oju; = — 0ip + [0y,

where p is the pressure.

A body immersed in an airflow is subject to aerodynamic forces and moments due to the
pressure and shear stress distributions over its surface. In particular, the wall shear stress is defined
as

Tw = WOyUg|y=0, (2.4

where y is the distance perpendicular to the wall. The integration of p and 7, over the complete
body surface results in a three-dimensional aerodynamic force F and moment M, the latter being
defined with respect to a given point. As depicted in Fig. 2.1, F can be split into components
according to the wind axes defined by the freestream velocity Uy. Therefore, by definition, the
component of F perpendicular to Uy is called the lift L while the component parallel to Uy,
is called the drag D. The resultant moment M can also be separated into different components
according to the wind axes. In particular, the component about the z-axis is called the pitching
moment M. By convention, M is considered to be positive when it acts to pitch the airfoil in
the nose-up direction. When the flow is two-dimensional, the forces and moment are denoted by
[, d and m.. Dimensionless force and moment coefficients can be defined from L, D and M. For

Figure 2.1: Resultant aerodynamic force and definition of lift and drag. Adapted from Anderson
(2010).

three-dimensional flows the lift, drag and pitching moment coefficients are

L

_ D
L = 1puz5) D T 1ppuzse and

_ M
CM = 5,03 51,0 (2.5)
where S is a reference surface area and . is a characteristic length. For two-dimensional cases,
the aerodynamic coefficients are

l d

= ippuzi, e ST TppUzlLe

and ¢, = W;"W (2.6)

The flows investigated in this thesis are characterized by moderate values of the freestream
Reynolds number Rey with typical values belonging to the interval [20 000, 80 000], where

Uyl
Reo = —2<, 2.7)
v
with v = #/p the kinematic viscosity. The Reynolds number represents the ratio of inertia to

viscous forces (Anderson, 2010). For high Reynolds numbers, the flow can be divided into different
regions (Prandtl, 1905). More specifically, a dimensional analysis of the Navier-Stokes equations
shows that the viscous effects can be neglected in most of the flow away from the body. However,

8



2.1 Fundamental principles of the flow physics

they are not negligible near the body surface. In particular, the relative flow velocity at a solid
surface is zero. Going far away from the body, the flow accelerates until the velocity reaches
the freestream velocity. Therefore, there is a thin region adjacent to the wall where the velocity
gradients are large. In this region of height § and called boundary layer, the flow viscosity cannot
be neglected. The viscous effects are responsible for the profile drag, whose two contributions are
i) the pressure drag resulting from a non-zero integrated pressure distribution, and ii) the friction
drag due to the friction at the wall. Figure 2.2 summarizes schematically these two regions and
the concept of boundary layer.

boundary layer
of viscous flow

inviscid flow outside
the boundary layer

Figure 2.2: Schematic view of the division of a flow into an inviscid region away from the body
and a thin viscous boundary layer. Adapted from Anderson (2010).

As depicted on the lower surface of the airfoil in Fig. 2.3, aboundary layer can develop smoothly
along the body surface, the streamlines following the body curvature. In this case, the flow and
the boundary layer are said to be attached. However, under a strong adverse pressure gradient, the
flow near the surface can reverse its direction and move upstream. Because of this reversed-flow
phenomenon, the boundary layer separates from the body surface. The flow is then detached and
alarge region of recirculating flow is created downstream of the separation point. The upper sur-
face of the airfoil in Fig. 2.3 illustrates schematically this phenomenon. Because separation causes
a decrease in pressure over the rear part of the body, it induces a large imbalance in pressure. De-
tached flows are thus associated with large pressure drag. The relative importance of pressure and

@‘ /\% : .
oy ,l 777 //
/////

Insert (a)
T
4 /_/ <t /\ P
Separation
point

Figure 2.3: Schematical view of attached and detached flows. Reproduced from Anderson (2010).

friction drag to the total profile drag depends on the body shape and orientation with respect to
the flow. Figure 2.4 illustrates how these two contributions compare for different body shapes.

This relative contribution between friction and pressure drag leads also to the definition of
two generic body shapes: i) a streamlined body for which the profile drag stems mostly from
friction drag, and ii) a bluff body for which the pressure drag dominates. As an example, in Fig. 2.3,
all the profiles but the airfoil correspond to bluff bodies.



Theoretical background and fundamental tools

Separation point

Relative
Flat plate drag force
(Broadside)

length=d :

Separation point
Re = 10°
Cylinder
diameter
=d

Separation point

(©) Same total drag
Separation point

Re = 10*
Cylinder
['$} [9) diar]neter

Streamline
R ) body

thickness
— S g

=—d
10
Re = 107 Gl Separation point
< i -
ﬂ/_._

(e) Skin friction drag
D Pressure drag

Figure 2.4: Relative comparison between friction and pressure drag for various aerodynamic
shapes. Reproduced from Anderson (2010).

Detached flows typically exhibit a certain regularity. In particular vortices are often shed at a
regular frequency f. In the context of oscillating flow problems, one can define a dimensionless
frequency named after Strouhal (1878), the Strouhal number

fle
St U, (2.8)
represents the ratio of the characteristic length [ to the distance U« /¢. This distance corresponds
to the length covered during a time !/r by a fluid particle at velocity U. Because 1/ corresponds
to the period of the shedding phenomenon, the Strouhal number provides an estimation of the
distance between two consecutive vortices shed from the same side of the body.

Viscous flows can be separated into two regimes: laminar and turbulent flows. These regimes
are illustrated in Fig. 2.5 and defined according to the flow response to a small disturbance. Since
the relative importance of the viscous term is inversely proportional to the Reynolds number, the
stability of a flow to a perturbation depends on Re (Moran, 2003). At low Reynolds numbers,
the disturbances are damped. The flow remains stable, smooth and regular: this is the laminar
regime. For Reynolds numbers higher than a critical value, any small disturbance in the flow is
amplified and creates new disturbances. This leads to a transition to turbulence, i.e., a complex
irregular flow with a large range of scales. Turbulent flows are chaotic, and thus not predictable
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Figure 2.5: Artistic illustration of laminar and turbulent flows (Nimmervoll, 2013).

in detail, although they are governed by the deterministic Navier-Stokes equations (2.3). All these
characteristics originate in the non-linear convective term. Because of the stochastic nature of
turbulent flows, a statistical description is required. In particular, first and higher order statistics
are typically analyzed.

Turbulent flows contain a large range of scales across which the turbulent kinetic energy k is
distributed. The turbulent kinetic energy per unit mass is expressed as

1 Y
k= guzul (2.9)

where u; is a velocity fluctuation and - represents the average of a stochastic quantity. Richard-
son (1922) introduced the concept of energy cascade in which this energy is transferred from the
large scales to smaller ones through instabilities. More precisely, the mean shear generates large
eddies associated with large kinetic energy. This phenomenon is thus responsible for the produc-
tion of turbulent kinetic energy. The large eddies are controlled by the external geometry and
are relatively insensitive to viscous effects. Because they are unstable, they break up into smaller
ones. Through this mechanism, the turbulent kinetic energy is transferred to smaller and smaller
scales. Sufficiently small eddies are stable and do not break up (Pope, 2000). These eddies are as-
sociated with the smallest scales called Kolmogorov scales (Kolmogorov, 1941). Although viscous
effects do not impact large and intermediate scales, they are important for the smallest ones. In
particular, the turbulent kinetic energy is dissipated by viscous action taking place at the small-
est scales (Pope, 2000). The intermediate range of scales where the energy is transferred without
being produced nor dissipated is called the inertial subrange. Kolmogorov (1941) demonstrated
that at sufficiently high Reynolds number, the energy of the eddies increases with their size to the
2/3 power in the inertial subrange. In the spectral space, the 2/3 law becomes a —5/3 law which
is known as Kolmogorov —3/3 spectrum (Durbin and Pettersson Reif, 2011). It is represented in
Fig. 2.6 which depicts the distribution of the energy spectrum E (k). In this figure, & is the wave
number defined as k = 27/i., where [, is the eddy size. Moreover, 7) and u,, are the length scale
and the velocity associated with the smallest eddies, i.e. the Kolmogorov scale. The ranges of scales
corresponding to production and dissipation of kinetic energy are also represented, as well as the
intermediate range.
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Figure 2.6: Turbulent energy spectrum as a function of the wave number x non-dimensionalized
by the Kolmogorov length and velocity scale,  and u,,. Adapted from Pope (2000).

The complex stochastic motion in a turbulent flow impacts significantly the behavior of the
boundary layer. The velocity profile in a laminar and a turbulent boundary layer are depicted in
Fig. 2.7 for illustration. The turbulent fluctuations increase the rate of mixing of momentum near
the body surface. Therefore, higher-momentum fluid elements from the outer regions of the flow
are transported closer to the wall. Compared to the laminar case, the average flow velocity near
the surface is then larger for a turbulent boundary layer. It follows that the velocity gradient at

Y

laminar boundary layer
]

— - turbulent boundary layer
U

Figure 2.7: Schematic view of velocity profiles for laminar and turbulent boundary layers. Adapted
from Anderson (2010).

the surface is much larger. Consequently, the wall shear stress 7, and the friction drag are also
larger. Because of the stronger mixing by turbulent fluctuations, turbulent boundary layers are
also thicker, grow faster and are less sensitive to adverse pressure gradients than laminar ones.
Therefore, a turbulent flow is less likely to separate from the body surface (Anderson, 2010).

The structure of a turbulent boundary layer can be described by introducing the concept of
wall units. Wall units are non dimensional variables defined using the so-called viscous scales. In
particular, the friction veloctiy is defined as

ut =, =2, (2.10)

where 7, is the wall shear stress defined in Eq. 2.4. The wall units y+ and w" are then obtained
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as B
yT ="¥Y and wt =Y (2.11)

v u*

where U, is the mean of u,, the velocity in the direction parallel to the wall. Expressed in terms
of wall units, the structure of a turbulent boundary layer is depicted schematically in Fig. 2.8.
It is composed of two main overlapping regions: the inner layer or law-of-the-wall region, and
the outer layer or law-of-the-wake region. The inner layer is adjacent to the wall and consists of
three sub-regions. From the wall to the law-of-the-wall region, the inner layer is composed of: i)
the viscous sublayer, ii) the buffer layer and iii) the log-law region extending from y* ~ 40 to
y < 0.20. Note that the log-law region also belongs to the outer layer and its size varies with the
Reynolds number (Pope, 2000). The mean velocity profile inside the inner layer is fully determined
by viscous scales. In other words, the mean velocity profile non-dimensionalized with inner units
is universal, independent of the geometry, pressure gradient, or Reynolds number. Conversely, the
direct effect of viscosity is negligible in the outer layer (Pope, 2000; Durbin and Pettersson Reif,
2011). As the log-law region overlaps both the law-of-the-wall and law-of-the-wake regions, it
shares properties of both, meaning that the mean velocity profile is independent of the outer flow
and not impacted by viscosity. From those considerations, the velocity profile in the log-law region
can be determined as

1
= -lny" + B, (2.12)
K

where the value of the von Karman constant £ & 0.41 and of B & 5.1 are obtained from exper-
imental measurements.
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Figure 2.8: Mean velocity profile in a turbulent boundary layer for two different Reynolds numbers

(Re1 > Reg). The location of the different regions are also indicated for Re;. Adapted from Pope
(2000).

These characteristics of turbulent flows and the structure of turbulent boundary layers have
a major impact on the simulation approaches, as described below.

2.2 Modeling turbulence in numerical simulations

Computational fluid dynamics (cFp) is the set of numerical methodologies that can be used to solve
numerically the Navier-Stokes equations, or more generally to simulate fluid flows. This section
briefly describes the different components of the cFp simulations. It also presents the theoretical
background of turbulence modeling in cep. More information about these topics can be found
for instance in the work of Hirsch (2007) and Durbin and Pettersson Reif (2011).
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For laminar flows, the computing power available nowadays allows generally to solve the
Navier-Stokes equations (2.3) without difficulties. However, most of the flows occurring in nature
and industrial applications are turbulent. As such, they contain a large range of time and length
scales. Direct Numerical Simulation (pNs) of turbulent flows aims to compute the turbulent statis-
tical fluctuations at all the relevant physical scales. The computational cost of this type of simula-
tions increases dramatically with the Reynolds number to scale approximately as Re”. Therefore,
DNs requires large computational capacities which are out of reach for most applications with the
exception of fundamental research on the mechanisms of turbulence in canonical configurations
and at moderate Reynolds numbers. Consequently, the Navier-Stokes equations (2.3) cannot be
solved usually directly, and other strategies must be followed.

Several levels of approximation exist. By descending degree of fidelity, the main ones are the
Large Eddy Simulation (LEs), the Detached Eddy Simulation (pEs) and the Unsteady Reynolds-
averaged Navier-Stokes Simulation (UraNs). The idea of LEs emerges from the observation that
most of the computational cost is dedicated to resolving the smallest scales. As explained in
Sec. 2.1, these small scales have, to some extent, a universal character and their role is to dis-
sipate energy. On the contrary, the largest scales are affected by the flow geometry and conse-
quently are not universal. Therefore, in the context of LEs, the computational cost is reduced by
resolving only these large scales. A dissipative model is added to mimic the impact of the smallest
scales (Pope, 2000; Durbin and Pettersson Reif, 2011). Figure 2.9 illustrates which regions of the
energy spectrum are resolved and which are modeled in LEs. In URANS, the goal is to solve only
for mean quantities. The simplification approach is thus much more severe since the complete
turbulence spectrum is modeled, as illustrated in Fig. 2.9. Moreover, URANS simulations can be
two-dimensional while the techniques permitting turbulent eddying must be three-dimensional.
The possibility to use coarse two-dimensional grids allows to drastically reduce the computational
cost. URANS is based on the Navier-Stokes equations (2.3) that have been averaged. This averaging
process leads however to unclosed terms due to the non-linearity of the convective term. In partic-
ular, the so-called Reynolds stress tensor cannot be directly related to the mean flow (Hirsch, 2007),
and must therefore be modeled. Consequently, the accuracy of UraNs results depends strongly on
the ability of the closure model to capture the physics of interest. Finally, DEs is an hybrid method
combining LEs away from walls and UrRANs close to them. The fine grid resolution needed by LEs
in a boundary layer is thus overcome. In this thesis, two turbulence modeling approaches are cho-
sen: URANS and Delayed-Detached Eddy Simulation (bpEs), the second approach being a variant
of pEs. Therefore, UraNs and DDEs techniques are further explained in the next subsections.

Once a mathematical model describing the flow is selected, the problem has to be solved nu-
merically. The first step is to define a computational domain that approximates as well as pos-
sible the physical one. For the external flows considered in this work, the infinite space has to
be modeled by appropriate boundary conditions. Those boundary conditions are imposed at the
boundaries of the finite computational domain. Therefore, the size of this domain has to be de-
termined carefully to minimize the impact of boundary conditions on the results. The continuous
space is then divided into a number of discrete cells forming the mesh. The discretization of the
physical domain has a major impact on the result accuracy. Therefore, the effect of the mesh
coarseness has to be studied for each application. In this work both geometry and mesh are built
using Gmsh (Geuzaine and Remacle, 2009).

The continuous equations describing the mathematical model have to be discretized. Imple-
mented properly on a solver, their resolution leads to the sought numerical solution. This imple-
mentation requires the conversion of differential or integral equations into arithmetic operations
on mesh-related unknowns. Different methods are available to perform this conversion. One
can cite the finite difference method (Fpm), the finite element method (FEm) or the finite volume
method (Fvm). More information about these methods can be found in the work of Hirsch (2007).
The present work uses Fvm and the simulations are performed with the open-source cell-centered
code OpenFOAM (Weller et al., 1998). More precisely, the transient solver for incompressible flows
pimpleFoam is selected. It is based on a combination of the p1so and siMpPLE algorithms (Ferziger

14



2.2 Modeling turbulence in numerical simulations

T T TTTTIT T T TTTTI] T T T TTTTT] RN T T TTTTI]

large energy containing inertial viscous

scales integral scales subrange range

| |
E ! ! E
— [ | | | -1
[ 10tE ‘ ‘ ; : |
— = | —5/3 | B
o E I I b I E
2 S E
At =S : EEEE
X i | | | N
S = [ [ [ e
100 C | | | .|
10-2 E | resolved in LEs modeldd in ¢
E [ \\H:\i [ \\\H\#n(\sd\el\ed\i\r\l\gj\]?ANs\ | \\\\Hi :\ | \\HH‘
10~° 10~4 10-3 102 10! 10°
ki [=]

Figure 2.9: Definition of the modeled and resolved regions as a function of the non-dimensional
wave number k7 for UrRANS, LEs and DNs with respect to the non-dimensional turbulent energy
spectrum. Adapted from Pope (2000).

and Peri¢, 1996) and allows a large time-step.

The following subsections describe in details the two levels of approximation used in this
thesis. Computational domain, grid related issues and chosen numerical schemes are discussed
for each particular case in the following respective chapters.

2.2.1 Reynolds-Averaged Navier-Stokes Simulation

Using the Reynolds decomposition, a turbulent stochastic quantity a can be separated into
a=a+a, (2.13)

where a and a’ represent the mean and the fluctuating part of a, respectively. Statistical results
are of primary importance for engineering applications. The computation of a followed by the
calculation of its mean requires to perform DNs to obtain a which is extremely costly. Therefore,
the goal of the UrRANS approach is to compute directly the mean a. In practice, this mean can be
approximated by an average over different realizations, over a long period of time of the same
realization, or over homogeneous directions.

URANS simulations are based on the Navier-Stokes equations that are averaged over the whole
spectrum of turbulence. The statistical procedure used to obtain those equations is called the
Reynolds averaging (Reynolds, 1895). It consists in two steps: i) the introduction of the Reynolds
decomposition (2.13) into the incompressible Navier-Stokes equations (2.3) and then ii) the aver-
aging of the equation. The Reynolds averaging procedure leads to the URANS equations

(2.14)

oiu; = 0,
'l

patﬁi + pﬁjajﬂi = — azﬁ + ,Lba?jﬂi — ajug i

where u;u’, is the Reynolds stress. The Reynolds stress arises from the non-linear convective term
in Eq. (2.3). Comparing Eq. (2.3) and Eq. (2.14), it can be concluded that the different behavior
between laminar and mean turbulent flows is attributable to this Reynolds stress (Pope, 2000).
Moreover, there is no intrinsic relation between the Reynolds stress and the mean flow quantities
and the UrRANs equations (2.14) are thus unclosed. Solving Eq. (2.14) requires the introduction of a
closure model providing a consitutive equation for the Reynolds stress. Numerous closure models
have been developed based on theoretical considerations and empirical information. However,
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they remain a major source of errors because of their empirical nature and the approximations
involved in their derivation.

Most common techniques used to close the URANS equations are based on the Boussinesq
approximation (Boussinesq, 1877), also called the linear eddy viscosity hypothesis. By analogy with
the viscous stress (2.2), it assumes that the deviatoric part of the Reynolds stress is proportional to
the mean strain rate S;; = 1/2 (0;u; + 0;u;). Therefore, under the Boussinesq approximation,
the Reynolds stress reads

— u;u; = QI/TEU‘ — %kéij, (2.15)
where the proportionality constant v7 is called the turbulent or eddy viscosity. The turbulent
kinetic energy k given in Eq. (2.9) corresponds to the trace of the Reynolds stress tensor. The
turbulence models based on Eq. (2.15) are called eddy viscosity models (Evm).

For many flows the turbulent viscosity hypothesis (2.15) is not valid. Pope (2000) cites several
examples such as strongly swirling flows (Weber et al., 1990), flows with significant streamline
curvature (Bradshaw, 1973; Patel and Sotiropoulos, 1997) and fully developed flows in ducts of
non-circular cross-section (Melling and Whitelaw, 1976; Bradshaw, 1987). In those cases, Evm
models fail and higher fidelity closure models have to be used. One possibility is to rely on trans-
port equations for the Reynolds stress directly instead of using the turbulent viscosity hypothe-
sis. This aims to increase the physical content in the ensuing turbulence models that are called
Reynolds stress transport (rsT), Reynolds stress modeling (rsm), or second-moment closure (smc).
These transport equations are derived from the fluctuating velocity. They model the variation
of the Reynolds stress in terms of production, dissipation, redistribution and turbulent trans-
port (Durbin and Pettersson Reif, 2011). However, several of these terms are unclosed, which re-
quires additional empirical closure models. Therefore, more equations have to be solved and the
computational cost increases. Another possibility is to introduce approximations in the equations
governing smc models. The ensuing equations form an algebraic stress model (asm). Such mod-
els are inherently less general and less accurate than smc models but are relatively simple (Pope,
2000). Finally, additional non-linear terms can be introduced into the stress-strain relation (2.15).
This makes the Reynolds stresses a more general function of the mean strain and vorticity. More-
over, this better reflects the highly non-linear aspect of turbulence. Turbulence models based on
a non-linear turbulent viscosity hypothesis are called non-linear viscosity models (NLEvM). More
information about smc, asm and NLEvM modeling approaches can be found for instance in the
work of Pope (2000) and Durbin and Pettersson Reif (2011). The present work uses two different
EvM turbulence models: the & — w shear stress transport (sst) model and the Spalart-Allmaras (sa)
model. Both are described in details in the following.

2.2.1.1 k — w shear stress transport turbulence model

The k — w shear stress transport model was introduced by Menter (1994). It is a two-equations
model based on the Boussinesq approximation (2.15) that combines the k — £ model proposed by
Chien (1982) and the k — w model developed by Wilcox (1993). The ssT model aims to combine
the respective advantages of the k — w and k — € models, while overcoming their deficiencies.
The two aforementioned models determine the turbulent viscosity v as the product of a velocity
u* and a length [*. The velocity u* is determined by using the turbulent kinetic energy k and
the length [* is based on the dissipation rate of kinetic energy € or the specific dissipation rate
w = ¢/k. Both k and € (or w) are obtained by solving a corresponding transport equation. The
k — € model is numerically robust. However, it has been shown that in some cases the e-equation
fails to determine the length [* in the near wall region. In particular, Rodi and Scheuerer (1986)
showed that the model fails for flows with an adverse pressure gradient. The k& — ¢ model is
then unable to approximate properly the behavior of separated flows. Wilcox (1993) introduced
an equation for the specific dissipation rate w to predict the length [*. This equation replaces the
€—equation and the near wall behavior of the model is improved. Consequently, the k — w model

16



2.2 Modeling turbulence in numerical simulations

leads to a better prediction of flows with moderate adverse pressure gradients (Menter, 1993).
However, this model suffers from a strong sensitivity to the freestream value of w (Menter, 1992)
and overpredicts the level of shear stress in adverse pressure-gradient boundary layers. Menter
(1994) developed the ssT model to overcome these problems. It is a combination of the k — w and
the k£ — € models. More precisely, the £ — w model is used near the walls while the & — € model
is used elsewhere. Additionally, a shear-stress limiter and blending functions are introduced.

The model used in this thesis is based on the work of Menter and Esch (2001) with updated
coefficients (Menter et al., 2003). The eddy viscosity reads

al k

_ _ 2.16
vr max (a1w, SFQ) ’ (2.16)

where a; is a coefficient of the model, S = A/ 2S; jgi ; is the invariant measure of the strain rate
and F> is a blending function. The two transport equations in conservative form are
Ot (pk) + &7' (pﬂjk) = Pk — 'Dk + aj (Fkajk) s

2.17)
0 (pw) + 05 (pusw) = P* —D* + 0; (Twojw) +

2p0W2 (1 — F1) @-k@-w.

w
The blending function F1, the production and destruction terms P and D associated with k and
w, the variables I'y, and I, and the constant 0,2 are documented in the work of Menter and Esch
(2001) and Menter et al. (2003).

Finally, boundary conditions are required for k and w. For an external flow, the freestream
value ko is calculated from the freestream turbulence intensity I as koy = 3/2 (UssI)?. The
specific dissipation rate woo is calculated to verify 1075 < »7/ < 1072, as proposed by Menter
(1994). Two possibilities exist for the wall treatment: i) one can fully resolve the near-wall region
above the viscous sublayer (y* a 1) or ii) one can resolve only the part above a point located in
the log-layer (y* ~ 100) and assume a universal behavior below that point. The first possibility
corresponds to wall-resolved URANs. In this case, the turbulent kinematic energy at the wall is zero
by definition. Moreover, Wilcox (1993) established that the specific dissipation rate in the viscous
sublayer reads

6v

0.075y2’
where, y corresponds to the distance between the wall and the first calculation point away from it.
Therefore, for wall-resolved urans, boundary conditions correspond to ki, = 0 and wyy = Wayis.
The second possibility corresponds to the use of a wall function. It takes advantage of the structure
of turbulent boundary layers under the approximation of large Reynolds number, as previously
described and illustrated in Fig. 2.8. When a wall function is used, the first grid point adjacent
to the wall is located in the log-law region, so that the turbulent properties can be estimated. In
particular, the specific dissipation rate in the log-law region reads

Wois = (2.18)

’LL*

0.3xy"

The use of a wall function allows the use of much coarser grids since the inner layer is not resolved.
However, a wall function introduces additional hypotheses and imposes strict limitations on the
grid generation. Moreover, wall functions are not adequate for detached flows.

The present work investigates flows through wall-resolved urans simulations. Therefore, the
different grids are generated in such a way that the first calculation point away from a wall satisfies
yT ~ 1. In practice, the simulations use an automatic near-wall treatment proposed by Menter
and Esch (2001). In particular, this model determines w., by combining the values calculated from
Eq. (2.18) and Eq. (2.19). To this end, it uses a blending function defined as

Ww = /Wi + Wi (2.20)
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For low y values the term in 1 /42 dominates and therefore w,, corresponds approximately to way;s.
Conversely, for larger values of y, 1/y is dominant and w4 is recovered.

2.2.1.2 Spalart-Allmaras turbulence model

Baldwin and Barth (1990) suggested to formulate a transport equation directly for the eddy vis-
cosity vr. The goal is to replace the indirect calculation of v from u* and length [*. This aims
to avoid numerical difficulties occurring with the k¥ — € model and to improve fidelity. In this
spirit, Spalart and Allmaras (1994) developed a model being by design computationally simple
and numerically forgiving.

In the Spalart-Allmaras model (sa), the Boussinesq approximation is further simplified. In
particular, the term —%k&; j in Eq. (2.15) is discarded because k is not readily available. Note that
this does not introduce any error for incompressible flows, as this term is usually integrated into
the pressure. Therefore, the Reynolds stress is expressed as

— u’lu’j = 2VT§-;J'. (2.21)
The eddy viscosity is defined as
vr =D fo1, (222
where U is an effective viscosity and fy1 is a non-linear function of 7/v. The transport equation

|
O + 1050 = P" =D + — [0 (v + 7) 0;7)] (2.23)

describes the variation of 7. The function f,1, the production term P?, the destruction term D
and the value of the constant o appearing in Eq. (2.23) are documented in the original work of
Spalart and Allmaras (1994). Note that the transport equation (2.23) implemented in the Open-
FOAM framework is slightly different from the one originally proposed. More precisely, it does
not contain the trip term intended to model transition.

Finally, the model requires boundary conditions. At walls, the Reynolds stress and the eddy
viscosity have to vanish. Consequently, 7., is zero. The boundary conditions for the farfield must
represent a fully turbulent behavior. As proposed by Spalart (2000) and Spalart and Rumsey (2007),
Uy is set to verify 3 < P/ < 5. The corresponding v can be then calculated from Eq. (2.22).

2.2.2 Delayed-Detached Eddy Simulation

In the context of turbulent flows, UraNs simulations model all scales of turbulence. Therefore,
if the model is not adapted to the computed physics, it can lead to inaccurate results. On the
other hand, pNs requires very fine grids to capture all the turbulent scales, which is most of the
time computationally too expensive. This section introduces different modeling techniques lying
between DNs and URANS in terms of fidelity. In particular, LEs, DEs and DDEs are described.

As explained before, LEs aims to resolve the large eddies that contain the bulk of energy and
are dependent on the flow geometry. The small dissipative scales and part of the inertial subrange
are not resolved and need thus to be modeled. Practically, the Navier-Stokes equations (2.3) are
filtered in space leading to

61121 = 0,
(2.24)

SGS

p(?taz‘ + pﬁjajﬂi = — 61[/)\4- ,uafjﬁz — 6j7-ji s

where ~ represent the filtered variables being resolved. In Eq. (2.24), 7;;° is the unclosed sub-grid

scale (sGs) stress. It is modeled by using semi-empirical laws that represent the effects of the unre-
solved eddies, and in particular the dissipation of energy. The sGs model developed by Smagorin-
sky (1963) is probably the most popular one. It is based on a linear eddy viscosity assumption that
links the sGs stress to the filtered strain rate S;; = 1/2 (;@; + @;4i; ). Mathematically, this reads

~

— ’7';;b = QVSGSS'L]" (2.25)
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where the eddy viscosity is modeled by

Vsgs = (CSA)2 § (2.26)

In Eq. (2.26), § = \/2§i]~ §ij, Cs is the Smagorinsky coefficient and A is function of the grid
spacing. Note that C's A is a length scale called the Smagorinsky length scale.

For a free shear layer, LEs requires a number of mesh points proportional to Re”?to accurately
capture the smallest resolved scales. Taking into account the time integration, the number of
floating-point operations required for LEs is proportional to Re” (Hirsch, 2007). It is significantly
lower than pNs requirements but still high. On the other hand, for wall-bounded flows, the size
of the scales that are responsible for the turbulence production is similar to the viscous length
scale (Pope, 2000). Therefore, a DNs-like resolution is needed in the near-wall region so that a
wall-resolved LEs is still computationally too costly for high Re flows. In that case, a special wall
treatment is needed to allow a coarser resolution near the wall.

In this context, Spalart et al. (1997) proposed a modeling technique called detached eddy sim-
ulation (DEs). It combines an LEs approach away from the walls and UraNs close to them. In par-
ticular, Spalart et al. (1997) used sa as Urans model (Spalart and Allmaras, 1994). pEs is based on
EvM models and it consists in limiting the eddy viscosity away from the wall. If the eddy viscosity
is kept low, natural instabilities are able to develop into turbulence (Durbin and Pettersson Reif,
2011). A length scale d determines the shift from UrRANs to LEs behavior. It is defined as

d = min d ,CprsA ], (2.27)

RANS mode  SGS mode

where Cp s is an adjustable constant of order one. The term d is the distance to the wall appear-
ing in the sa model (Spalart and Allmaras, 1994) and A is a measure of the mesh size. Typically, for
cartesian grids, A is defined as the largest grid spacing in all the three directions of space or, math-
ematically, A = max (Az, Ay, Az). Spalart et al. (1997) obtained then a hybrid technique that
performs as sa near to the wall as d reduces to d. Farther from the wall, it acts as a scs model since
d = Cprs tends to the Smagorinsky length scale appearing in Eq. (2.26). Finally, although
originally developed with a sa model, DEs can be employed with any urans model by defining
properly a length scale with the available turbulent variables. As an example, Menter et al. (2003)
extended this idea to the k£ — w ssT model.

DES simulations are thus designed to treat the entire boundary layer using a uraNs model and
to apply LEs treatment elsewhere. The regions subjected to UrRaNSs or LEs do not have to be explicitly
identified a priori. However, the user defines them implicitly since the grid strongly impacts the
location of the switch between UraNs and scs treatment. Figure 2.10 illustrates this phenomenon
by comparing two grids in a boundary layer. The grids differ by their streamwise density and have
a largest grid spacing A = Az ~ Az. The grid displayed in Fig. 2.10a is typical of URANS or DES
use. For such a mesh, A is always much larger than the distance to the wall d. Therefore, using
Eq. (2.27), pEs would be in its uraNs mode throughout the boundary layer as expected. However,
for the grid shown in Fig. 2.10b, there exists a region where A is smaller than the distance d. The
pEs would then activate its ss mode in the upper two-thirds of the boundary layer. The grid in
this area however is not fine enough to accurately resolve the velocity fluctuations. Therefore, LEs
would be under-resolved in the boundary layer which might lead to “grid-induced separation”. It
means that the onset of the separation is altered by the mesh, which results to a flow detaching
too far upstream (Mellen et al., 2002; Menter and Kuntz, 2004). However, this second type of grid
can be justifiably desired, for example, for a grid convergence study, a design adapted to geometry
features or a properly discretized thick boundary layer.

Menter et al. (2003) addressed this deficiency by identifying the boundary layer and preventing
aswitch to the LEs mode within it. This identification is performed by using the blending functions
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(a) Type I: natural DEs. (b) Type II: ambiguous grid spacing.

Figure 2.10: Two DEs grids in a boundary layer. The dashed lines represent the mean velocity
and ¢ is the boundary layer thickness. The grid spacing in the third dimension is similar to the
streamwise grid spacing, i.e., Az &~ Axz. Adapted from Spalart et al. (2006).

of the ssT turbulence model. Spalart et al. (2006) extended this concept to other urRaNs models
involving an eddy viscosity. To this end, a function fg that takes the value 1 in the LEs region and

0 elsewhere is defined
fa =1—tanh ([8r4]°), (2.28)

with N
rg= —t ¥ (2.29)
A/ @ui&jum?dQ
The term 74 is equal to 1 in the logarithmic layer and falls to O towards the edge of the boundary
layer. Moreover, this new approach requires to re-define the original pes length scale d given by
Eq. (2.27) as
d=d— fqmax (0,d — CpgsA). (2.30)

This methodology delays the LEs mode of pes. Consequently, Spalart et al. (2006) named it the
Delayed Detached-Eddy Simulation (ppEs). Finally, the constants appearing in Eq. (2.28) are de-
termined from the application of the sa-based DDEs on a flat-plate boundary layer. An adjustment
of those constants may be required for ppes based on other turbulence models. In the present
work, the ppEs simulations carried out use the sa-based ppEs methodology and, more precisely,
the version proposed by Spalart et al. (2006).

2.3 Indirect calculation of loads by the use of Particle Image Velocimetry

Particle Image Velocimetry (p1v) is an optical technique that enables the measurement of a instan-
taneous flow velocity field by using images of particles seeded in the fluid. Developed during the
eighties, prv has become increasingly popular and is nowadays a well-recognized experimental tool
to study complex flows. Initially piv provided two-dimensional velocity fields in a plane, i.e. two
velocity components in a two-dimensional space (2c2p). The technique was then extended to the
acquisition of the out-of-plane velocity component (3c2p) and nowadays to fully tri-dimensional
measurements in a volume (3¢3D).

Aerodynamic loads on a body can be indirectly estimated from piv measurements. A first
methodology was proposed by Lin and Rockwell (1996) who used the vorticity field computed
from prv data to estimate the instantaneous lift. As the method requires the knowledge of the
entire vorticity history, the piv window should theoretically be infinite if the vorticity is convected
by the flow. Lin and Rockwell (1996) circumvented this limitation by applying the formulation to
a cylinder oscillating in still fluid, so that the vorticity remained confined in a finite domain that
could be captured by the prv window.

The method was then extended by Noca et al. (1997) to eliminate the domain size limitation.
Derived from the integral form of the momentum equation applied to a control surface surround-
ing the geometry of interest, his formulation expresses the forces solely in terms of the velocity
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field and its derivatives by re-writing the pressure term. This approach requires an accurate eval-
uation of the vorticity on the entire control surface, including the region near the body. However,
obtaining the velocity field in the vicinity of geometries, especially moving ones, can be challeng-
ing due to reflections of the laser sheet. To alleviate this drawback, Noca et al. (1999) proposed
alternative approaches, where the knowledge of the velocity and vorticity fields are required only
on the contours of the control surface.

In parallel to the work of Noca et al. (1999), Unal et al. (1997) showed that the classical integral
form of the momentum equation can be directly used to estimate the loads on a body. In this case
both contour and surface integrals of the velocity and pressure fields are required. Nonetheless,
the pressure can be itself obtained from the piv data through the application of the Navier-Stokes
equations.

In this work, the so-called flux equation proposed by Noca et al. (1999) is extended to the cal-
culation of moments as the original formulation allowed the calculation of forces only. In Chap. 4,
this extended formulation and the integral form of the Navier-Stokes equations are applied to
spatio-temporal data obtained from separated flows. The following sections describe first the ba-
sic concepts of 2c2p piv. Note that more information about this topic can be found for instance
in the practical guide of Raffel et al. (2013) or in the Lecture Series of the Von Karman Institute
(Anthoine et al., 2009). Then, the two methodologies allowing the indirect calculation of aero-
dynamic loads through p1v are presented. The corresponding sections begin with the respective
formulation and end with the validation of the implementation based on cFp data.

2.3.1 Particle Image Velocimetry

Particle Image Velocimetry is a non-intrusive optical measurement technique allowing the indirect
acquisition of velocity fields. Originating in solid mechanics, p1v has its roots in laser speckle
velocimetry (Lsv), a technique that measures displacements through scattered laser light. Dudderar
and Simpkins (1977) were the first to seek possibilities to apply Lsv to fluid flows. A systematic
approach was then proposed by Meynart (1983) and Adrian and Yao (1984). The technique was
initially limited to the acquisition of two velocity components in a two-dimensional velocity field
and was thus called 2c2p p1v. The measurement of the third velocity component was enabled by
the emergence of stereoscopic 3cz2p piv (Prasad, 2000). This technique consists in the simultaneous
recording of two different views of a single plane. The combination of these two views enables
the reconstruction of the three velocity components. Nowadays, if sufficient illumination power
is available, the light sheet can be expanded into a thick region such that three dimensional prv
measurements are possible within a volume (3c3p).

Basic 2c2p p1v determines the flow velocity by measuring the displacement of tracer particles
in a plane illuminated by a light sheet over a short interval of time. The flow is generally seeded
with tracer particles. These particles are then illuminated in a plane twice within a short time
interval At and a camera records the light scattered by the tracers in these two different time
frames. The displacement Ax of the particles between two light pulses is then determined by
comparison of the two frames and classical image processing techniques. After the removal of
potential outliers, the two components of the velocity in the two dimensional plane are obtained as
u = Ax/a¢. Therefore, a typical p1v system consists of several sub-systems as depicted in Fig. 2.11:
tracer particles, a laser and the corresponding optics necessary to generate a light sheet, and a
camera to record images.

Because p1v measures the velocity of the tracers and not directly the flow velocity, the tracers
have to be chosen so as to avoid significant discrepancy between fluid and particle motion. By
analogy with Stokes’ drag law, the velocity lag in a continuously accelerating fluid reads

u, —uy = di%dtﬂf, (2.31)
where d), is the particle diameter and indices p and f stand for variables related to particle and
fluid, respectively (Raffel et al., 2013). Therefore, to reduce the velocity lag, the seeding and the
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Figure 2.11: Typical arrangement setup for 2c2p P1v experiment. Reproduced from Raffel et al.
(2013).

fluid should have similar densities. When the particle density is much greater than the fluid density,
the particle response time 7, is

J— d;%PP
P 18uy”
The Stokes number Stk characterizes the behavior of particles suspended in a fluid flow by com-

paring the time response of a particle 7, and the characteristic time of the flow 7. This non-
dimensional number is defined as

(2.32)

Stk = 2. (2.33)
T

For turbulent flows, the smallest time scale corresponds to the Kolmogorov time scale 7. There-
fore, for a seeding such that p, » py, the Stokes number Stk = 7p/r, should tend to zero.
Consequently, the diameter of the particles should be very small in order to ensure good track-
ing (Raffel et al., 2013). In the case of a gas flow such as air, matching density is difficult and the
seeding density is generally higher than the fluid density. Very small particles must thus be used
which usually deteriorates their light scattering property. Typical tracers for a gas are solid tita-
nium or glass micro-spheres, smoke, liquid oil. For liquid flows, it is much simpler to find seeding
particles with matching density. Common solid materials used in that context are polystyrene,
aluminum flakes, hollow glass spheres or granules for synthetic coatings.

Alaser beam is generally used as a high-power light source. Cylindrical lenses or rotating mir-
rors transform the beam into a sheet that illuminates the tracers. Argon-ion and Neodym:YAG
lasers are frequent choices for applications requiring continuous and pulsed light, respectively.
Pictures of the seeding were previously recorded by the use of photography technique but, nowa-
days, images are mainly digital and acquired by ccp or cmos cameras enabling the recording of
several distinct prv frames within microseconds. The availability of high-speed prv camera and
high-speed laser led to time-resolved p1v, a technique that allows the acquisition of the instanta-
neous flow field even for high frequency phenomena. Finally, the most frequently used recording
method is the double frame/single exposure piv which provides a single illuminated image of the
flow for each of the two illumination pulses. As the frames are distinct, this technique eliminates
the need to resolve directional ambiguity that occurs with the single frame/multi-exposure ap-
proach.

Once p1v frames are recorded, the velocity field is obtained from the displacement Ax. Unlike
particle tracking techniques which follow individual tracers, here the position of a set of particles is
analyzed through statistical methods. In the context of a digital approach with double frame/single
exposure, this analysis consists in the calculation of the cross-correlation between patterns of
tracers. As depicted in Fig. 2.12, an interrogation window is defined around a point (zo, yo) in
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frames A and B distant in time by A¢. The interrogation windows in frames A and B are called
IWagy and IWby, respectively. The minimal size of these interrogation windows is defined by
the one quarter rule, i.e the maximum displacement that can be measured is limited to roughly a
quarter of the interrogation window size (Raffel et al., 2013). The displacement Ax is obtained by
measuring the degree of matching between IWag and IWbg through a cross-correlation function.
More specifically, a cross-correlation map having the same size as the interrogation window is
computed by using frequency domain multiplications. The location with the highest value in the
resulting cross-correlation map represents a direct estimation of the particle displacement Ax.
Note that this peak location is determined using a Gaussian fit which allows subpixel accuracy.
Knowing the displacement Ax at the point (o, yo) and the time interval At between two light
pulses, the corresponding velocity at this location can be easily computed. The method inherently
provides a first order approximation of the velocity field because a constant velocity is assumed
between two images. Finally, this process is repeated for each points belonging to a defined grid
to retrieve an entire velocity field.

(<o, 30) .(woryp)

FramesA Frame B

Figure 2.12: Interrogation windows in the context of single pass p1v. Adapted from Raffel et al.
(2013).

The dynamic range is the ability to represent large range of velocity scales in the flow field.
With the basic procedure described previously, this dynamic range is limited by the size of the in-
terrogation window. The one-quarter rule imposes a large interrogation window in order to cap-
ture large displacements, i.e., high velocities. This simultaneously decreases the smallest scales that
can be detected, and thus the resolution. The dynamic range can be enlarged by using advanced
interrogation techniques. The p1v algorithm used in the context of this thesis is based on the win-
dow displacement iterative multigrid (wipim) interrogation method (Scarano and Riethmuller,
1999) which takes advantage of multiple pass interrogations with window displacement and grid
refinement. The idea behind this procedure is to calculate a first displacement Axg through a
first correlation map determined by using the interrogation windows IWag and IWb defined at
point (2o, yo) as explained previously for the basic procedure. Then, the process is repeated for a
second pass where a second interrogation window is defined for each frame A and B. These two
new interrogation widows are respectively called IWa; and IWb; and are offset with respect to
point (xo, yo). To obtain a central difference interrogation and eventually a second order velocity
field, the center of IWa; and IWb; are respectively given by (x1,y1), = (zo,%0) — 2%0/2 and
(z1,91)y = (z0,%0) + A%0/2, as depicted in Fig. 2.13. This second pass increases the fraction
of matched tracers in the two windows and thus the signal-to-noise ratio of the correlation peak.
The number of passes can be fixed or the process can be repeated until the calculated displacement
is converged. In the context of this work, the number of passes is constant and set to two. The
multiple pass interrogation algorithm can be further improved by using an approach in which the
size of the interrogation window is reduced as a new pass is considered. This procedure is called
iterative multigid and combines a large first interrogation window with as smaller second one.
Therefore, it increases the achievable dynamic range.

After the processing of the p1v images, a certain number of incorrectly determined velocity
vectors called outliers can frequently be found by visual inspection of the raw data. In order to
automatically detect these incorrect vectors, the raw velocity field obtained after each pass of the
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Figure 2.13: Interrogation windows in the context of double pass pIv using wipim. Adapted from
Raffel et al. (2013).

pIv algorithm has to be validated. For this purpose, two validation tests are performed on the
cross-correlation map that leads to a velocity vector: i) the location of the peak must be within a
predetermined range in the x and y-directions and, ii) the peak magnitude should be at least three
standard deviations above the mean value of the cross-correlation map. If data validation fails, the
incorrect displacement vector is discarded and replaced using a median filter, i.e., the new value is
the median of the neighboring displacement vectors. For time or phase-averaged velocity fields,
a 3 — o filter is additionally applied. This filter requires several prv images and their respective
particle displacement fields. Averaged Ax and standard deviation Ax’ are calculated using K
particle displacement fields (Ax)k, where k stands for the k™ image. Then, each displacement
field (Ax)" is compared to the averaged Ax. For each field (Ax)", only the displacement vectors
satisfying Ax — 3AX’ < (Ax)k < Ax + 3AX/ are retained, the others being discarded. Finally,
statistics on the K particle displacement fields (Ax)k are re-calculated considering only the re-
maining vectors. The velocity field is finally computed by using the time between pulses At and
the magnification produced by the camera lens.

The overall algorithm used in the present work is given in Algo. 1. The first phase consists
in the definition of the region of interest (ro1) and the grid where the velocity field is calculated.
During this initialization phase, the user also sets the size of the interrogation windows required
for first and second passes. Then, and for each pair of images, the particle displacement Axg
associated with each point of the grid is calculated through a first pass and the validity of the
obtained values is verified. This first pass completed, each detected outlier is replaced by applying a
median filter. A second pass is then applied using AXg to shift the interrogation window associated
with each calculation point. The particle displacement field Ax; is subsequently post-processed
to remove outliers. Finally, for time or phase-averaged flows, a 3 — o filter is applied. As discussed
before, it is possible to indirectly estimate the aerodynamic loads from p1v results. The subsequent
Secs. 2.3.2,2.3.3 and 2.3.4 are dedicated to that purpose.

2.3.2 Approach based on the integral form of the Navier-Stokes equations

The simplest and most trivial indirect approach to calculate the aerodynamic loads from piv data
is the direct application of the integral form of the Navier-Stokes equations. This section describes
the physical explanation of this formulation and the challenges appearing when it is applied to piv
measurements.

2.3.2.1 Loads from the integral form of the Navier-Stokes equations

The integration of the differential form of the Navier-Stokes equations (2.3) on a control volume
V gives the integral form of the Navier-Stokes equations

ds f pud) = f n-[—pl — puu + 7] dS, (2.34)
v S
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Algorithm 1: Calculation of p1v velocity field.

Input: Snapshots containing pair of images temporally distant of At
Output: Velocity field on a grid and associated with a Ro1

/* Initialization */
(11 define grid and roy;
r21 define size of interrogation window for first and second pass;

/* Analyze of each snapshot */
31 foreach pair of images do
/* First pass: calculation of displacement Axg */
[41 foreach point of the grid (zo, yo) do
(51 foreach point inside the interrogation window (z;,y;) do
[6] ‘ calculate the cross-correlation associated with (x;, s );
7 end
(8] fit the cross-correlation map with Gaussian function;
[9] determine the displacement Axo;
[10] check the validity of Axo;
[11] end
/* First pass: treatment of outliers */
[12] foreach detected outlier do
[13] ‘ replace outlier by the median of neighboring values;
[14] end
/* Second pass: calculation of displacement Ax = Ax; */
[15 foreach point of the grid (zo, yo) do
[16] calculate the location of the interrogation window: (x1,y1) 4 and (21, Y1) 5;
[17] foreach point inside the interrogation window (z;,y;) do
[18] ‘ calculate the cross-correlation associated with (s, y; );
[191 end
[20] fit the cross-correlation map with Gaussian function;
[21] determine the displacement Ax;
[22] check the validity of Axy;
[23] end
/* Second pass: treatment of outliers */
[24] foreach detected outlier do
[25] ‘ replace outlier by the median of neighboring values;
[26] end
re71 end
/* Filter based on several snapshots x/

r28] apply a 3 — o filter;

where V consists only in the fluid volume, and is fixed in space and bounded by a control surface
S. In Eq. 2.34, n is the unit normal vector determining the orientation of surface S and is defined
as positive when pointing away from volume V. This equation is simply a formulation of Newton’s
second law applied to a fluid volume. The left-hand side of Eq. (2.34) corresponds to the time rate
of change in momentum in the volume V due to unsteady flow fluctuations while the right-hand
size is the sum of the surface forces acting on the control surface S (Anderson, 2010). Note that
the body forces have been neglected.

To calculate the aerodynamic force on a body, Eq. (2.34) has to be modified to take into account
the impact of this body on the fluid. This can be done by choosing a control volume V enclosing
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the body of volume V%, as in Fig. 2.14, where V), is excluded from the fluid control volume. In
other words, V is bounded by the two surfaces S, and Sp. Note that unlike So, Sp is not fixed in
space and time as V;, can move. The aerodynamic force on the body corresponds to the reaction

Sp(t)

)

Figure 2.14: Domain of integration for the determination of aerodynamic forces on a body (in
dark gray) using momentum-based approaches.

to the force applied by the body on the fluid, i.e. the integrated contribution of the pressure and
shear stress acting on the surface Sp. It is assumed here that there is no flow through the body
surface. Therefore, neglecting body forces, Newton’s second law can be written as

dtf pudV = §n~ [—pl — puu + 7] dS + %n- [—pI + 7] dS, (2.35)
v
S Sp

where the second term on the right-hand side represents the force applied by the body on the fluid.
Therefore, the aerodynamic force F exerted by the fluid on the body is

F = —d; f pudV + %n- [—pl — puu + 7] dS. (2.36)
%
S

The formulation for torques created by the fluid with respect to a point R directly follows
from Eq. (2.36). To obtain the aerodynamic moments, each elemental surface or volume force has
to be multiplied by the lever arm connecting point R to the point of the elemental force application.
In vector notation, this takes the form of a cross product where the lever arm is a location vector r.
Therefore, the moment vector is the sum of these elemental contributions, which is expressed by
volume or surface integral. Finally, the aerodynamic moment with respect to point R is written
as

M:fdtjpuxrdVJr %(n~[fplfpuu+‘r])><rd8. (2.37)
v
S

Note that, using Eq. (2.37), the resulting moment is negative according to the right-hand rule
definition to conform with the convention of positive pitch-up moment used in aerodynamics.
Equations (2.36) and (2.37) allow the general calculation of forces and moments based on
a momentum-balance. The only assumptions made are that there is no flow through the body
surface, Sy is fixed and body forces are neglected. However, the specific applications considered
here require some adaptation of the general formulation given by Egs. (2.36) and (2.37). First, since
the available velocity fields correspond to 2c2p p1v fields, the momentum-balance is applied to a
two-dimensional surface S whose contour is composed of the external and body borders, Co, and
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Figure 2.15: Schematic view of the control surface S and its countours Cy and Cp around the
geometry I3 of interest.

Cy, respectively. Moreover, the surface S is assumed to be rectangular, as depicted in Fig. 2.15.
Although the body is free to move, the external border Co is assumed to be static.

Because of the low acquisition frequency of the p1v apparatus used in this work, the evaluation
of instantaneous loads is not possible. Moreover, since the flows studied in the following are tur-
bulent, only statistical mean fields are considered. The momentum balance must thus be derived
from the Reynolds-averaged Navier-Stokes equations (2.14). This provides the two-dimensional
average aerodynamic force

Fi = 7dtf pu; ds — fﬁﬁnl dC + § (*pﬂiﬂ]’ + Tij — pu;u;) n; dC, (2.38)
S
COC jee)

and the average pitching moment about point R defined positive nose up

M, = — dtj PULTm €lm AS — j@ﬁnﬁmelm dc
s
c
. (2.39)
+ § (7pﬂlﬁj + 7Ty — pufu;) NjTméeim dC,
Coo

where uju/; is the Reynolds stress tensor introduced in Sec. 2.1 and €;; is the two-dimensional
Levi-Cevita symbol. Equations (2.38) and (2.39) represent the core of the indirect load measure-
ment methodology based on the integral Navier-Stokes equations and will be hereafter referred
to as INSE. Finally, note that the average - does not necessarily imply a time averaging procedure
so that the average force and moment can be time dependent.

Each term in the above expressions can be calculated by averaging the velocity field u; ob-
tained from p1v measurements. In particular, the average viscous stress tensor 7;; is computed
from the average velocity gradients

Tij = (0 + 0;;) . (2.40)
The average pressure field p is not explicitly known, but can be determined indirectly as explained
in the following.
2.3.2.2 Obtaining the pressure field from PIv measurements

As shown by Egs. (2.38) and (2.39), the indirect calculation of loads based on the integral form of
the Navier-Stokes equations requires the knowledge of the pressure. However, as pressure is not
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explicitly acquired by pIv measurements, it has to be indirectly calculated from the velocity field.
This has been extensively reviewed by van Oudheusden (2013) and used in several studies which
focused on the pressure field calculation from p1v (Gurka et al.,, 1999; Dabiri et al.,, 2014; Laskari
et al,, 2016; Schneiders et al., 2016; van Gent et al., 2017). Two approaches can be considered,
both based on the knowledge of the average pressure derivatives calculated from the averaged
Navier-Stokes equations

0ip = —pOetl; — pUi; 05 + pdy i — Ojulul. (2.41)
The first option is to solve the Poisson equation that is obtained by taking the divergence of
Eq. (2.41). Boundary conditions of Neumann type can be applied using Eq. (2.41). The second
option consists in integrating along Co the component of the pressure gradient 0;p that is tan-
gential to the contour. Because the use of the pressure Poisson equation increases the computa-
tional time without improving results significantly (Albrecht et al., 2012), the second option has
been chosen here. Since the integration path is closed, the average pressure computed at the last
point E depicted in Fig. 2.16 should be equal to the initial value at point A, i.e,, g = Dy = Pinis-
In practice, a discrepancy between these two values is typically observed because the piv data are
only available at discrete points and entail measurement errors. Nonetheless, the integration error
€p = Da — Dg can be used to improve the pressure calculation.

n;

D 0 c

<« Coo ¢’

- @
Cy B’
S

A=E | B

nj

Figure 2.16: Schematic view of the integration path used to calculate the pressure from its deriva-
tives.

The approach used here is based on the work of Kurtulus et al. (2007), who estimated the pres-
sure from Bernoulli’s equation outside the viscous wake, represented by the segments A-B-B’ and
C'-C-D-E in Fig. 2.16, and integrated Eq. (2.41) in the wake region, depicted by the segment B'-C’.
The value obtained in C’ is then compared to the one computed by Bernoulli’s equation and the
discrepancy is redistributed with a linear weighting along B'-C’. In the present work, Eq. (2.41)
is used along the entire contour Cy but the correction is only applied in the wake region. The
assumption that most of the error is generated in the wake, and then simply propagated along the
rest of the contour, seems reasonable since the edge B-C is the zone where the spatio-temporal
variations of the velocity and pressure are the largest, and, thus, the numerical integration of the
pressure gradient is the most challenging. Based on this assumption, the error €5 is simply re-
moved from the computed value P along edges E-D-C-C’. Similarly to Kurtulus et al. (2007), it
is assumed that the error £ increases linearly in the wake, i.e. along the segment B'-C’, and the
pressure is corrected accordingly.

The wake is here defined as the region of large-scale vorticity. This region is identified by
the I’y function (Graftieaux et al., 2001), which provides the location of the large-scale vortex
boundary based on the topology of the velocity field. This method was preferred to the one based
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on the vorticity proposed by Kurtulus et al. (2007), as the velocity field is less noisy than its spatial
derivatives. The value of the I's function at a point P is given by the integral over a small area A

around P u b M P
Iz (P) = lf [ ) -l _u~29] = aa, (2.42)
Alvea M —xP)[uM —a”|

where, as depicted in Fig. 2.17, xM is the location of a point M that lies on surface A, and e is
the unit vector normal to the measurement plane. Moreover, u™ is the velocity vector associated
with M and @" is a local convection velocity around P defined as ab = 1/a S Lu dA, the mean
velocity on A. The wake is identified as the region for which |T'z| > T'5"™*°, where I'5*™*® is a
threshold value to be chosen. The pressure correction on edge B-C then consists of three parts:
on C'-C, the error £ is removed from the initially computed p; on B’-C’, &5 is removed linearly;
and on B-B’, the initially calculated pressure is not corrected.

o

Figure 2.17: Schematic view of the calculation of I'>.

2.3.3 Approach based on Noca’s flux equation

Using the integral form of the momentum equation is not the only existing possibility to indirectly
calculate the loads from p1v measurements. In his thesis, Noca (1997) derived several formulations
allowing the estimation of forces. Among them, the so-called flux equation is a formulation of the
momentum balance which does not require the knowledge of pressure, nor the integration over
the control volume V but only over the bounding surface S. The following section describes this
formulation and extends it to the calculation of moments.

2.3.3.1 Forces from Noca’s flux equation

As stated before, Noca’s flux equation derives from the integral momentum equation given by
Eq. (2.36). It is written as

F = fﬁn~(7Ft+’7Fpruu+T> dS —d¢ §I,A(pux)d$7 (2.43)
Seo J
with
A/Ft = - p(atu)x,
’YFP - g”lleI —+ pr 7 [w(x x u) —u(x X w)]
- N'p_ 1 [(x- Opu)l — x0yu] (2.44)
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The term ~'? represents the pressure contribution, while the sum of v** and the last integral in
Eq. (2.43) corresponds to the temporal term in the Navier-Stokes equations. Moreover, I is the unit
tensor, A is the dimension of space, x is a location vector with respect to some arbitrary origin
and w is the vorticity. The original formulation proposed by Noca et al. (1999) is more general. In
particular, Egs. (2.43) and (2.44) assume that the external border Sy, is fixed and there is no flow
through the body surface S,. More information about the derivation of Egs. (2.43) and (2.44) is
available in App. A.2.

Similarly to the iNsE methodology, this three-dimensional formulation has to be adapted to
planar p1v fields with low sampling frequency. In this case, the two-dimensional formulation for
the average force reads

F;, = § (Wﬁt + Wip — PUT; + Tji — pugu’i) n; dC —d¢ 3€pnjﬁjxi dc, (2.45)
Coo Cp

- _F
where tensors 'yfjt and 7; jp are defined as

Yij = — POLUiL,

_Fp _ _ 2 —— _
i — PUTEWE5, + —UKUEO:; + PTi0tU;
Vij p J 2 j TP J (2.46)

— pTROURj + T1OKTk10ij — TiOkThj
+ pxiaku;ug — px1Okul u;lij.

In Egs. (2.45)-(2.46), Cy, is the closed-path contour defining the body boundary as shown in Fig. 2.15,
;5 is the Kronecker delta and . = 0;Umérm is the average vorticity. Note that unlike Eq. (2.38),
Eq. (2.45) enables the calculation of loads by using only closed-path integrals and does not need
the knowledge of pressure.

Finally, the last term in Eq. (2.45) requires the spatio-temporal variation of the body location.
This can be difficult to obtain directly from pIv measurements due to reflections appearing near
the surface. Nonetheless, in cases of rigid body motion, this term can be directly expressed in
terms of the overall body kinematics. The body displacement can be decomposed into a rigid
translation at velocity u} and a rotation around the z-axis at angular velocity ¢, here defined
positive clockwise. The velocity of the body surface is then

w=ul—al (zh — k) €ik, (2.47)

where x; is the position of the center of rotation. Finally, the integral along Cy, in Eq. (2.45) re-
quired to compute F'; can be written as

—d; ﬁ;pnjﬂjxi dC = pBd.u; + pBz;did" ey, (2.48)

Cp
where 15 is the area of the body cross-section, and Z; the location vector of the centroid defined
with respect to the pivot point. The term requiring the spatio-temporal variation of the body loca-

tion is thus calculated from the known kinematics without using piv measurements. The deriva-
tion of this result can be found in App. A.2.

2.3.3.2 Derivation of a formulation for the calculation of moments

It is also possible to obtain a formulation for the aerodynamic moment that does not require the
pressure nor the volume integral. For the methodology based on the Navier-Stokes equations,
the formulation for the moment directly derives from the equation allowing the calculation of
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forces. However, the expression for the moment cannot be established from the flux equation.
The reason is that the so-called pressure identity, a relation used by Noca et al. (1999) to rewrite
the pressure term and derive the flux equation, is not applicable when a lever arm multiplies the
pressure contribution. Therefore, a new formulation has to be derived from the expression for
the moment with respect to point R, Eq. (2.37), recalled here for convenience,

M:*dthUXl‘dv+ fﬁ(n~[fplfpuu+7'])><rd8. (2.37)

% 5
The derivation is then similar to what was done by Noca et al. (1999) to establish the flux
equation. It consists of two steps: i) the elimination of pressure and ii) the rewriting of the vol-

ume integral into surface integrals. Note that, as for the force formulation, it is assumed that the
external surface Sy is static and that there is no flow through the body surface.

Elimination of pressure To rewrite the pressure, Noca et al. (1999) uses the so-called pressure
identity. However, as mentioned before, it cannot be directly used for the calculation of moments.
Instead, the pressure term in Eq. (2.37) can be rewritten using the extended pressure identity which
is derived from the pressure identity as explained in App. A.4. The extended pressure identity reads

—fﬁqﬁ(nxx) d8=%§xx[x><(v¢xn)] ds, (2.49)
s s

where ¢ is an arbitrary scalar. Note that the domain enclosed by S can be multiply-connected.
Using Eq. (2.49) with ¢ = p, one has

—%p(nxx) dS=%§xx[xx(Vp><n)] ds. (2.50)
s S

The pressure gradient can then be written as a function of the velocity field using the differential
form of the Navier-Stokes equations

Vp = —pdiu — V(gHuHQ) +puxw+V-T. (2.51)
Finally, using the vector identity
xx(xx[axn])=n-({faxI] -x}x— Ix|? [a x 1), (2.52)
and imposing r = X, the pressure term can be written as
- ﬁ;p(nxx) ds = jgn-’yMpdS, (2.53)
S S
where vMP is

A7 = = 2 jul® (x x )

L ([0 x 1 - x)x + L |x|? (2 x T)

_g N p 9 (2.54)
+N ([{uxw}xl]-x)x—NHxH ({u x w} x 1)

1 1 2
o U X 0 x— el (97 x).

Note that in the two-dimensional case, i.e. N = 2, the first term on the right-hand side of Eq. (2.52)
vanishes, leading to a simplification of Eq. (2.54).
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Elimination of volume integral By using the Reynolds transport theorem and imposing r = X,
the volume integral in Eq. (2.37) can be written as

—dtf pu x xdV = f px X OpadV — %(ub-n> (pu x x) dS, (2.55)
v % 3

where u® is the velocity at the body surface. In order to express the volume integral on the right-
hand side of Eq. (2.55) as a surface integral, the quantity X x O.u is rewritten in terms of field
derivatives. This is achieved by starting from the identity

1 1
X X Opu = §V x (||x]*0¢u) — §Hx||2(9tw, (2.56)
and taking advantage of the vorticity equation

dw=(w-Vu— (u-V)w+vVw. (2.57)

Then, the following identities are used

%% (0 V)w = V- (|x]*0w) =2 (x - ) w, (2.58)
I* (@ - V)u =V (|x|*wua) -2 (x-w)u, (2.59)
x|°Vw = V* (|x[*w) — V - (4xw) + 2N w, (2.60)

(x u)w

~Vx [%Huu?x ~ (uu) ~x]

-V [(uxx)u] + (x-w)u, (2.61)

to obtain
X X 0pu =V X (§HXH atu) +V- (§HXH uw)
L2
+V x (§\|u\| x — [uu] X)

(2.62)

+ V- ([uxx]u)— V- (%Hx“zwu)
—v. (v [guxum]) V- (2uxw) — V x (vAu).

Finally, Gauss’ theorem is used to express the volume integral as a surface integral. Thus, equa-
tion (2.55) becomes

_dtf pux xdV = § n-~Mtds — 3€(u” -n) (pu x x) dS, (2.63)
v Soo+S Sy

Mt

with v " given by

Mt _ ngHZ oruxI+p(uxx)u
Pion2 P2
+ 5% vw — Sfx|” wu
p 2 (2.64)
~ Pl x 14 p (o] ) ¢
+ pxw + pNu x I — gHXHQVw.
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Note thatif N = 2, the vortex stretching term in Eq. (2.57) vanishes and several terms in Eq. (2.64)
disappear.

Finally, a formulation similar to Noca’s flux equation is obtained for the aerodynamic moment
with respect to a point R,

M= jg n-'yMtd$—§(ub~n> (pu x x) dS
S +Sp S

+ 3€n~'yMpdS—
s

Swo ©

N (2.65)
n- ([puu — 7] x x) dS,

where the tensors v™? and v* are given by Eqs. (2.54) and (2.64), respectively. Note again
that the moment is defined positive nose-up, i.e., it is negative according to the right-hand rule.
Moreover, this formulation requires the origin of the location vector x to be located at point R.

The integral along the body surface involves the vorticity, which is very difficult to compute
accurately from piv data. In practice, it is often better to keep the temporal term as a volume
integral. Therefore, in the case of a two-dimensional turbulent flow, the pitching moment around
R is

M, =—d; J PUL T €1m, AS + J;nﬁlMp dc
s

Coo

- (2.66)
+ f[) (7pﬂlﬂj + 7Ty — pu;u;) NjTm€lm dC,
Coo
where
7?@ =— Bl‘kxkatﬁjSi]‘ — Bkaszﬂi
2 2
p_ _ 1 _

+ 5 URTRT;€ij + §xkxkal7'lj€ij (2.67)

p 1y,
— iwkmkalulujeu.

Again, the origin must be defined at point R, so that r; = x;. To estimate the pitching moment
about a different point, the contribution of the forces calculated by Eq. (2.45) has to be added to
the value provided by Eq. (2.66). Equations (2.45) and (2.66) are the core of the methodology based
on Noca’s flux equation and its extension for the moment calculation. It will be hereafter referred
to as NOCA.

2.3.4 Implementation and verification based on crp

The 1nsE and Noca formulations given by Egs. (2.38), (2.39), (2.45) and (2.66) must be discretized
in order to be applied to discrete p1v data. This section gives first the details of the implementation
and then presents a verification procedure and its results.

2.3.4.1 Implementation

Different schemes are used to discretize the equations. For both INSE and Noca methodologies,
spatial derivatives are only required along the contour Co, shown in Fig. 2.16. They are calculated
by using central finite difference schemes of fourth order for the first spatial derivatives and of
second order for the second spatial derivatives. The temporal derivatives 0,u; appearing in the
~Noca methodology are computed with a fourth order central scheme.
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The average pressure needed for the INSE methodology is calculated by integrating the average
pressure gradient obtained from Eq. (2.41) along the closed path C as illustrated in Fig. 2.16. The
integration path starts at point A where the pressure is chosen to be p;,,;, and goes along Co coun-
terclockwise until point E = A. For each of the IV points, a relation between the pressure and its
derivatives can be written using a finite difference scheme. A non-symmetric third order scheme
is used for all points except the corners A, B, C, D and E, where a third order forward/backward
scheme is used. This discretization can be expressed as a system of /N equations that is solved for
the IV unknown pressure values. Once this system is solved, the pressure is corrected according
to the methodology described in Sec. 2.3.2.2.

As explained previously, this correction needs the knowledge of the function I'2 on edge B-C.
To be more general, it is calculated at each point of S by applying

=M — xP) x (uM"' — ﬁp)

1
o (P) = — :
2 (P) = o 2 Gt — ) [l — o

i

(2.68)

which is the discrete version of Eq. (2.42). In Eq. (2.68), the summation is performed on the n points
contained in A, a square of length [ depicted in Fig. 2.18. The p1v grid being uniform and larger
than the surface S, the calculation of I's can be done using this definition everywhere without
modification. Note that it has been demonstrated that the length ! has no significant impact on
the vortex detection (Graftieaux et al., 2001).

AT R
X

Figure 2.18: Schematic view of the calculation of I's applied on the p1v grid.

The loads are calculated by integrating the different terms on the contour C and surface S.
The rectangle rule is chosen to perform these calculations. Finally, when required, the temporal
derivative of the volume integral is calculated with a fourth order central scheme.

2.3.4.2 Test case used for verification

To verify the correctness of their implementation, the two indirect methodologies are applied to
data obtained from a cFp study. To this end, a numerical simulation is performed on the a two-
dimensional flow around a square cylinder. A low Reynolds number Re = 50 is chosen so that
the flow remains laminar and the computational cost limited.

For the purpose of this study, a transient solver for incompressible laminar flows based on the
p1so algorithm is used. The backward Euler scheme advances the equations in time and the time
step is chosen in such a way that the Courant-Friedrichs-Lewy number (crL) remains below 0.9.
The computational domain is represented in Fig. 2.19a. It consists of a square of size 20c x 20c
surrounding the square cylinder of size ¢ X c at its center. An intermediate square of length 5¢
is used to build the computational grid which is composed of square cells. The mesh is divided
into two regions: i) the external part with a grid spacing of Az” = ¢/40 and ii) the internal part
with a grid spacing equals to Az’ = ¢/100. A grid convergence study has shown that the grid is
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fine enough to accurately capture the solution. The numerical solution can thus be considered as
representative of the real physics. This is corroborated by the obtained ¢4 which is similar to the
value reported by Sohankar et al. (1999).

At the body surface, a no-slip condition is imposed for the velocity and a zero-gradient bound-
ary condition is set for the pressure. At the inlet, the freestream velocity is prescribed while a
zero-gradient boundary condition is imposed on the pressure. At the outlet, a mixed condition
is chosen. Most of the time, it enforces the pressure and imposes a zero-gradient boundary con-
dition for the velocity. However, in case of backward flow, the boundary condition becomes the
same as for the inlet. Finally, a slip condition is imposed for the upper and lower boundaries.

upper
Az | T e - T
Oiri——  [EHEEEEEE S
20c 5i c
inlet outlet |1 ARG BORARE
lower
(a) Computational domain and grid. (b) Chosen control surface.

Figure 2.19: Schematic view of the prv-like grid used to apply the indirect methodologies. Figure
(a) represents the crp mesh and (b) the piv-like grid. The gray area corresponds to the sampled
zone and the small circles are the points of the piv-like grid.

2.3.4.3 Results of numerical simulation

The numerical results for the flow around the square cylinder are presented in Fig. 2.20. Four
phases of the vortex shedding cycle are depicted, corresponding successively to zero, maximum,
zero and minimum lift coefficient. Both the streamlines and the pressure coefficient field are
shown. It appears that two vortices are alternatively shed from the upstream corners into the
wake. This causes the unsteadiness in the time response of the aerodynamic coefficients shown in
Fig. 2.21. The pressure variations along the surfaces of the square cylinder are very low, which ex-
plains the low amplitude exhibited by the temporal response of ¢;, ¢q and ¢, . A higher Reynolds
number would lead to higher amplitudes.

2.3.4.4 Results of verification

The cFp solution is used to build sets of data on which the two indirect load calculation techniques
can be applied. More precisely, a piv-like grid is built sampling the center of the cells in the shaded
zone as shown in Fig. 2.19b. Since the cFp code is based on a cell-centered technique, the fields at
these points correspond to the solution of the Navier-Stokes equations. The two indirect methods
are then applied to these discrete velocity fields to compute the aerodynamic forces and moment
acting on the square cylinder. The aerodynamic loads obtained with different p1v-like grid reso-
lutions are finally compared to the exact numerical loads. Three piv-like grids are considered: the
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(©)p =0.5and ¢ = 0. (d) ¢ = 0.75 and ¢; = min.

Figure 2.20: Instantaneous streamlines and pressure coefficient field around a square cylinder at 0°
of incidence and Re = 50. Four different phases of a shedding period 7" are shown, corresponding
to the zero, maximum and minimum values of the lift coefficient ¢;. The pressure coefficient ranges
from 1 (red) to —1 (blue) and each variation of color represents a step AC}, = 0.1. The red square
corresponds to the contour Co, of the control surface S used to indirecly compute the loads.

finest grid has the same resolution as the cFp grid, a coarser one uses every second cFp grid point
and the coarsest every fourth point, which corresponds to a grid spacing of ¢/100, ¢/50 and /25,
respectively. The contour Cy surrounding the control surface S is a square of length 2¢ centered
on the body, as depicted in Figs. 2.19b and 2.20.

The time responses of the loads obtained with the two indirect formulations on the three
grids are shown in Fig. 2.21 together with the crp loads. The results show that the lift, drag and
moment coefficients converge to the crp solution for both INsSE and Noca methods when the p1v-
like grid is refined. Moreover, it seems that the iNse method converges slightly faster than the Noca
approach. The small discrepancy remaining between the finest mesh and the numerical solution is
most likely due to the finite grids used for both the crp and indirect load calculations. Nonetheless,
the convergence of the results with finer grids indicates that the two indirect methods have been
implemented correctly.

2.4 Decomposition methods

Spatio-temporal quantities describing unsteady aerodynamic flows are analyzed through modal
decomposition in order to extract their dominant behavior. The goal is to study a sequence of
N snapshots v,,. Each snapshot v,, is a column vector containing M two or three-dimensional
spatial data and the N snapshots are temporal instances equidistant in time. Different methods
decompose the matrix of snapshots V¥ = {vi,v2,...,vn} of size M x N into a variable-
separated finite sum

K
VI (x,8) = ) a, (1) ¢y (%), (2.69)
k=1
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Figure 2.21: Verification of the implementation of INsE and Noca methodologies: lift, drag and
pitching moment coefficients as a function of time for a half shedding period obtained for different
grid spacing.
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where q, are the generalized coordinates representing the time response, and ¢, is the k™ spatial
mode shape that only depends on the spatial coordinates. Both q,, and ¢, are vectors of length NV
and M, respectively, and the number of modes K = min (M, N). The decomposition given by
Eq.(2.69) is not unique and the choice for ¢, defines the specific decomposition. Depending on the
chosen decomposition, different types of information on the simulated and/or measured flow can
be obtained. This section introduces the two decomposition methods considered in the context of
this thesis: Proper Orthogonal Decomposition (pop) and Dynamic Mode Decomposition (DMD).
More information on pop and pmD can be found in the work of Liang et al. (2002) and Schmid
(2010), respectively.

2.4.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition aims to capture the dominant components of a process in the
most efficient way, i.e. using as few spatial modes as possible (Liang et al., 2002). This technique
has been used for many years under different denominations and in many disciplines such as im-
age processing (Kirby and Sirovich, 1990), structural vibration (Feeny and Kappagantu, 1998) or
atmospheric science (Hannachi et al., 2007). It is known as Principal Component Analysis (pca),
Karhunen-Loeéve Decomposition (kLb) but also as Empirical Orthogonal Functions (EoF) or Singu-
lar Value Decomposition (svp). In fluid dynamics, pop has been popularized by Lumley (1967) but
the technique was introduced independently by different authors: Kosambi (1943), Loeve (1945),
Karhunen (1946), Pugachev (1953), Obukhov (1960), Holmstrom (1963), Roukhovetz (1963) and
Lumley (1970).

The goal of PoD is to find a set of ordered orthonormal basis vectors ¢}, > and the correspond-
ing ;" such that VI’ can be expressed optimally using the first  modes ¢}°°. Mathematically, if
the minimization of the mean-square error is used as a measure of optimality, this problem can
be written as

~ N\ POD
minge 2 (1) = mingg E {nv{V - <V1 ) H2}~ 2.70)
l
In Eq. (2.70), the right-hand side stands for the expectation of the mean square error obtained if
AN
VY is approximated by V7 , the sum of the first / modes of the pop decomposition. If the entire
PoOD basis is considered, this decomposition reads

K

VN t) = POD t POD
1 (x,1) 24 (t) ¢” (%), 271)

st. @ P =6 i,j=1,2,...K.

The pop modes are computed from matrix V¥ by solving an eigenvalue problem or equivalently
through a svp decomposition. The subsequent paragraphs expose first the derivation of the eigen-
value problem in the context of pca as explained by Liang et al. (2002), then, the relationship with
svD is highlighted.

The condition given by Eq. (2.70) is equivalent to imposing that the first [ generalized coordi-
nates q}°” contain most of the variation present in the original matrix V1'. Mathematically, this
corresponds to maximizing the variance

l

maxger ), E{(a” ~E{ai"})’}. 2.72)
k=1

The generalized coordinates can be written as q;°° = ¢}°°7 V', so that Eq. (2.72) becomes

l
T POD
maxgre Y @ Byn Py
k ,;1 ! (2.73)
st @I =0y i, j=1,2,...1,
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where EViV =E { (V{V —E {V{V}) (V{V —E {V{V})T} is the M x M covariance matrix and
the orthonormality of the pop modes comes from a normalization constraint. For a sufficient
number of snapshots v,, (Liang et al., 2002), the covariance matrix can be obtained from V{V
through
1 T

Sy = vV (Vf’ ) . (2.74)
The constrained optimization problem given by Eq. (2.73) can be solved using the method of La-
grange multipliers. The Lagrange function £ is then written as

l 1
L= Z [(bZODTEV{V P — Z )\;_oo (d)zoanb;_oo . 6kj):| ’ (2.75)
k=1 j=1

where A7°” are the Lagrange multipliers. Differentiating function £ with respect to ¢ yields

1
Ouprl = 3 [Sp i = N9 (2.76)
k=1

which has to be zero to satisfy Eq. (2.73). Therefore, the pop modes satisfying the condition given
by Eq. (2.72), and consequently (2.70), are determined by solving the eigenvalue problem

Evi\f ¢POD — )\PODd)POD’ (277)

where A" and ¢"°” are respectively the vector of eigenvalues ;" and the matrix containing the

" modes. Finally, it can be shown that the mean-square error € (l)2 in Eq. (2.70) is related to
A by
M

=D N (2.78)

k=l+1

Equations (2.71), (2.74) and (2.77) constitute the core of the pop procedure. However, the so-
lution of the eigenvalue problem given by (2.77) is not the only way to compute the pop modes.

Another procedure consists in using the singular value decomposition of matrix EV{V to deter-

mine the modes ¢};”. The matrix of snapshots can be expressed as

vy = Usw*, (2.79)

where U and W are unitary matrices of size M x M and N x N, respectively, X isa M x N
rectangular diagonal matrix containing the singular values of V' and (-)* stands for the conjugate
transpose. Inserting this last expression into the definition of the covariance matrix (2.74) and
using the properties of matrices U, 3 and W one obtains

1 &2
By U= 0. (2.80)
Comparing Egs. (2.77) and (2.80), it can be seen that the matrix of pop modes ¢"" is equivalent
to the matrix of left singular vectors U obtained by svp and the associated A}’ are the corre-
sponding squared singular values divided by IV, i.e. =3 /N. The core procedure describing the robp
methodology is summarized in Algo. 2, and is implemented in Matlab.

2.4.2 Dynamic Mode Decomposition

Dynamic Mode Decomposition was introduced by Schmid (2010) who intended to develop a tech-
nique to extract dynamical flow features without knowing the underlying governing equations.
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Algorithm 2: pop decomposition.

Input: VIV

Output: ¢™°, ¢°°” and A™”

/* Initialization */
1] Vg = V{V

/* Calculation of dynamic process characteristics */

t21 calculate singular value decomposition: V, = USW*;

t31 calculate effective number of pop modes: K = min (M, N);
r41 calculate pop modes: ¢"” = U(:,1:k);

ts] calculate Lagrangian multipliers: A\™ = 1/NX2 (K, K);

te] calculate generalized coordinates: q"° = (¢™°) ™' V;

Since its introduction, pMp has been applied to a wide variety of flows (e.g. Schmid, 2010; Grilli
et al,, 2012; Massa et al., 2012; Muld et al., 2012) and some modifications to the basic procedure
have been proposed (Chen et al,, 2012; Goulart et al.,, 2012; Tu et al,, 2014).

The original version of pMD is based on numerical or experimental data composing the ma-
trix VY in Eq. (2.69). The method decomposes these outputs into single frequency modes "
describing the dynamic process. Therefore, the time response represented by the qy, in Eq. (2.69)
can be expressed as q;"° = gp"° exp (A\2"°t), where A, is the complex frequency associated with

the k™ pmp mode while t is the line vector containing the N time-steps. Thus, in the context of
pMD, the modal decomposition given by Eq. (2.69) becomes

K
v (x,t) = Z Py exp (ARL) (2.81)
k=1

A linear mapping A is assumed between two consecutive snapshots of the flow, such that
Vvi+1 = Av;. Moreover, assuming that the linear mapping is approximately the same over the
entire time interval considered, the series of IV snapshots separated by a constant sampling time
At can then be formulated as a Krylov sequence

Vllv = {V17AV1,A2V1 ce ,AN71V1}, (2.82)

which, for a non-linear process, corresponds to a linear tangent approximation. From Eq. (2.82),
the sequence beginning at time-step 2 can be written as

Vév :A{Vl,VQ,Vg...,VNfl} :AVf’*l. (2.83)

The objective of pmD is to extract the dynamic characteristics of the process described by
the M x M matrix A. However, A is usually not known a priori and therefore, it needs to be
approximated from the sequence of snapshots V' . To this end, it is assumed that, beyond a critical
number of snapshots, the vectors v; become linearly dependent. The last snapshot v can thus
be approximated as a linear combination of v;,

VN = @1V1 +a2ve + -+ +aN_1VN_1 + T,
N_1 (2.84)
=V] Ta+r,

where a; are the coefficients of the linear combination. The residual vector r indicates how accu-
rately the vector vy is approximated by previous snapshots v;. In matrix form, considering that
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the i™ column of V4 is identical to the (i + 1)™ column of VN =% fori = 1,..., N — 1, this
linear combination can be written as
VY = AV = vV Tls 4 rek (2.85)
where the vector eX_; = (0,...,0,1) and Sis the (N — 1) x (N — 1) companion matrix
0 al
1 0 az
S = | (2.86)
1 0 aN—2
1 an-—1

For a series of snapshots leading to a sufficiently low residual, the dynamics extracted from S pro-
vides a good approximation of the dynamics contained in A that describes the dynamics of the
process. In particular, the vector of eigenvalues of A is approximated by p, the vector of eigen-
values of S. Then, the eigenvalue py, is related to the complex frequency A" in Eq. (2.81) by
A0 = log (uk)/At. The M x K matrix of pMp modes ¢p*" contains the eigenvectors of A ex-
pressed in the snapshot basis, where each computed vector has been normalized. Mathematically,
a column vector of this matrix is approximated by ¢7"> = VI ~'x,/|v¥ ~1x, |, where the matrix
x comes from the eigenvalue problem Sxi = piXy. Finally, to retrieve the matrix of snapshots

Vf’ 1 the temporal contribution of the modal decomposition (2.69) should be the K x N ma-

trix @™ = |[VY "!x|x~!. Therefore, the amplitude g™ of each pbmMD mode can be calculated
through g2 = &)1 /exp (A_‘;”‘Dtl), where index 1 associated with the two vectors corresponds to
their first entry.

The solution of the least square problem (2.84) is required to build the companion matrix S.
This can be obtained as

+
a= (V{V‘l) N, (2.87)

—1y . . -
where (Vllv 1) is the pseudoinverse of Viv L

(Vi) S A U I S O
' - [(Vflvfl)*vivfl]f1 (VV1* M > N, '

The pseudoinverse matrix itself can be obtained through a singular value or a QR decomposition
of V™!, However, the latter can only be used if M > N. In this case (Vivfl) FoRr! Q*. The
singular value decomposition Vf[ 1 — UZW* is usually preferred to avoid an ill-conditioned
problem. Moreover, it highlights more explicitly the close connection between rop and pmp. In

that context, the pseudoinverse is written as (V{V 71)+ = WxtU*,

Inapractical implementation, the use of the companion matrix S can lead to an ill-conditioned
algorithm. Therefore, Schmid (2010) proposed a more robust implementation that uses a dense
matrix S defined using the singular value decomposition of Vf’ ~Las

S=U*viwx! (2.89)

Matrix S is related to A through the similarity transformation A = USU®*. Since U contains
the pop modes computed from the snapshots sequence VI %, the matrix S is then the result of
a projection of the linear operator A onto the rop basis. Moreover, this procedure allows to re-
duce the number of bMb modes by considering only the most important pop modes. Note that

this corresponds to Vi ~ USW" in Algo. 4 that summarizes the present methodology. Some
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of the eigenvalues and eigenvectors of A are obtained as the solution of the eigenvalue prob-
lem Sy, = pry,. As stated previously, the dynamics of the process is fully described by A.
Therefore, the complex frequency A2 associated with each mode is A" = log (ur)/At. The
normalized pMD modes are calculated with ¢)"” = Usk/|uy, | while the temporal component is

DMD

q;"" = |Uy,| (y712W*)k. Finally, the amplitude g;"" of each pmMp mode is calculated as pre-

viously using gg"” = 9k'1/exp (A7"t; ), which completes the modal decomposition in Eq. (2.81).

To summarize, the two algorithms used in the context of this thesis and implemented in Matlab
are exposed in Algos. 3 and 4. Algorithm 3 is based on the companion matrix S and is usable for
any shape of matrix V¥, while Algo. 4 is based on matrix S and should therefore be used with V¥
forwhich M > N + 1.

Algorithm 3: pmp decomposition based on companion matrix S.

Input: VY and t

Output: ¢, A", @""" and r

/* Initialization */
1 Vo = Vv and vy = VYV (v
21 At = t(N) — t(v—1)and t1 = t(1);

/* Calculation of companion matrix S and residual r */
t31 calculate pseudoinverse V;
ta1 solve least square problem: a = VI vy;

51 calculate residual: r = Vaa — viy;
t61 build companion matrix S using a;

/* Calculation of dynamic process characteristics */
71 solve eigenvalue problem: Sx = pux;

ts1 calculate normalized pmp modes: ¢ = VaXk |V x, [;

te1 calculate frequency and growth-rate: A®> = log (k) /ay;
t10] calculate matrix of time response: ¢”> = [V x[x%;
1111 calculate amplitude: gp"™> = 4" (k:1) foxp (AD™¢1);
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Algorithm 4: pmp decomposition based on matrix S.

[11
[2]

[31
[4]
[s]
[6]
[71
(8]
[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]

[171
[18]
[191

[20]
[21]

Input: V{V ,tand nb"™®

Output: ¢"°, A", ¢""” and r

/* Initialization

Vo = V{V(:,1:N71), V, = VZIV(:,2:N) andvy = V{V(:,N);
At = t(N) — t(N—1) and t; = t(1);

/* Calculation of matrix S and residual r
calculate single value decomposition: V, = USW*;
if nb"™” = N then
‘ U= U, N, > = 3N(N,N) and W = W;
else if nb™” < N then
‘ ﬁ = U(:,nb*P), 2 = E(nb‘lo”,nbm”) andW = W(:,nb*");
else
| case not supported by this algorithm;
end
build matrix S : S = fJ*Vbe]_l;
if nb"™” = N then
‘ calculate residual: R = ﬁgﬁ*Va — Vpandr = R(:,N);
else
| calculation of residual not possible;
end

/* Calculation of dynamic process characteristics

solve eigenvalue problem: §y = puy;

calculate normalized pmp modes: @™ = Uy /|0y, |;
calculate frequency and growth-rate: A\™> = 1og (k) /ay;
calculate matrix of time response: ™" = |Uy|y ! W

DMD DMD

calculate amplitude: ;"> = 4" *:1) foxp (AP™¢1);

*/

*/

*/
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CHAPTER 3

Detached flow around a 4:1 rectangular cylinder

This chapter is dedicated to the study of the flow around a 41 rectangular cylinder at different angles
of incidence. Both experimental measurements and numerical simulations are performed to analyze the
flow physics and, thus, improve the fundamental knowledge of the corresponding dynamical phenomena.
Additionally, this chapter aims to assess the accuracy of the different numerical approaches in predicting
aerodynamic loads and the separation-reattachment dynamics.

3.1 Introduction

The flow field around bodies of elongated rectangular cross section is of great interest for wind
engineering applications. Examples are long span bridges or tall buildings. Despite the simple
two-dimensional body geometry, the turbulent three-dimensional nature of such flows and the
unsteady separation and reattachment dynamics are highly complex. This explains why rectangu-
lar cylinders at zero incidence have been extensively studied, first experimentally (Nakaguchi et al.,
1968; Nakamura and Mizota, 1975; Washizu et al.,, 1978; Okajima, 1983; Stokes and Welsh, 1986)
and then numerically (Tamura et al., 1993; Yu and Kareem, 1998; Shimada and Ishihara, 2002).
These works have shown that the flow dynamics around such cross sections is mainly influenced
by the ratio of the chord c to the depth d of the cross section. The impact of the flow parameters
and geometry, such as Reynolds number, turbulence intensity or corner sharpness, depends on
the ¢/d ratio considered and the range of variability of these parameters.

Following the experimental studies conducted by Nakaguchi et al. (1968) and Stokes and
Welsh (1986), Shimada and Ishihara (2002) investigated the impact of the ¢/d ratio at zero inci-
dence and Reg = 2.2 x 10* through urans simulations. They divided the aerodynamic behavior
into three main categories based on the absence or presence of reattachment of the shear layer
during a shedding cycle. These categories depend on the ratio ¢/a and are illustrated in Fig. 3.1.

For short cylinders with ¢/a < 2.8, flow separation occurs at the leading edges and the rectan-
gular cross section is too short to allow reattachment of the separated shear layer. This behavior is
shown in Figs. 3.1ato 3.1c. The flow is thus fully separated and vortices are periodically shed from
the leading edge forming a vortex street downstream of the body. As the upper and lower surfaces
are entirely immersed in the separated region, rectangular cylinders with a ratio ¢/a < 2.8 are
characterized by large fluctuations in lift. Depending on the ratio </d, the vortex is shed close to or
far away from the rear part of the cylinder, which impacts the shedding frequency and the drag.
A peak in drag occurs at a ratio ¢/d = 0.6 (Nakaguchi et al,, 1968), for which the shed vortex is lo-
cated the closest to the rear part of the cross section as visible in Fig. 3.1a. Moreover, the Strouhal
number St = fd/u,,, where f is the shedding frequency, decreases as the vortices are shed far-
ther away from the cylinder. A minimum St is observed for ¢/ = 2 and the corresponding flow
is depicted in Fig. 3.1c. For rectangular cylinders with 2 < § < 2.8, occasional reattachment
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Figure 3.1: Instantaneous vorticity contours around rectangular cylinders of different </d ratio at
the maximum lift. Reproduced from the work of Shimada and Ishihara (2002).
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Figure 3.2: Streamlines averaged in time and along the spanwise dimension (top) and schematic
of the most important mean flow structures (bottom). Adapted from Bruno et al. (2010).

may occur leading to a bi-modal vortex shedding frequency (Otsuki et al., 1974; Washizu et al,,
1978). On rectangular cross sections with a ratio 2.8 < </a < 6, the shear layer reattaches pe-
riodically to the upper and lower surfaces upstream of the trailing edge, as shown in Figs. 3.1d
to 3.1f. Moreover, vortex shedding occurs from both the leading and trailing edges. Finally, for
longer rectangular cylinder with ¢/a > 6 depicted in Figs. 3.1g and 3.1h, the flow is fully reattached
upstream of the trailing edge. A separation bubble grows and breaks randomly into vortices. Con-
sequently, the vortex shedding becomes irregular and no clear vortex street is identified. For ratio
¢/a > 8, a stronger vortex shedding resumes from the trailing edge of the section.

Following these studies, the Benchmark on the Aerodynamics of a Rectangular Cylinder (Barc)
has been proposed (Bartoli et al., 2008). The Barc aims to provide both experimental and nu-
merical contributions within a homogeneous and fully-described setup. The rectangular cylinder
specifically studied has a chord-to-depth ratio equal to 5. Bruno et al. (2014) summarized the first
four years of activity of the BARC comparing among themselves more than 70 studies in terms of
bulk parameters, flow and pressure statistics, as well as spanwise correlations. Among the prin-
cipal conclusions, Bruno et al. (2014) showed that a narrow distribution of results is obtained for
the Strouhal number or the mean drag coefficient ¢p while those collected for the standard devi-
ation of the lift coefficient are significantly dispersed. Bruno et al. (2014) argued that scattering of
numerical and experimental results is due to the high sensitivity of the flow along the upper and
lower surfaces of the rectangular cylinder.

In the context of the Barc, Bruno et al. (2010) described the different structures appearing
in the mean flow around a 5:1 rectangular cylinder. As shown in Fig. 3.2, the mean flow can be
divided into three main regions: the main recirculation zone, the reattached flow and the reversed
flow in the wake. Moreover, the main recirculation zone, also called separation bubble, consists
of three sub-regions. Near the leading edge, the approximately triangular inner region is respon-
sible for the creation of vortices shed downstream. The coalescence of those vortices forms the
main vortex. Below this inner region lies a thin recirculation region that rotates in the direction
opposite to the main vortex. According to Bruno et al. (2010), the apparition of an inner region
is characteristic of the flow field around a wedge. Therefore, the presence of an inner region is
typical of the flow around a bluff body. The same authors also described what they found to be
the main mechanism responsible for the lift generation. They demonstrated that the region lying
between the main vortex core and the reattachment point is the most significant contributor to
the lift generation. This region is called the mean pressure recovery region. Moreover, Bruno
et al. (2010) associated the variation of the lift over a vortex-shedding cycle to the location of the
vortices shed along the upper and lower surfaces. According to Shimada and Ishihara (2002) and
as described above, the same type of flow is observed around rectangular cylinders with a ratio
¢/d = 4 and ¢/d = 5. Therefore, the flow topology and the lift generation process occurring for
the rectangular cylinder studied in this chapter are expected to be the same as those detailed by
Bruno et al. (2010).
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For a rectangular cylinder with sharp edges, separation always occurs at the leading edges,
irrespective of the Reynolds number. However, a variation of Re impacts the shear layer and,
in particular, its reattachment along the upper and lower surfaces. Still within the framework
of the Barc benchmark, Schewe (2013) investigated experimentally the impact of the Reynolds
number on the aerodynamic coefficients, considering Reynolds numbers ranging between 2 x 10*
and 2 x 10° and different angles of incidence. Schewe (2013) showed that the Reynolds number
has a minor influence on both the drag coefficient and the Strouhal number, but significantly
impacts the lift coefficient. Increasing the Reynolds number leads to a growth of the lift slope
CLo and a shift of the maximum lift towards lower incidence. In particular, an increase from
Re = 3 x 10* to Re = 3 x 10° leads to a lift slope increasing from 5.7 rad ~* to 9.3 rad '
Schewe (2013) argued that an increase in the turbulence level causes a modification of the location
of the reattachment point on the lower surface. This reattachment point moves upstream and the
recirculation bubble thus shortens. This modification of the flow topology impacts the pressure
coefficient distribution and therefore the lift. Mannini et al. (2010) also investigated the influence
of the Reynolds number through urans simulations with different turbulence models. For most of
them, they found a lift coefficient that is independent of the Reynolds number and poor agreement
with experiments except at low Re. The Re sensitivity of the lift could only be reproduced using
an Explicit Algebraic Reynolds Stress approach instead of the more classical turbulence models
based on the linear Boussinesq hypothesis.

The present work investigates the flow around the elongated 4:1 rectangular cylinder by using
both experimental and numerical techniques. Unsteady pressure measurements are performed in
the wind tunnel of the University of Liege. Temporal pressure distributions for different inci-
dences are acquired for several Reynolds numbers. The data are then analyzed to study the varia-
tion of the flow with the incidence and the Reynolds number. These results also provide a database
for comparison with numerical simulations. The flow around the 4:1 rectangular cylinder is also
investigated through cFp, by using both UraNs and DDEs approaches. The objective of the nu-
merical study is two-fold: i) to assess the ability of the different crp approaches to predict such
flows, and ii) to further understand the underlying physics. The validation of the cFp simulations
is done by comparing numerical and experimental bulk parameters. pmp is also used to identify
similarities and potential discrepancies in the time response of the pressure distribution.

This chapter is thus organized in seven additional sections. Sections 3.2 and 3.3 are dedicated
to the description of the experiments and the setup of the crp simulations, respectively. Then, an
overview of the flow topology around the 4:1 rectangular cylinder is exposed in Sec. 3.4. Both
time-averaged and unsteady flow dynamics are considered. Experimental mean bulk parameters
and pressure coefficients are discussed in Secs. 3.5 and 3.6, respectively. Moreover, a comparison
with URANs and DDEs results is performed in both cases for validation. Then, Sec. 3.7 presents and
compares the variation of the experimental and numerical pressure coeflicients within a shedding
cycle, and Sec. 3.8 investigates the impact of the Reynolds number on the lift coefficient. Finally,
this chapter closes with Sec. 3.9, which summarizes the conducted studies and exposes their main
conclusions.

3.2 Experimental setup and measurements

The different experiments performed on the 4:1 rectangular cylinder are conducted in the wind
tunnel of the University of Liege. They aim to measure the spatio-temporal pressure distribution
along a section of the cylinder. The following sections describe the facility, the model and the
experimental measurements.

3.2.1 Wind tunnel and model

The measurements are conducted in a Gottingen-type wind tunnel. The test section is 5 m long,
2.5m wide and 1.8 m high. The freestream flow velocity ranges from 2m/s to 40 m/s with a
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(b) Schematic side view of the mounting apparatus where the rectangular cylinder is depicted in dark gray
and the small disk represents the point where the reference freestream velocity and static pressure are
measured.

Figure 3.3: Picture and schematic view of the rectangular cylinder mounted in the wind tunnel.

turbulence intensity below 2%. The main Reynolds number studied in the following is Re =
4.2 x 10* which is based on a freestream velocity Uy, = 8.3 m/s. Moreover, four additional
freestream velocities are also considered to study the impact of the Reynolds number in the range
between 3.1 x 10* and 7.6 x 10*. These velocities are Uy, = 6m/s, 10.6 m/s, 12.8 m/s and
15m/s. As explained below, these values take into account the blockage effect due to the model
and support structure standing in the test section.

The model consists of a hollow rectangular aluminum tube of 2 mm thickness and 1.01 m
length. The cross-section is 8 cm X 2 cm, where the first dimension corresponds to the chord
c and the second to the depth d. As shown in Fig. 3.3a, one side of the tube is attached with ball
bearings on a vertical beam. This assembly leads to a degree of freedom in pitch which is fixed once
the desired incidence is imposed. The other side of the tube is located at a distance of 0.4c¢ from the
plexiglas window to reduce 3D flow effects. Note that the small size of the model and its cantilever
mounting result from its initial development for prv measurements (Andrianne, 2012) . A wooden
plate of dimensions 15.6¢ x 17.8c is added to the existing apparatus. It aims to reduce as much
as possible the impact of the mounting on the flow around the rectangular cylinder. The initial
setup without this plate showed clearly an asymmetrical pressure distribution at 0°. Therefore,
the nearly symmetrical pressure coefficient distribution obtained at the same incidence with the
addition of the plate suggests that it contributes to reduce three-dimensional effects. As depicted
in Fig. 3.3b, the rectangular tube is located relatively far from the wooden plate edges and the
boundary effects are thus assumed to be small.

The presence of this apparatus in the wind tunnel induces a blockage effect. The freestream
velocity seen by the rectangular cylinder differs thus slightly from the user-imposed value. There-
fore, the freestream velocity seen by the body of interest is measured through a Cobra 412 probe
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from Turbulent Flow Instrumentation (TFI) at different points. These points lie in a plane located at
a distance of 5.5¢ upstream of the rectangular cylinder leading edge. Their distance from the
wooden plate and from the wind tunnel bottom ranges from 1.3c to 10c and 3.8c to 8.8c, respec-
tively. The velocities measured at these points are within a range of 2%. The velocity measured by
the Cobra 412 at the point located at a distance 2.6¢ of the wooden plate in the spanwise direction
and 3.8c of the wind tunnel bottom wall is chosen as reference value. That particular location is
represented by the disc in Fig. 3.3b. As mentioned above, the measured freestream velocities at
that point correspond to Uy, = 6, 8.3, 10.6, 12.8 and 15 m/s.

3.2.2 Pressure measurements

Dynamic pressure measurements are carried out to obtain the time response of the pressure dis-
tribution along a cross-section of the rectangular cylinder. The present section describes the ac-
quisition device, the different configurations studied and the applied post-processing.

3.2.2.1 Pressure measurements apparatus

Pressure is measured with a multi-channel Dynamic Pressure Measurement System (DPMs) made by TFL
It is able to acquire pressure in a range from +10 kPa to +35 kPa. This transducer measures
D — Poo, the difference between the pressure p at a tap and a reference pressure ps. In the context
of this work, ps is the static pressure measured at the reference point shown in Fig. 3.3b. As
explained in Sec. 3.2.1, the velocity at this point is close to the freestream velocity. Therefore, po
can be considered as the freestream static pressure.

The pressure is sampled at several pressure taps located on the rectangular cylinder as de-
picted in Fig. 3.4. As shown in Fig. 3.4a, a section located near the mid-span of the cylinder is
covered with 36 taps separated by a distance of 5 mm or 6.25% of the chord. As the pressure
taps were drilled manually, their location can vary within 1 mm. In the following, the taps are
identified by their non-dimensional curvilinear abscissa 7 = 7/c, r being defined in Fig. 3.4. The
pressure taps are connected to the ppms transducer by Trans Continental Manufacturing tubes. These
tubes are 1.34 m long and have a documented internal diameter of 1.32 mm. Each tube forms
a pneumatic line that acts as a filter and causes amplitude and phase distortions of the unsteady
pressure signal measured. Therefore, a correction is applied as a post-processing step to retrieve
the original unsteady pressure. In particular, the theoretical correction proposed by Bergh and
Tijdeman (1965) is chosen. The freestream velocity and static pressure being known, the pressure

coefficient C), = % at each tap location can then be straightforwardly computed.
oo Yoo
[
SN I S S S N A S A N N N I S I S |
=| =N T
Uso i i e
4H H- §
H H |
SN I S S S N A S A N N N I S I S I ¢
 — - .

c

(a) Sectional view.

[ ow

c

6.43¢c l

Figure 3.4: Schematic view of the pressure taps located on the rectangular cylinder.
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(b) View from the top.
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3.2 Experimental setup and measurements

3.2.2.2 Experimental procedure

The pressure distribution is acquired for angles of attack ranging from —7° to 8°. The incidence
angle is determined by using a graduated level having a resolution of 1°. The complete range of
incidence angles is considered for two freestream velocities, Uxx, = 8.3 and 12.8 m/s. For the
other freestream velocities, only 0°, 2° and 4° are considered. The sampling frequency f; is set to
500 Hz. For the nominal freestream velocity Uy, = 8.2 m/s, this sampling rate is equivalent to
10f, where f is the shedding frequency and a value St = 0.13 is assumed (Washizu et al., 1978).
For the highest considered freestream velocity, fs = 5f. Each set of experiments lasts 60 s, which
corresponds to more than 3 000 shedding cycles for the nominal Uy and more than 2 000 for the
lowest freestream velocity.

3.2.2.3 Post-processing

The pressure coefficient is first computed from the raw data and filtered using a Butterworth 12%
order band-pass filter with a frequency band from 10 to 200 Hz. Then, the amplitude and phase
distortions caused by the tube lines on the time response of C), are corrected. To this end, the
distortions are characterized by applying the method proposed by Bergh and Tijdeman (1965).
The approach is based on a frequency response function (FrF) linking the true and measured
Cp. The theoretical expression of the Frr depends on physical parameters, mainly the atmo-
spheric pressure, and the geometry of the tubes and the transducer. A sensitivity analysis was
conducted to determine the impact of parameter uncertainties on the corrected Cp. The results
are reported in App. B.1 and show that the amplitude of C,, variations around C), could be under-
estimated/overestimated by a maximum of 20%. However, this sensitivity analysis demonstrates
that the shape of C}, is not significantly impacted. Therefore, the overall shedding phenomenon
is assumed to be captured accurately and the conclusions of the following studies to be robust to
uncertainties. In the present context, since their geometric parameters are the same, a single FRF
is considered for all tube lines. The Bode plot corresponding to this Frr is depicted in Fig. 3.5.
It can be seen that large distortions occur at the shedding frequency of the rectangular cylinder
and its first harmonic at the tested freestream velocities. Therefore, it is of primary importance
to correct the temporal data by applying the inverse FrF. The implementation of the correction
consists in three steps. First, as the Frr varies with the frequency, the temporal signal acquired for
each pressure tab is converted to the frequency domain using the fast Fourier transform algorithm
of Matlab. In order to reduce spectral leakage, a Hanning window is applied to the temporal data.
Next, the Fourier coefficients defining the signal are divided by the FrF of a tube line. This step
provides the Fourier coefficients of the corrected signal. Finally, the temporal corrected signal is
retrieved by computing the inverse discrete Fourier transform and by applying the inverse of the
Hanning window.

Aerodynamic loads applied on the rectangle can be calculated by integrating the C), distribu-
tion along the rectangle edges. The integration is performed by using the trapezoidal rule. This
leads to the two-dimensional sectional coefficients of lift ¢, drag cq and pitching moment ¢, the
latter being computed about the cross section center and defined positive nose up. The Strouhal
number is computed through Fourier analysis performed on the lift coeflicient. Since 15 pressure
taps are used on both the upper and lower surfaces, a reasonable confidence can be expected for
the lift and moment coefficients. However, cq should be treated with caution since the upstream
and downstream surfaces are discretized with only 3 points. Moreover, the aerodynamic coef-
ficients represent only two-dimensional phenomena and the loads coefficients include only the
pressure contribution.

First and second order statistics are computed on the pressure and aerodynamic load coef-
ficients. The time-averaged values and the corresponding standard deviations are respectively
denoted by ~ and -’. Moreover, the two decomposition methods presented in Sec. 2.4 are used to
extract the dominant behavior of the spatio-temporal results. The pop decomposition is applied
through Algo. 2 on the C}, obtained for Uy, = 8.3 m/s. The distribution of the pressure coeffi-
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Figure 3.5: Bode plot of the pneumatic line FrF. Discs represent the shedding frequencies of the
rectangular cylinder associated with the different freestream velocities and triangles their respec-
tive first harmonics.

cient at the n™ time step constitutes then the n™ column of the matrix V¥ introduced in Sec. 2.4.
To save computational power, only 250 shedding periods are considered, which has been found
to be sufficient to obtain converged statistics. The pMp decomposition is also applied and, in this
case, the time response of the load coefficients is added in matrix V{'. In the context of the bmMD
based filtering explained below, this will provide a reference phase for the filtered time response of
Cyp. The resulting matrix V Y is decomposed using Algo. 3. As explained in Sec. 2.4, this algorithm
leads to a number of modes ¢} that is equal to the largest dimension of matrix V. Here, this
corresponds to more than 2 000 modes. In order to identify the most relevant ones, the modes are
first sorted by descending real part of A;"", the latter being the complex frequency associated with
each ¢}"". This allows to discard the parasitic modes associated with high damping. Then, the
modes are selected by descending amplitude g;"". This procedure identifies the modes associated
with the mean and the shedding frequency as the most relevant ¢p;"". Finally, the selected spa-
tial modes are used to reconstruct a lower-order approximation of the aerodynamic coefficients.

More precisely, the approximation of the input matrix V{' reads
Vii= > @ exp (S(A)™t), (3.1)
kthselected mode

where only the imaginary part of Ay, is kept to avoid spurious damping. pmp can thus be viewed
as a filter and the time response of the reconstructed aerodynamic coefficients Cp, ¢}, ¢q and ¢,

can be analyzed within a shedding cycle.
3.3 Numerical setup

The flow around the rectangular cylinder is studied numerically by using both urans and DDEs
techniques. This section presents the setup for the two types of simulation and the corresponding
computational domain and mesh.

3.3.1 Unsteady Reynolds-Averaged Navier-Stokes simulation

The numerical results are first obtained from two-dimensional URANS simulations. The Menter
k — w ssT model (Menter and Esch, 2001; Menter et al., 2003) is chosen to close the URaNS equa-
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3.3 Numerical setup

tions, as it is known to better predict flow separation than the standard k — € model and to be less
sensitive to freestream turbulence than the standard k£ — w model (Casey and Wintergerste, 2000).
The UrANS equations are solved by using a transient solver for incompressible flow based on a
combination of piso and siMpLE algorithms (Ferziger and Peri¢é, 1996). Called piMPLE, it enables
stable simulations with time step leading to a large cFL number, the latter being roughly equal
to 3.8 in the context of those simulations. The non-dimensional time step 2tUs /. is set to 1075,
which corresponds to ! /1700 of a typical shedding cycle. Therefore, the smallest time scales of the
flow are assumed to be captured accurately. The second order implicit backward Euler scheme is
used to advance the equations in time and second order schemes are chosen for spatial discretiza-
tion. In particular, the term 0;u; is discretized through a second order, upwind-biased schemes
in order to avoid spurious oscillations.

As depicted in Fig. 3.6a, the computational domain is a square of dimensions 50c x 50c cen-
tered vertically on the center of the rectangular cylinder. This square is located horizontally in
such a way that the upstream and downstream borders are respectively distant of 19.5¢ and 30.5¢
from the rectangle center. These dimensions are similar to those used in most of the numerical
studies performed in the context of the BARC (Bruno et al.,, 2014). As shown in Fig. 3.6b, the mesh
is divided into an unstructured and a structured part. The structured region consists of a disc of
radius 15d centered on the rectangle. Moreover, the zone of the wake located downstream of the
body is also part of the structured region. To allow this topology, the rectangular cross section has
rounded corners. However, the flow is expected to be the same as for a cross-section with sharp
corners, as the radius of curvature is less than one thousandth of the chord. In order to have an
adequate resolution and accuracy in the critical flow regions, a fine mesh is used in the vicinity
of the rectangle and in its wake. Finally, the simulations are wall-resolved and thus do not use
wall-functions. Therefore, the first mesh point away from the rectangle surface is set such that
yT ~ 0.7 for most of the cells around the rectangle.

50c

50c

(a) Computational domain. (b) Grid.

Figure 3.6: Computational domain and grid used for the UrRANs and DDEs simulations.

At walls, the no-slip boundary condition is imposed for the velocity and an homogeneous
Neumann condition is set for the pressure. Dirichlet conditions are imposed for the turbulent
scalars as explained in Sec. 2.2.1. At the inlet, the freestream velocity and turbulent scalars are
imposed. The value of the turbulent kinetic energy ko is based on an inlet freestream turbulence
intensity of 0.3%. The specific dissipation rate wq is calculated to obtain a turbulent eddy vis-
cosity v = 5 x 1073y, as suggested by Menter and Esch (2001) to avoid numerical issues. For
the pressure, a Neumann boundary condition sets the pressure gradient to zero. The outlet cor-
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responds to a zero-gradient for the velocity and turbulent scalars, while the pressure is enforced.
Finally, a slip boundary condition is imposed for all variables at the upper and lower boundaries
allowing only a streamwise variation.

A mesh convergence study is performed to select a grid leading to mesh independent results.
The rectangle incidence with the freestream flow is set to 0° and 4°. Only the results correspond-
ing to the non-zero incidence are presented in the following, this case being more challenging.
Simulations are carried out on four different meshes whose main characteristics are presented in
Tab. 3.1. The main differences between the grids are: i) the discretization of the chord and depth,
ii) the number of cells along the radius of the circle surrounding the rectangle, and iii) the number
of cells discretizing horizontally the wake. The results are presented in terms of Strouhal number
as well as mean and standard deviation of lift, drag and moment coefficients. Figure 3.7 depicts
the variation of the relative difference of each bulk parameter with the respective result calculated
with the finest mesh. It can be seen that the results converge and mesh C leads to results within
2% of the ones calculated with mesh D, the finest mesh. Therefore, mesh C, which consists of
75000, hexahedra is selected as the grid used for URANS computations.

Number of cells

along chord alongdepth radially wake total

Mesh A 90 70 60 45 28000
Mesh B 120 100 80 55 48000
Mesh C 140 130 100 90 75000
Mesh D 200 160 150 130 142000

Table 3.1: Discretization of the main regions of the meshes used for the grid convergence study.
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Figure 3.7: Percentage of difference on bulk urans results compared to results obtained with mesh
D in Tab. 3.1.

Finally, as uraNs is based on averaged Navier-Stokes equations, simulations performed with
such alevel of approximation converge to a phase-averaged solution. Therefore, the computations
are run until the aerodynamic coeflicients have reached a fully-developed periodic behavior and
only the last shedding cycle is analyzed.

3.3.2 Delayed-Detached Eddy Simulation

In addition to UraNs, higher fidelity simulations are also performed using bpEs based on the sa
turbulence model (Spalart and Allmaras, 1994). More precisely, the original formulation proposed
by Spalart et al. (1997) is used. The setup is very similar to that of urans (Sec. 3.3.1), except for a
few particular points specific to DDEs.
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3.3 Numerical setup

As for urans simulations, the transient incompressible solver PIMPLE is selected. For stabil-
ity purposes, the non-dimensional time-step is decreased compared to the URANS cases and set to
6.25 x 10™*. The corresponding crL number is about 2.4 and one shedding cycle contains ap-
proximately 3 000 time-steps, which is assumed to be sufficient to capture the smallest time scales.
Similarly to the urans setup, a backward Euler scheme is chosen for temporal discretization. The
same second-order schemes are also used for spatial discretization, except for the non-linear ad-
vective term, which is discretized with a Linear Upwind Stabilized Transport (LusT) scheme, as
suggested by Patruno et al. (2016).

To enable the turbulent eddying process, bpEs simulations have to be performed on a three-
dimensional grid. The two-dimensional uraNs computational domain is thus extruded along the
z-direction to obtain a spanwise length s = c¢. This dimension has been used in LEs studies
performed on similar cases (e.g. Yu and Kareem, 1998; Bruno et al,, 2010) and verifies the criterion
S/c > 1 suggested by Tamura et al. (1998). Two pDES meshes, A and B, are considered, whose main
characteristics are summarized in Tab. 3.2. The ppEs mesh A corresponds to the urans mesh (i.e.,
mesh C in Tab. 3.1) in the x — y plane, with 32 cells along the span. This discretization satisfies the
criterion 2%/c < 0.1 proposed by Tamura et al. (1998), and is finer than or similar to that used in
many studies on rectangular cylinders performed in the context of the BaArc (e.g. Yu and Kareem,
1998; Bruno et al., 2010; Arslan et al.,, 2011). In their “Young Person’s Guide to Detached Eddy
Simulation Grids”, Spalart and Streett (2001) called the region where the geometry-dependent
turbulence structures are generated the “focus region”. They identified this region as the zone
where a “particle can return from this point to the body”. Spalart and Streett (2001) argued that
the maximum grid spacing Ay in that region is the principal measure of the spatial resolution in
DES. In the present work, the “focus region” is assumed to extend until half a chord downstream
of the rectangular cylinder trailing edges. For mesh A, the maximal grid spacing in that region is
AY = (Az)* = ¢/32. Mesh B is designed to obtain Af = Aj /2, a value similar to the one used by
Mannini et al. (2011). Therefore, the spanwise discretization for mesh Bis (Az)® = </64. Because
A is defined as max (Az, Ay, Az), the grid in the = — y plane has to be modified compared to
grid A to keep the extent of the “focus region”. Therefore, a finer grid is designed as reported in
Tab. 3.2. Both meshes A and B are used in the following to investigate the impact of A on the
accuracy of the DDEs results.

Number of cells

along chord alongdepth radially wake alongspan total
Mesh A 140 130 100 90 32 2400000
Mesh B 200 130 160 110 64 8200000

Table 3.2: Discretization of the main regions of the meshes used for the ppEs simulations.

The boundary conditions for pressure and velocity are the same as the ones described in
Sec. 3.3.1 for URANs. As a smooth freestream flow is assumed, a Dirichlet boundary condition
7 = 0 is imposed at the inlet while a Neumann condition is set for the outlet. A slip condition is
imposed on the upper and lower boundaries. Finally, periodic boundary conditions are adopted
on the two boundaries normal to the extrusion direction.

As the ppes methodology mixes URANS and LEs techniques, the equations and consequently
their results are no longer phase-averaged. It is therefore necessary to determine an appropriate
size for the computed time window. To this end, a convergence study is performed on the mean
and standard deviation of the aerodynamic coefficients obtained for a rectangular cylinder at 4°
of incidence. The results presented below are computed based on the simulation run on mesh B
but the conclusions are valid for both meshes. One hundred non-dimensional time units are first
discarded in order to eliminate the transient response. The bulk parameters are then calculated for
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Detached flow around a 4:1 rectangular cylinder

a first non-dimensional temporal window AT} = 25, which corresponds roughly to 13 shedding
cycles. The process is repeated increasing the window extent as AT; 11 = AT; + 25 until an
extent of 150 is achieved. This maximal extent corresponds roughly to 80 shedding cycles. The
results are compared through a relative difference with those computed with the largest temporal
window. Figure 3.8 shows the variation of these relative differences. It appears that a window
of 125 leads to relative differences below 5% compared with results computed with the largest
extent. However, Fig. 3.8 does not depict a smooth convergence of the aerodynamic coefficients.
This could be due to the development of a low frequency phenomenon requiring a longer temporal
extent to be fully established. Nonetheless, to limit the computational costs, it is chosen here to
stop the simulation after 250 non dimensional times and to perform the analysis on the last 150
time instances.
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Figure 3.8: Percentage variation of the relative difference on aerodynamic coefficients computed
by ppEs with mesh B at 4° angle of attack for different time windows compared to those obtained
with the largest window extent.

3.3.3 Post-processing

The loads and pressure coefficients resulting from both uraNs and DDEs simulations are post-
processed before being analyzed. In particular, statistics are computed on the aerodynamic co-
efficients. Moreover, the decomposition methods described in Sec. 2.4 are applied to extract the
dominant behavior of the uraNs and DDEs results.

First and second order statistics are computed on the time response of the coeflicients. As
the two-dimensional UrRANs simulations lead to phase-averaged data, a single shedding cycle is
retained. The pressure distribution of interest corresponds to C), along the cross-section of the
rectangular cylinder. The three-dimensional pressure distributions resulting from ppEs simula-
tions are first averaged along the z-direction. Then, first and second order statistics are com-

puted on the resulting (C5™* (x,t)).. More precisely, Cp," (z,y) = (O™ (x,t)). )¢ and
C/ DDES x y \/<<CDDES X t)>2>t ( DDES)Z.

The pop and pmD decom Nposmon methods are applied to crp results reshaped in an input
matrix V{'. In particular, V]’ consists of the time response of the C), distribution when used as
roD input, C), being span-averaged in the context of DDEs results. As for experimental results, v
also contains the time response of the load coeflicients when used as pmp input (see Sec. 3.2.2.3).
Algorithms 2 and 4 are used to compute Pop and bmMD decompositions, respectively. As explained
in Sec. 2.4.2, Algo. 4 performs the pmp decomposition by using only a reduced number of rop
modes which eases the identification of the dominant pmb modes. Note that the number of rop
modes selected has to be sufficient to capture a sufficient amount of energy in the flow. The use of
Algo. 4 requires the M x N input matrix VI to be such that M > N. This condition is verified
in the context of URANs as V7' contains only a single shedding cycle. Conversely, the extent of

56



3.4 Overview of flow features

the time response has to be reduced to apply bmD on DDEs results. Therefore, to obtain a square
matrix VI, the decomposition methods are applied to about 40 shedding cycles. As depicted in
Fig. 3.8, this corresponds to a maximum relative error of 10% on the statistics of the aerodynamic
coefficients. The pmMp decomposition is then used to reconstruct an approximation of the crp

results. To this end, the most relevant ¢;"” are selected by descending order of amplitude g;""

and the approximated matrix V¥V is then calculated from

V= ) @ exp (SORM)). (X))

kthselected mode
The number of selected modes ™™ is chosen to obtain statistics computed on V¥ similar to
those computed on V¥, Unless otherwise mentioned, it corresponds to the mean mode and the

o associated with the shedding frequency.

3.4 Overview of flow features

This section gives an overview of the flow around a 4:1 rectangular cylinder. To this end, snap-
shots of the flow computed by UraNs simulations are depicted and commented. Note that, as
shown in the following sections, URANSs results are sufficiently representative to provide a quali-
tative understanding of the phenomena. However, urans results should be considered extremely
cautiously when examined quantitatively. In Sec. 3.4.1, the flow field is first analyzed in terms of
time-averaged quantities. Section 3.4.2 is then dedicated to the study of the time response of the
flow topology within a shedding cycle.

3.4.1 Time-averaged flow features

Figures 3.9 and 3.10 depict the mean flow from two perspectives : i) the streamlines and the vortic-
ity and ii) the pressure coefficient and its associated iso-contours. Two incidences are considered:
a=0%and o = 2°.

At 0° of incidence, the mean flow is symmetrical and the topology is the same for the upper
and lower surfaces. This is shown in both Figs. 3.9a and 3.9b. Two large main vortices called Ay
and Ay, lie along each of the horizontal surfaces and each of them corresponds to a low pressure
zone. Moreover, a free shear layer is visible along each of the two vortices. Despite their large
extent, vortices Ay and A, do not cover the entire surface and the mean flow reattaches at the
rear part of the horizontal surfaces. Moreover, a region of high vorticity is visible near the two
trailing edges. Finally, two symmetrical vortices By and By, are located at the rear part of the
rectangular cylinder, and are associated with a region of lower pressure.

(a) Mean streamlines and w . (b) C’ip.

Figure 3.9: Mean flow around a rectangular cylinder at 0° and Re = 4.2 x 10* obtained by UraNs.
(a) Streamlines and vorticity (clockwise in blue and counter-clockwise in red), and (b) pressure
coefficient C}, (high pressure in red and low pressure in blue) and associated iso-contours.
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Increasing the incidence breaks the flow symmetry, as depicted in Figs. 3.10a and 3.10b for
an incidence of 2°. Compared to a zero incidence, a positive angle of attack leads to an increase
in the size of Ay, the main vortex along the upper surface, and a contraction of the main vortex
A1 lying on the front part of the lower surface. Vortex A is in this case so large that there is no
reattachment of the mean flow along the upper surface. Conversely, the reattachment along the
lower surface occurs farther upstream. A vortex By is also visible at the rear part near the upper
trailing edge. Moreover, a larger low pressure zone is present near the lower trailing edge but
farther downstream from the body (see Fig. 3.10b). This low pressure zone indicates the presence
of a vortex called vortex By,. Finally, a high counter-clockwise vorticity zone is visible along the
rear part of the lower surface and a small counter-clockwise rotating zone lies near the upper
trailing edge, between vortices Ay and By.

°

2

-

Figure 3.10: Mean flow around a rectangular cylinder at 2° and Re = 4.2 x 10? obtained by
URANS. (a) Streamlines and vorticity (clockwise in blue and counter-clockwise in red), and (b)
pressure coefficient C), (high pressure in red and low pressure in blue) and associated iso-contours.

(a) Mean streamlines and w . (b) CT,.

3.4.2 Time response of flow features

Figures 3.11 and 3.12 show the variation of the flow around a rectangular cylinder at 0° and 2°
of incidence during a shedding cycle. The beginning of the cycle ¢ = t/7 = 0 is defined as the
phase where the generated lift is minimum.

At 0° of incidence, the flow topology above and below the horizontal symmetry axis of the
rectangle is identical but occurs at times distant by half a shedding period. Therefore, describing
the time response of the flow above the upper surface is sufficient to entirely described the dynam-
ics. At ¢ = 0, and as depicted by streamlines in Fig. 3.11a, alarge clockwise rotating vortex, called
vortex A}, lies along the upper surface. The vorticity plot shows that the free shear layer does not
impinge on the rear part of the upper surface, although the flow reattaches. Instead, it extends in
the wake up to a zone of low pressure corresponding to a previously shed vortex denoted DY, as
depicted in Fig. 3.11b. As shown in Fig. 3.11c, vortex A is then convected downstream while the
free shear layer moves closer to the surface. A clockwise rotating zone lies along the rear part of
the upper surface and rolls around the upper trailing edge of the cylinder, forming a small vortex
denoted BY,. While vortex A{; is being stretched and convected downstream, a new vortex A%
forms at the leading edge of the cylinder. The emergence of this vortex is recognizable by the drop
in pressure coefficient near the leading edge shown in Fig. 3.11f. Vortex A% then grows, pushing
vortex A, further downstream, as depicted in Figs. 3.11g and 3.11h. At the same time, the free
shear layer impinges the upper rear corner, feeding vortex BY;, which also grows and starts to de-
tach from the rear surface. Vortices A}; and BY eventually merge into a single vortex D7;, which
is shed into the wake. Only vortex A% remains on the upper surface. This is depicted in Figs. 3.11i
and 3.11j. Finally, vortices A% and Dj; are convected downstream and a new cycle resumes.

At an incidence of 2°, the flow topology is not anymore symmetric between the upper and
lower surfaces. As depicted in Figs. 3.12a and 3.12b, a large clockwise rotating vortex called vortex
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A{; covers nearly the entire upper surface at ¢ = 0. The free shear layer follows the upper part of
vortex A}, and extends into the wake until the location of a vortex called AY,. Moreover, a small
counter-clockwise vorticity zone lies at the upper trailing edge indicating the presence of a vortex
called BY. The same phase shows the emergence of a conter-clockwise rotating vortex called A}
at the leading edge of the lower surface. Moreover, another vortex called A} and previously gen-
erated at the leading edge is still visible on the rear part of the lower surface. The free shear layer
along vortices AY and A} impinges the rear part of the lower surface. This shear layer extends
farther downstream, rolling around the lower trailing edge and feeding the counter-clockwise ro-
tating vortex B}, behind the rectangle. As shown in Figs. 3.12¢ and 3.12d, vortex A}; elongates
then downstream while the upper shear layer impinges the upper trailing edge and vortex BY,
vanishes. On the lower surface, vortex A} is convected downstream while vortex A and B%
merge into a single vortex called DY which is shed into the wake. At ¢ = 0.5, as depicted in
Figs. 3.12¢ and 3.12f, a new vortex A% forms at the upper leading edge. The upper shear layer
rolls around vortex A, and the upper trailing edge, impinging the rear surface. Along the lower
surface, vortex A} is convected downstream and the free shear layer moves farther away from the
surface. Simultaneously, a counter-clockwise vorticity zone starts to form and grows into a vortex
B! at the lower trailing edge. This vortex appears clearly in Figs. 3.12g and 3.12h corresponding
to o = 0.75. At this stage, vortex A} lies alone on the lower surface. A couter-clockwise rotating
vortical zone grows at the trailing edge of the upper surface and forms a small vortex B7, while
vortex A% keeps growing. Simultaneously, vortex A, becomes weaker as it extends progressively
from the rear part of the upper surface into the wake. Vortex A} is finally completely shed at the
end of the cycle (see vortex A in Figs. 3.12a and 3.12b).

Some similarities and differences can be highlighted between the two incidence angles. For
both cases, the main dynamics consists in the emergence of a vortex at the leading edge. This
vortex grows and is convected downstream along the surface until it reaches the rear part of the
cylinder and is shed into the wake. However, at 0° of incidence, the vortex generated at the leading
edge merges with another vortex that has grown at the trailing edge. The result of this merging
is then shed into the wake. For an incidence of 2°, the dynamics of the flow structures is similar
along the lower surface. However, it differs along the upper surface where the vortex generated
at the leading edge is convected and shed into the wake without merging with the vortex that has
appeared at the trailing edge.

3.5 Load coefficient statistics and Strouhal number

This section details the experimental and numerical results in terms of bulk parameters: the statis-
tics computed on the load coefficients and the Strouhal number. First, Sec. 3.5.1 presents and
analyses the experimental results which are denoted by the superscript Exp. For the purpose of
comparison, the results documented by Nakamura and Mizota (1975) and Washizu et al. (1978) are
also included. Then, the results of UrRaNs and DDEs simulations are presented in Sec. 3.5.2 and the
corresponding bulk parameters are identified by the superscripts UraNs and DDEs, respectively. In
particular, this section discusses the DDEs results obtained with two grids to illustrate the impact
of the grid refinement. More precisely, DDEs a and DDEs B are associated with the results obtained
for the coarser and finer grids, respectively (see Sec. 3.3.2). Moreover, Sec. 3.5.2 also compares the
numerical and experimental results.

3.5.1 Experimental results

Figure 3.13 shows the aerodynamic coefficients and the Strouhal number as a function of the
incidence . The Reynolds number associated with the present experimental results is Re =
4.2 x 10*. Experimental results reported by Nakamura and Mizota (1975) and Washizu et al.
(1978) are also depicted for comparison. They were obtained from direct load measurements and
in the context of studies on aeroelastic instabilities. Unfortunately, these authors specified only a
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(b)Cpatyp =0.

(c) Streamlines and w at ¢ = 0.25. (d) Cp at o = 0.25.

(e) Streamlines and w, at o = 0.375. (f) Cp at p = 0.375.

(i) Streamlines and w, at p = 0.75. (G) Cp at o = 0.750.

Figure 3.11: Variation within a vortex shedding cycle of the flow around a rectangular cylinder at
0° and Re = 4.2 x 10* obtained by urans. Left column: streamlines and vorticity (clockwise in
blue and counter-clockwise in red). Right column: pressure coefficient C), (high pressure in red
and low pressure in blue) and associated iso-contours.
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(b)Cpatyp =0.

(d) Cp at o = 0.25.

() Cpatp = 0.5.

(g) Streamlines and w, at p =

(h) Cy at ¢ = 0.75.

Figure 3.12: Variation within a vortex shedding cycle of the flow around a rectangular cylinder at
2° and Re = 4.2 x 10* obtained by urans. Left column: streamlines and vorticity (clockwise in
blue and counter-clockwise in red). Right column: pressure coefficient C), (high pressure in red
and low pressure in blue) and associated iso-contours.

range of Reynolds numbers. In particular, Nakamura and Mizota (1975) documented results for
10* < Re < 10° and Washizu et al. (1978) for 8 x 10* < Re < 8 x 10°. Therefore, it is not
possible to infer precisely the Reynolds number associated with these results.

Figure 3.13a plots the mean lift coefficient against angle of attack. In particular, ¢;**" clearly
exhibits a linear increase with o from —4° to 4°. In this linear region, the slope ¢, is about 2.17.
For || > 5°, the absolute mean lift coefficient decreases and the rectangular cylinder is stalled.

Finally, it appears that the variation of ¢;"*" is not perfectly symmetrical. More precisely, the
absolute mean lift produced at a negative angle is higher than that for the corresponding positive
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incidence. The ¢;"" curve would be nearly perfectly symmetrical if it was shifted downstream by
0.05. This asymmetrical behavior may be due to a freestream being slightly different along the
upper and lower side of the plate. The mean drag and pitching moment coefficients are depicted
in Fig. 3.13b. The variation of ¢z**" exhibits a classical parabolic variation for absolute angles
lower than 4°. For higher incidence, as the rectangular cylinder is stalled, the increase in drag
saturates. Finally, the variation of the mean pitching moment about the center of the rectangular
cylinder exhibits a linear decrease for incidence || < 2°. The corresponding negative slope is

Cma ~ —0.357. This linear behavior is followed by a saturation. Finally, for || > 5°, the
absolute ¢,,,"*" decreases slightly again. Note that, similarly to ¢;, the variation of both ¢z™" and

Cm " are not perfectly symmetrical.
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Figure 3.13: Statistics of the aerodynamic coeflicients obtained from measured pressure distribu-
tions as a function of the angle of attack at Re = 4.2 x 10", Experimental results of Nakamura
and Mizota (1975) and Washizu et al. (1978) from direct load measurements at a similar Reynolds
number are included for comparison.

The mean aerodynamic coefficients are compared to experimental results available in the lit-
erature. By doing so, several differences and similarities can be pointed out. First, the mean lift
slope ¢z, , obtained by Nakamura and Mizota (1975) and Washizu et al. (1978) are 3.37 and 2.3,
respectively. Therefore, the slope ¢z is relatively close to the later but very different from the
former. As mentioned in Sec. 3.1 and later illustrated in Sec. 3.8, the mean lift slope can be very
sensitive to the Reynolds number. Therefore, as the Reynolds number associated with these exter-
nal works are not known precisely, no conclusion can be drawn. The stall angle is similar for the
three sets of results. However, the post-stall decrease in ¢y, is higher for the results presented by

Nakamura and Mizota (1975) and even higher for the experiments carried out by Washizu et al.
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(1978). The mean drag ¢p at zero incidence is identical for the two studies from the literature.
However, this value is higher by 0.1 compared to €. For incidences || < 4°, the parabolic
shape exhibited by the curve ¢5**" is similar to the one obtained by Washizu et al. (1978). For higher
|c|, the €5 obtained by Washizu et al. (1978) first increases slower and then decreases for || > 6°.
The ¢p curve presented by Nakamura and Mizota (1975) also exhibits a parabolic behavior but
the mean drag increases faster with the incidence. Some of those discrepancies can be explained
by the difference in the load acquisition process. In particular, in the literature studies, forces are
measured using strain-gauges (Otsuki et al., 1974), while the results obtained in the context of this
work are computed by integrating C),. Therefore, 27" consists only of the pressure drag whereas
the ¢p documented by Washizu et al. (1978) and Nakamura and Mizota (1975) also includes the
friction drag. Moreover, as explained in Sec. 3.2, most of the drag comes from the pressure distri-
bution along the front and rear surfaces of the rectangular cylinder. Only three pressure taps are
available on these surfaces, which might not be enough to obtain sufficient accuracy. Finally, the
variation of ¢,,”*" with « is comparable to the results reported by Nakamura and Mizota (1975).
In particular, the slope in the linear part of the curves and the saturation behavior are similar. The
discrepancies visible for a < —2° are probably due to the non-symetical behavior of ¢,,*".

Figure 3.13c depicts the second order statistics of the aerodynamic coefficients as a function
of a. The standard deviation associated with each of the load coefficients first increases until
|| = 4°, this angle corresponding to the end of the linear region in the curve *. For |a| > 4°,
the second order statistics decrease. Finally, the Strouhal number shown in Fig. 3.13d is calculated
through a Fourier analysis of the lift coefficient. For —3° < o < 3°, St™ is nearly constant and
equal to 0.134. Then, for increasing incidence, St*™" decreases linearly to reach St™" = 0.125
for a« = 6° and St™" = 0.108 for @ = 10° (not shown in Fig. 3.13d).

3.5.2 Comparison with numerical results

This section aims to present the cFp results and to discuss their validity. To this end, the bulk
parameters obtained numerically are depicted in Fig. 3.14. The present experimental results as
well as those from the work of Nakamura and Mizota (1975) and Washizu et al. (1978) are also
shown for comparison.

The mean aerodynamic loads and the Strouhal number obtained from URraNs is first investi-
gated. Figure 3.14a shows that the mean lift coefficient ¢;”**"* increases linearly with the angle of
attack v until @ = 3°. Beyond this value, the lift coefficient keeps increasing, but at a decreasing
rate. The discrepancies with the experimental curve ¢;**" are very large as both the urans esti-
mated slope ¢;,, and the behavior in the post-stall region differ dramatically. The slope ¢/ "™ is
equal to 3.97 which is nearly twice the measured one. This slope is also very different from the
result documented by Washizu et al. (1978). However, for incidence lower than 2°, ¢; " is sim-
ilar to the results presented by Nakamura and Mizota (1975). As mentioned before, the lift slope
is known to be sensitive to the Reynolds number, a parameter that is not precisely documented
by Nakamura and Mizota (1975). Nonetheless, based on the comparison of ¢;**" and ¢;"**"*, it
appears that the ssT turbulence model is not able to provide an accurate estimation of the lift
slope. Additionally, the behavior for angles of attack higher than 3° is not correctly captured by
the urans model. The three experimental data sets available depict a saturation of the mean lift
followed by its decrease. For the three cases, the stall angle is located at around 4°. On the other
hand, the lift curve estimated by UraNs simulations does not exhibit any stall region for the con-
sidered range of incidences but only a monotonic increase at a decreasing rate. The ¢z"**"* curve
shown in Fig. 3.14b exhibits the expected quadratic behavior. The most visible discrepancy is the

——URANS ——EXP

constant shift up of ¢4 compared to ¢z°*". However, as discussed in Sec. 3.5.1, ¢z**" is not a
complete drag estimate. Therefore, it is preferable to compare ¢4”**™ with the results documented
by Nakamura and Mizota (1975) and Washizu et al. (1978), for which the discrepancies are lower.
In particular, for incidences lower than 3°, ¢""*"* approximates fairly accurately the literature
results. For larger angles of attack, UraNs simulations slightly overestimate the mean drag coefh-

cient, this overestimation increasing with the incidence. Therefore, the ssT model demonstrates
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Figure 3.14: Statistics of the aerodynamic coefficients obtained by uraNs and DDEs as a function
of the angle of attack at Re = 4.2 x 10*. Experimental results are included for comparison.

a reasonable ability to estimate the drag below the stall angle, ¢4 being overestimated for higher
incidences. The dependence of the mean moment coefficient ¢, "™ on « in Fig. 3.14c shows a
linear decrease followed by a saturation, in agreement with the experimental results of the present
study and of Nakamura and Mizota (1975). Therefore, the sst turbulence model provides an ac-
curate estimation of the mean pitching moment. The UraNs estimated standard deviations (not
shown) are much higher than the experimental results, especially for the drag at high incidence.
Moreover, the decrease of the standard deviations for post-stall incidences depicted in Fig. 3.13¢c
is not captured by urans simulations. This discrepancy is expected since the ¢;"**"* curve does
not exhibit a stall region. As shown in Fig. 3.14d, the Strouhal number exhibits an initial linear
decrease until & = 3°, followed by a second faster linear decrease. Compared to the experimental
results, the Strouhal number obtained for different incidences is higher. Nonetheless, a modifica-
tion of the slope at « = 3° is also observed experimentally, although the value of the slopes differs

quantitatively.

The ppEs predictions are an improvement upon the URANS estimates but discrepancies with
the experimental results still remain. Moreover, the predictions of the simulations computed on
meshes A and B are also different. Figure 3.14a illustrates the mean lift coefficient. In particular,

——DDES A

the slope obtained with mesh A is ¢~ * ~ 5.2m, which is even higher than that calculated by
URANS. Refining the mesh leads to ¢ o ™ ® &~ 4.57 which is closer to the value obtained by urans
but is still too high compared to experiments. Nonetheless, bpEs simulations lead to a better ¢z,
for incidence angles higher than 2°. In particular, a stall region characterized by a decrease in

lift is captured but the estimated lift is still too high compared to the experimental results. The
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improved predictions obtained with DDEs B suggest that using an even finer mesh could poten-
tially improve the results. Figure 3.14b shows that DpEs simulations lead to a better estimation

of ¢p than urans for incidence angles higher than 2°. The curve €p""*** is similar to the results
presented by Washizu et al. (1978), although the parabolic behavior at a« < 2° is not correctly
captured. This parabolic behavior is better represented better by the ¢p""* " curve. The estima-

tions provided by pDEs a and B are quite close and meshes A and B seem to provide an accurate
approximation of the drag. As shown in Fig. 3.14c, the mean pitching moment coefficient ¢a7""**
is estimated with reasonable accuracy compared to the experimental measurements. The second
order statistics computed from the pDEs results (not shown) are also larger than the correspond-
ing experimental values. However, these discrepancies are reduced compared to the URANS results.
Moreover, cy; " exhibits a modification of its slope for o > 4° which is similar to the exper-
imental results. Nonetheless, the improvement is not observed for c7,"”* and c/,"”". Finally, as
depicted in Fig. 3.14d, the estimation of the Strouhal number is also improved by the use of DDEs,
although the plateau observed in exp results for 0° < o < 3° is not perfectly captured.

In conclusion, the URANS approach is not able to estimate ¢; with a reasonable accuracy. In
particular, the force normal to the chord axis is overestimated which impacts the results for ¢,
and ¢q at high incidence. Additionally, uraNs modeling is not able to predict the stall angle. pDEs
yields better predictions for incidence angles in the stall region. The stall angle is correctly cap-
tured and the estimated lift is closer to the experimental values for post-stall incidences. Moreover,
mesh B leads to a better estimation of the lift than the coarser mesh A. However, the estimation
of ¢z o " is even worse than the urans results. The use of a finer mesh could potentially improve
this aspect, as the computations performed on mesh B give a better estimate of the lift curve slope
than on mesh A. In order to explain these discrepancies, the next section analyzes the pressure
coeflicient distributions C', obtained experimentally and numerically.

3.6 Pressure coefficient statistics

The present section examines the first and second order statistics of the pressure coefficient distri-
bution Cj,. Experimental and numerical results are discussed in Secs. 3.6.1 and 3.6.2, respectively.
Additionally, Sec. 3.6.2 compares experimental and cFp results in order to explain the lack of ac-
curacy of the urans and ppes methodologies pointed out in Sec. 3.5.2.

3.6.1 Experimental results

This section examines the first and second order statistics of pressure coefficient distributions
obtained experimentally for Re = 4.2 x 10*. Figure 3.15 depicts the mean and standard deviation
of C7*" for several angles of attack. The distributions along the upper and lower surfaces of the
rectangular cylinder are represented by plain and dashed lines, respectively. The distribution of
CTXP along the upstream face is not depicted in Fig. 3.15a for the sake of clarity. However, it
exhibits the parabolic behavior expected for C}, around a stagnation point where C,, = 1.

At zero incidence, the distribution of CT’XP is nearly identical for the upper and lower surfaces.
Therefore, no lift is generated and ¢;**" & 0, as reported in Fig. 3.13a. The distribution Cipm is
almost constant with only a very weak decrease, in the first half of the upper and lower surfaces. It
then increases rapidly but smoothly until the rear side of the rectangular cylinder. The beginning
of this pressure recovery is located at around 7 = 0.5. This location corresponds to the core of
the main vortices appearing along both the upper and lower sides (Bruno et al., 2010). The mean
pressure coefficient is positive along the upstream face and negative along the downstream face
which leads to the positive ¢z**" depicted in Fig. 3.13b.

For non-zero angles of attack the distribution of CTXP is no longer symmetrical, which gen-
erates a lifting force and thus ;" > 0. On the upper surface, increasing the angle of attack
extends the plateau region further downstream and reduces the magnitude of the pressure recov-

. . -~ EXP . .
ery. Moreover, the pressure intensity of the ', ~ plateau region remains more or less the same
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(b) C}, along upper side.

() C; along lower side.

Figure 3.15: Mean and standard deviation of C), along the rectangle surface obtained experimen-
tally at Re = 4.2 x 10* for different angles of attack. The vertical gray lines represent the leading
and trailing edges and the coordinate 7 is defined in Fig. 3.4. The plain and dashed lines in (a)
corresponds to the legends in (b) and (c).

for small angles of attack. At & = 4°, a slightly larger value is observed, which corresponds to
the end of the linear region of the ™" curve shown in Fig. 3.13a. At &« = 6°, the distribution of
CTXP is nearly flat over the entire upper surface and its magnitude is significantly reduced com-
pared to lower angles of attack. This is typical for a post-stall angle and explains the decrease of
the mean lift coefficient ¢;"*". The opposite behavior is observed on the lower surface. The ex-
tent of the plateau region and the corresponding suction decrease with increasing angle of attack.
Moreover, the pressure recovery is more abrupt and reaches a maximum value that increases and
whose location moves upstream with .. The pressure then decreases downstream of this maxi-
mum to reach a value at the rear of the rectangular cylinder that is lower than for the e = 0° case.
Finally, the pressure along the rear face decreases with .. As the pressure distribution on the front
face is not significantly influenced by the incidence angle, the mean drag increases (see Fig. 3.13b).
These changes in the pressure distribution can be related to changes in the mean flow structures
around the rectangular cylinder. In particular, the beginning of the pressure recovery is directly
correlated with the chordwise location of the main vortex core. In other words, the experimental
pressure distribution suggests that with increasing o the main vortex core moves downstream on
the upper surface and upstream on the lower surface. This is illustrated and further discussed in
the next section through comparisons with numerical results.

The second order statistic C’}/, represents the temporal variation around C),. Therefore, a high
standard deviation along a particular region is representative of a high intensity vortex traveling
across that zone. As depicted in Fig. 3.15b, the distribution of C’;EXP along the upper surface can
be divided into two main parts: a region with low standard deviation from the leading edge to
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7 = 0.6, followed by rapid increase and large values of Cj, up to the trailing edge. The standard
deviation reaches a maximum in this second region. Increasing the incidence extends the first
region further downstream and moves the location of the maximum C, closer to the trailing edge.
The value of this maximum also increases until & = 4°, and then decreases for post-stall angles
of attack. The same two regions are also present on the lower surface, as shown in Fig. 3.15c.
Increasing the angle of attack has however the opposite effect of decreasing the extent of the first
region and decreasing the peak Cj, in the second region. Moreover, for o > 4°, a second C},
increase is observed just before the trailing edge.

3.6.2 Comparison with numerical results

This section presents the statistics computed on the pressure coefficient distribution obtained
numerically through urans and ppEs simulations. Numerical and experimental results are com-
pared, and their similarities and discrepancies are discussed.

Figure 3.16 depicts the statistics computed on results obtained experimentally and with cFp
for different incidences. As explained in Sec. 3.3.3, C}, and 01/7 are obtained from time averages.
However, for the three-dimensional pDEs results these averages are applied to results that have
been previously averaged along the span. In other words, C;/,DDES represents the variation of the
span-averaged pressure coefficient in time. Finally, the mean flow streamlines obtained by uraNs
and DDEs are also depicted in Fig. 3.16. Results for pDEs are shown for two different meshes, mesh
B being the finer one.

As mentioned in the previous section, the numerical results shown in Fig. 3.16 suggest that
the chordwise location of the vortex core corresponds well to the point where the mean pressure
recovery starts. Moreover, the reattachment point, if present, correlates with the point where C,
reaches a maximum during the pressure recovery. Note that Matsumoto et al. (2003) suggested
that the reattachment point lies between the point of minimum suction and the C}, peak. Although
this is consistent with the present results, it seems that the correlation with the point of minimum
suction is stronger than with the point of maximum C},.

As depicted in Fig. 3.16a for 0° angle of attack, two symmetric vortices denoted Ay and A,
lie along the upper and lower surfaces. The flow reattachment point is located at a distance 0.92¢
from the leading edge for uraNs and pDEs 4 and 0.94c for pDEs B. A distribution similar to CT,EXP is

——URANS —DDES A

obtained with both urans and pDES a. The main difference is a shift down of C), and C)p

compared to the experimental distribution. Moreover, the numerically computed pressure re-
covery begins slightly farther from the leading edge. These discrepancies can be explained by an
erroneous estimation of the location of Ay and Ar. In particular, it seems that the urans and
DDES A vortex core is located slightly downstream compared to the presumed experimental loca-
tion. However, since the distribution obtained by UrANS is symmetrical, these differences have no
impact on the expected mean lift coefficient ¢;"**™ = 0, as shown in Fig. 3.13. The distribution
C,”"" is not exactly symmetrical and therefore, a non-zero but very low z°°* is observed. The
use of a finer mesh for ppEs simulation leads to different results. In addition to the shift down
exhibited by urans and DDEs 4, the shape of @DDES * significantly differs from @EXP. In particular,
the plateau region is followed by a zone where the suction increases before the pressure recovery.
Moreover, the plateau corresponds to alower suction than for the two other cFp results. Addition-
ally, the pressure recovery begins at a location much farther downstream than for other results.
These discrepancies are caused by differences in the shape of the mean vortices Ay and Ar. As
shown by the streamlines, the mean vortex cores are situated farther downstream than for urans
and DDEs A, which delays the pressure recovery. Additionally, the vortices are more tilted than
for other crp results. Therefore, the curvature of the mean streamlines is more important below
the vortex cores, which could explain the suction peak at 7 = 0.75. Large discrepancies appear
between the experimental standard deviation of C}, and its estimations by crp. The general shape
consisting of a plateau followed by a growth and then a decrease of C, 1/7 is overall retrieved, but the
amplitude is largely overestimated. Another discrepancy is the nearly zero value of C}, observed
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Figure 3.16: Mean streamlines calculated by urans and DDEs and statistics of the pressure coeffi-
cient along the rectangle surface obtained by uraNs, ppes and Exp at Re = 4.2 x 10* for different
angles of attack. Plain and dashed lines correspond to the upper and lower surface, respectively.
The light gray disk corresponds to the main vortex core and the dark gray one to the reattachment
point. The red line represents the major axis of the main vortex.
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for uraNs and DDEs 4 results near 7 = 0.5 which does not appear in experimental results. Note
that this inconsistency was also noticed in the context of the BARC benchmark (Bruno et al., 2014).
The use of a finer mesh for ppEs improves this aspect as the results for DDEs B are closer to the be-
havior of the experimental results for 7 < 0.6. Finally, the mean streamlines can be compared to
the experimental results obtained by Mizota (1981) at the same Reynolds number for a 4:1 rectan-
gle at zero angle of attack. The results obtained by UrRANs and DDEs A are similar to those depicted
in Fig. 3.17. In particular, the reattachment of the flow occurs at the same location. However, this
experimental study reports a slightly thinner vortex with a core located at 7 ~ 0.53, i.e,, slightly
farther upstream than for uraNs and pDEs A. Conversely, the mean streamlines computed with
DDEs B are very different as the principal axis of the main vortex is too tilted and its core is located
too far downstream. The streamlines depicted in Fig. 3.16a can also be analyzed in light of the
study of Bruno et al. (2010) on a 5:1 rectangular cylinder (see Sec. 3.1). The present results do
not exhibit the pseudo-triangular inner region illustrated in Fig. 3.2. Therefore, the recirculation
bubble consists only of the main vortex Ay or Ar. This inner region has been reported to be
case-insensitive by Bruno et al. (2010) after Pullin and Perry (1980). Its absence suggests that a
URraNs modeling approach of the boundary layer might not be sufficiently accurate.
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Figure 3.17: Mean streamlines measured by Mizota (1981) along upper surface of a 4:1 rectangular
cylinder at 0° and Re = 4.28 x 10*. Reproduced from Shimada and Ishihara (2002).
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At larger angles of attack, vortex Ay grows and moves downstream, as seen in Figs. 3.16b
to 3.16d. For @ > 4°, vortex Ay wraps around the trailing edge, and from o = 2° the flow
does not reattach along the upper surface. Conversely, vortex A, shrinks and is located further
upstream, so that the reattachment point moves forward. The flow is no longer symmetrical. The
suction is higher along the upper surface than along the lower one, which causes the increase of lift
depicted in Fig. 3.14. Along the lower surface, the mean pressure distribution estimated by UrRANS
and DDES A is similar to CT,EXP. However, CT,DDES "is very different from experimental results, as the
pressure recovery begins significantly downstream. This shift is due to the reattachment point and
the vortex core that are estimated too far downstream. The numerically computed C, along the
upper surface is very different from C’iEXP The suction intensity is largely overestimated, which
causes the overestlmatlon of ¢ that was discussed in Sec. 3.5.2. Nonetheless, for 2° < o < 4°,
the global shape of C along the upper surface is correctly estimated by uraNs and, to a lesser
extent, by pDEs A. In partlcular, the pressure recovery and thus the location of the core of vortex
Ay are fairly well estimated. For 2° < « < 6°, the pressure recovery of CT,CFD along the upper
surface exhibits a non-monotonous behavior just before the trailing edge. This modification in the
trend of C}, is caused by a small counter-rotating vortex that cannot be detected experimentally
because of the limited number of pressure taps. At & = 6°, the flow along the upper surface is
better estimated by pDEs, as Fig. 3.16d shows a decrease of the suction intensity compared to 4°
(Fig. 3.16¢). As explained in Sec. 3.6.1, this is also observed for CT,EXP and causes a decrease of the
lift for incidence angles higher than the stall angle. Moreover, the ?DDES distribution is nearly flat,
which is also the case for the experimental results. Conversely, the suction intensity of ﬁUMNS is
similar for 4° and 6°. Therefore, ¢;"**"* does not decrease for & > 4° and URANS is not able to
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3.7 Time response of pressure coefficient

estimate the stall angle. The standard deviation of C), is overestimated by urans and ppEs. This
is consistent with the standard deviations of aerodynamic coefficients that are also overestimated
by cFp (see Sec. 3.6.1). However, if cFp is able to accurately capture the chordwise location of the
vortex core, the global shape of the experimental C}, is also correctly estimated.

To summarize, the statistics computed on C, demonstrate that it is very challenging to accu-
rately capture the mean vortices Ay and A, by using cp. The second order statistics are even
more difficult to approximate. Results from ppEs A and B simulations are very different, partic-
ularly along the lower surface. This indicates that a finer mesh than mesh B may be required to
obtained grid independent ppEs results. The numerically computed suction intensity along the
upper surface differs strongly from experimental results, which leads to a large overestimation of
the lift. For incidences higher than the stall angle, it appears that DDEs performs better than URANS
along the upper surface. In particular, only the pDEs approach is able to capture, qualitatively if
not quantitatively, the decrease of suction occurring at these angles. This explains why the stall
angle can be estimated from DDEs but not UrRANSs simulations. However, for o < 4°, URANS gives
better results. Moreover, the flow along the lower surface is also better estimated by URANS, as
DDES fails to approximate the location and size of vortex A ..

3.7 Time response of pressure coefficient

This section aims to better understand the dynamics of the flow by analyzing the time response
of the pressure distribution. Both experimental and numerical results are considered, but pDESs
results are only reported for the finer mesh (bpEs B). The dominant pop modes are first presented.
Then, the time response of the pressure distribution over a shedding cycle is discussed. In order
to filter the random turbulent fluctuations and noise present in the ppEs and experimental results,
C,, is approximated through a reconstruction based on the main pmp modes. In all cases, DDEs
results have first been averaged along the span.

3.7.1 Comparison through pop

The rop decomposition reads

K
VY (%) = Y @ (1) ¢ (%), 2.71)

where the k™ pop mode ¢} is associated with an energy \;°°. As explained in Sec. 2.4.1, A}

measures the contribution of the mode ¢);” in the decomposition. Therefore, the dominant pop
modes correspond to the modes with the largest A}>".

Figure 3.18a depicts the percentage of the total energy contained in the first six most energetic
poD modes obtained for 0° of incidence. Most of the energy is contained in the first mode ¢
More precisely, this mode represents 97%, 94% and 93% of the total energy for Exp, UrRANS and
DDEs B results. As the mean has not been removed from C,, this first mode corresponds to C.
Figure 3.18b shows the percentage of the remaining energy associated with modes ¢ to ¢g".
Modes ¢%5” and @5 contain around 75% of the remaining energy for modes obtained from exp
and ppEs B results and 96% for UraNs results. The lower energy content of the higher urans
modes is simply due to the fact that URANS results are phase averaged and thus do not feature
turbulent fluctuations or noise. The same behavior is observed for the pop method performed on
C,, distributions at other incidences. In conclusion, for the incidences considered, only the mean
and two additional modes are required to approximate VI¥ with an accuracy of more than 99%.
Moreover, without considering the energy contained in the first mode, ¢5’” and @5 capture a
minimum of 75% of the remaining energy.

The shape of modes ¢35 and ¢5” is illustrated in Fig. 3.19. The mode ¢7°” is not presented

as it corresponds to C), shown in Fig. 3.16. The urans modes %™ and ¢ at o = 0 are relatively
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Figure 3.18: Distribution of energy in the pop decomposition of the C), distribution obtained for
the flow around a rectangular cylinder at 0° of incidence and Re = 4.2 x 10*.

close to the experimental ones, as shown in Fig. 3.19a. The main discrepancies are the amplitudes
for 7 > 0.75 which are overestimated by urans and lead to the overestimation of the C},. The two
poD modes corresponding to DDEs appear to be shifted to the right compared to experimental re-

sults. This shift downstream also appears in ¢)}°”, as seen in Fig. 3.16a. Additionally, the amplitude

is even more overestimated than in the URANS case. As the mean ¢1°” is also better approximated
by the UrANSs simulation, the PoD decomposition demonstrates that the UrRaNs technique leads to
a better estimation of the spatial variation of C, at zero incidence.

Figure 3.19b depicts ¢5 > and ¢5" obtained for @ = 2°. The increased incidence appears
clearly as the spatial distributions are shifted upstream and downstream for the upper and lower
surfaces, respectively. Moreover, the mode amplitude associated with the upper surface increases
while the one corresponding to the lower surface decreases. As for & = 0°, the experimental Pop
modes are better approximated by the uraNs than by ppes modes. In particular, the numerical
modes are shifted downstream compared to experimental modes ¢5°” and ¢5°, but this shift is
smaller for the URANS results. In general, the second and third mode shapes are better estimated
by urans. Figure 3.16b shows that the shape of the mean mode ¢}°" is also better approximated
by the uraNs approach.

The results obtained for incidences & = 4° and o« = 6° are presented in Figs. 3.19c and 3.19d.
Along the lower surface, the uraNs modes ¢5™ and ¢5° are close to the experimental results.
However, significant discrepancies appear along the upper surface. In particular, the amplitude of
the UrRANS modes overestimates the experimental results. Moreover, the URANS modes are shifted
downstream and the mode shapes differ significantly for 7 > 0.75, especially for mode ¢5".
Therefore, the uraNs approach seems to fail to approximate the flow dynamics along the down-
stream part of the upper surface. Additionally, as depicted in Figs. 3.16¢c and 3.16d, the UraNS
mode shape of ¢*” is quite different from the corresponding experimental mode in that region.
The rpop modes obtained from DDEs results are more difficult to analyze. In particular, the shape
of ¢5™ and @5 strongly differs from the experimental results. Therefore, no conclusion can be
drawn in terms of the flow dynamics. Nonetheless, as shown in Figs. 3.16¢ and 3.16d, the shape
and amplitude of the mean modes ¢°" along the upper surface are closer to the experimental
results.

3.7.2 Comparison through pmp

The rpop method is useful to compare modes among themselves but the physical insight of the
flow dynamics provided by the method is limited. The pmp is thus used to further investigate
the spatio-temporal variation of C),. As explained in Sec. 2.4.2, the pmD procedure leads to a de-
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at Re = 4.2 x 10" several incidences. The pop decomposition is applied to experimental and
cFD results (URaNs and DDEs B). Plain and dashed lines correspond to the upper and lower surface,
respectively.
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Detached flow around a 4:1 rectangular cylinder

composition into modes oscillating at single frequencies. The most representative bmp modes for
the experimental and numerical results are selected as explained in Secs. 3.2 and 3.3, respectively.
Most of the time, two modes are required to accurately represent the physics: the mean mode
@™ and the mode ¢35 associated with the shedding frequency. The first one corresponds to
a frequency of zero and is purely real. Therefore, ¢p7"° = ¢7°* and their shape at different in-
cidences are depicted in Fig. 3.16. The mode shape ¢5"” is complex. The pressure coefficient is

reconstructed from those most representative modes. This enables the comparison of the spatio-

temporal 6’; obtained numerically and experimentally. This comparison approach is preferred
to the comparison of the respective spatial mode shapes because its deeper physical insight. The

spatio-temporal variation of 6’; is presented for « = 0°, 2° and 6° in Figs. 3.20, 3.21 and 3.22.

Each of these figures depicts the spatial distribution of @ at four different phases (. Similarly to
Sec. 3.4, the beginning of a cycle ¢ = 0 corresponds to the minimum of ¢**. The figures also
show the URANS streamlines of the original flow field corresponding to each phase.

Figure 3.20 exposes the results for 0° of incidence and should be analyzed in light of the

overview discussion presented in Sec. 3.4.2. As the flow field is symmetrical, the accuracy of the
~—~ EXP
shedding phenomenon obtained numerically is assessed by comparing the variation of C),  and

CPCFD along the upper surface only. The dynamics along the lower surface is very similar but
distant in time by half a cycle. One can first observe that the UrRaNs simulation predicts rather well
the variation of pressure, despite a consistent larger suction on the entire upper and lower surfaces.
Additionally, the pressure recovery starts slightly more downstream at ¢ = 0.25and ¢ = 0.5. As
for the mean flow, ppEs results display much larger discrepancies with a larger suction peak and a
pressure recovery displaced downstream. This is due to a larger and more tilted vortex A{;, whose
core is located further downstream. Finally, the numerical results show larger variations in time,
explaining the larger standard deviation in Fig. 3.16a. The relative good agreement between URANS
and experimental results suggest that the streamlines from UraNs provide a good representation
of the flow dynamics, as described in Sec. 3.4.2. The strong correlations between the beginning
of the pressure recovery and the vortex core, and between the location of maximum pressure and
reattachment are again clearly visible. This is well illustrated at ¢ = 0.5, where the pressure
recovery takes place in two stages, corresponding each to one of the two vortices A; and AZ.

Similar observations can be made for larger angles of attack (Figs. 3.21 and 3.22). Fairly good
qualitative agreement is found between UraNs and experimental results, but the quantitative dis-
crepancies increase with the incidence angle. This is especially the case on the upper surface where
suction is highly overestimated. On the other hand, ppEs results show larger qualitative and quan-
titative discrepancies. The good qualitative agreement between UrRANs and experiments, especially
regarding the chordwise location of the vortex cores and of the reattachment points, indicates that
URANS also provides a good representation of the flow dynamics at larger angle of attack. There
are two notable exceptions to this at & = 6°. First, UraNs predicts a vortex A} that is too small
at the beginning and end of the shedding cycle. This leads to a more upstream reattachment at
¢ = 0. Secondly, experimental measurements do not seem to indicate the presence of the small
vortex on the upper surface just upstream of the trailing edge that is visible in urans at ¢ = 0
and ¢ = 0.75. The overall dynamics is similar to the case at zero angle of attack, but amplified on
the upper surface and reduced on the lower surface when « is increased. On the upper surface,
vortex A{; is larger and more energetic while being shed and the flow does not reattach during the
entire cycle. On the lower surface, vortex shedding disappears. At o« = 2°, vortex A} is still shed,
but its size and strength have become very small. At & = 6°, vortex shedding no longer occurs.
Vortex A} simply fluctuates in size and location, but no vortex A2 is created. This explains why
the pressure distribution on this surface remains relatively constant in time, as indicated by the
low standard deviation in Figs. 3.16d.

To summarize, the comparison of the time response of C, within a shedding cycle demon-
strates that URANS approximates better the flow along the lower surface than ppEs. In particular,
ppEs does not capture correctly the location, size and dynamics associated with the vortex A},
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Figure 3.20: Distribution of the pressure coeflicient along the upper surface reconstructed from
the first two pmp modes at four different phases of the shedding cycle for the flow around a rectan-
gular cylinder at & = 0° and Re = 4.2 x 10*. The streamlines of the original flow field obtained
from URANS are also represented for easier interpretation.
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Figure 3.21: Distribution of the pressure coefficient reconstructed from the first two pMp modes
at four different phases of the shedding cycle for the flow around a rectangular cylinder at o =
2° and Re = 4.2 x 10*. Plain and dashed lines correspond to the upper and lower surface,
respectively. The streamlines of the original flow field obtained from URANs are also represented
for easier interpretation.
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Figure 3.22: Distribution of the pressure coefficient reconstructed from the first two pmp modes
at four different phases of the shedding cycle for the flow around a rectangular cylinder at o =
6° and Re = 4.2 x 10*. Plain and dashed lines correspond to the upper and lower surface,
respectively. The streamlines of the original flow field obtained from URANS are also represented
for easier interpretation.
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For incidences lower than the stall angle, UrANS also better estimates the flow along the upper
surface. However, ppEs performs better for higher angles of attack.

3.8 Reynolds number effects

This section studies the effects of the Reynolds number on the flow by analyzing the changes in
the mean lift coefficient and in the statistics of the pressure coefficient. This aims to determine
how the vortices lying along the upper and lower surfaces of the rectangular cylinder behave with
a variation of the Reynolds number.

3.8.1 Mean lift coefficient

The mean lift coefficient ¢;**" is represented for a large range of angles of attack and two different

Reynolds number in Fig. 3.23a and for & = 2° and @ = 4° but several Reynolds numbers in
Fig. 3.23b. Both figures show that an increase of Reynolds numbers in the range considered here
leads to a significant increase of the slope &%, In particular, G5" = 2.17 for Re = 3.1 x 10*
while Re = 7.6 x 10* leads to Cla' = 3m. Therefore, doubling the Reynolds number leads to a
relative increase of 45% of the slope. Moreover, Fig. 3.23a suggests that increasing the Reynolds
number also leads to a slight shift of the maximum lift to lower incidence. However, this cannot
be definitively asserted since only two Reynolds numbers are available.

T T T
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Figure 3.23: Variation of the mean lift coefficient with Reynolds number.

As mentioned in Sec. 3.1, the sensitivity of the slope ¢;,, to the Reynolds number was stud-
ied by Schewe (2013) for a 5:1 rectangular cylinder. This author reported that the mean lift slope
at & = 0° increases by 63% when the Reynolds number increases from 3 x 10% to 3 x 10°.
Schewe (2013) suggested that the modification in the turbulence level associated with a change of
the Reynolds number induces a modification of the flow structure along the lower surface of the
rectangle. More precisely, this author argued that an increase of the Reynolds number results in a
reattachment point located farther upstream, as depicted schematically in Fig. 3.24. Subsequently,
the shape and curvature of the mean vortex A, located on the lower side of the rectangular cylin-
der is modified. This causes a modification in the mean pressure distribution and consequently
an increase of the mean lift compared to a lower Reynolds number. Schewe (2013) supported his
explanation with numerical simulations performed by Mannini et al. (2010). These simulations
were conducted for a Reynolds number varying from 2.6 x 10% to 1.85 x 10° and for an inci-
dence of 4°. The results show an increase in ¢;,, of 26% and a reduction in the length of the mean
vortex A, of 14%.

If an increase of the Reynolds number leads to a reduction of the size of vortex Ay, the mean
pressure distribution along the lower surface should also be modified, similarly to what has been
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Ay

L

Figure 3.24: Modification of the flow topology caused by an increase of the Reynolds number as
proposed by Schewe (2013).

reported for an increase of incidence (see Sec. 3.6.1). More precisely, the pressure recovery region
should begin farther upstream, as depicted in Fig. 3.15a. Moreover, the point of maximum pressure
during the pressure recovery, which has been found to correlate well with the reattachment point,
should also move upstream. However, the pressure statistics shown in the next section do not
support this argument. This suggests that the increase of lift with Reynolds number does not
result from a shift upstream of the reattachment point on the lower surface.

3.8.2 Statistics on the pressure coefficient

Figure 3.25 depicts the mean and the standard deviation of the experimental pressure coefficient
obtained at 2° and 4° of incidence, for Re = 4.2 x 10* and Re = 6.5 x 10*. The general shape of
both the mean and standard deviation does not change with the Reynolds number. In particular,
the location of the maximum and minimum CT,EXP and C;" remains constant. Moreover, the
mean pressure recovery appears to begin at the same chordwise location 7. The main difference
lies in the pressure magnitude: the mean suction is slightly larger on the upper surface and lower
on the first and last third of the lower surface. Additionally, larger fluctuations, i.e., larger C,’,, are
observed at higher Reynolds number.

Using either the criterion of Matsumoto et al. (2003) based on the maximum CT, and maximum
C’;, or the better correlation of the reattachment point with the maximum CT, observed here,
these results indicate that the reattachment point on the lower surface does not move when the
Reynolds number is increased. This is in contradiction with the mechanism proposed by Schewe
(2013). As suggested by the results of the previous section, the changes in the magnitude of the
pressure distribution, and thus the higher lift, could possibly originate in the vertical displacement
of the vortex cores. This could also be linked to an increase/decrease of the vortex strength and/or
thickness. In both cases, the chordwise location of the two vortices does not change.

3.9 Conclusions and future work

This chapter has studied numerically and experimentally the flow around a 4:1 rectangular cylin-
der at several angles of attack. In particular, dynamic pressure measurements have been performed
to obtain the time response of the pressure coefficient C, along a cross-section of the cylinder.
The pressure distribution was used to compute and study the aerodynamic loads on the body and
to analyze the flow dynamics. The sensitivity of the solution on the Reynolds number has been
quantified by considering different Reynolds numbers ranging between 3.1 x 10* and 7.6 x 10%.
Additionally, urans simulations based on the k — w ssT turbulence model and ppEs simulations
based on the sa model have been performed. For the latter, results on two different meshes have
been presented. The pressure distribution along the cross-section of the cylinder resulting from
numerical computations has been compared to the experimental results through statistical analysis
and modal decomposition methods, namely pop and bMp. Moreover, numerical results have been
used to visualize key flow structures and relate them to the variation of the pressure distribution.

Although the flow around a rectangular cylinder has been extensively studied, most of pre-
vious work has focused on a 5:1 rectangle. Furthermore, only few authors considered non-zero
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3.9 Conclusions and future work

angles of incidence. The present study relies on a combined experimental and numerical study,
focuses on a different geometry, and considers different angles of attack and different Reynolds
numbers. It thus provides new data and insight to i) better understand the complex dynamics of
the flow around a rectangular cylinder, and ii) quantitatively assess the ability of numerical meth-
ods to accurately represent such a flow. The results, on the one hand, confirm several observations
or hypotheses made by other authors. On the other hand, this work provides new findings, and
thus represents a useful contribution to better understand this type of flow.

The variation with the incidence angle of the aerodynamic coefficients obtained through
pressure measurement has been found to be close to those reported in previous studies
(Nakamura and Mizota, 1975; Washizu et al., 1978). In particular, a stall angle of o &
4° has also been observed. Two main discrepancies with the literature results have been
highlighted: a lower drag and a difference in the lift slope. The differences are likely due to
the load acquisition process for the drag and to the sensitivity to the Reynolds number for
the lift.

Similarly to what has been reported by Schewe (2013), a Reynolds number increase from
3.1 x 10* to 7.6 x 10* has been shown to impact strongly the flow around the rectangu-
lar cylinder. In particular, the mean lift slope ¢;,, strongly increases with Reynolds num-
ber. The pressure measurements have demonstrated that an increase of Reynolds number
causes an increase/decrease of the suction along the upper/lower surfaces, respectively.
This results in an increase of the mean lift coefficient. Unlike what was suggested by Schewe
(2013), it is demonstrated that this increase is not due to an expansion of the mean recircu-
lation bubble lying along the lower surface. It is argued that the modification in the mean
pressure and the resulting variation of the mean lift slope are due to a modification of the
mean vortex strength, size and/or distance of its core from the surface.

Large discrepancies between numerical and experimental results have been highlighted. In
particular, the mean suction intensity along the upper surface is largely overestimated by
both uraNs and ppEs for all the incidence angles considered. This results in an overesti-
mation of the lift coefficient for non-zero angles of attack. Conversely, the drag coefficient
is captured with satisfying accuracy by both urans and ppEes. The high sensitivity of the
pressure on the flow structures explains the rather poor numerical results. As separation
and reattachment are particularly difficult to capture accurately with turbulence models,
it might be no surprise to see large quantitative differences between numerical and exper-
imental results.

Although ppEs should provide a more accurate representation of turbulence, UraNs has
been found to perform better than ppEs for incidences below the stall angle. In particular,
URANS gives a better approximation of the experimental pressure coefficient distribution,
both in terms of statistics and time response. However, the stall angle is correctly estimated
by DDEs but not by urans. More precisely, the decrease in suction intensity along the upper
surface appearing for a > 4° is only captured by ppEs. Nonetheless, the reattaching flow
along the lower surface is better approximated by Urans, also for incidences higher than
the stall angle.

DDEs simulations have been performed on two meshes differing in their maximum grid
spacing A in the so-called “focus region”. In particular, the Ag corresponding to the
coarsest and the finest meshes have been chosen as Ay = ¢/32 and Ag = ¢/64, respec-
tively. These values are consistent with the grids adopted by other authors in the context
of the Barc (Bruno et al., 2014). Large variations have been observed between the results
obtained for the two meshes. Therefore, a maximum grid spacing Ao = ¢/32 is not fine
enough to obtain conclusive DDEs results. Moreover, Ag < ¢/64 might be required to
obtained grid independent DDES results.

The pmb filtering that has been applied to the numerical and experimental spatio-temporal
pressure coefficient has demonstrated that UrRaNs is able to correctly approximate the dy-
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namics of pressure at the wall for incidence angles lower than 4°. The analysis of the uraNs
results has subsequently enabled the description of the flow dynamics. In particular, at
a = 0° it has been shown that vortices emerge and grow both at the leading and trailing
edges. The leading edge vortex is convected downstream where it merges with the vortex
at the trailing edge. The resulting vortex is then shed into the wake. For incidence angles
0° < a < 4°, the flow dynamics along the lower surface is similar. However, along the
upper surface, the vortex generated at the leading edge is convected and shed into the wake
without merging with the trailing edge vortex that vanishes.

Different simplifications and hypotheses have been made throughout this work. Moreover,

various aspects have not been studied. Therefore, the flow around a 4:1 rectangular cylinder could
be further investigated by performing additional numerical and experimental studies.
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+ The grid used for numerical studies assumed slightly rounded edges. Moreover, the ex-

perimental model cannot have perfectly sharp edges. Similarly to the high sensitivity of
the flow to the Reynolds number, the sharpness of the edges could have a strong impact
on the flow structures. Therefore, this aspect is worth further investigation. For the same
reason, the effects of the incoming flow characteristics and the limitations/uncertainties
associated with the experimental measurements should also be studied. This includes for
instance the freestream turbulence level, the possible vibrations of the experimental setup,
the uncertainty on the angle of attack or the alignment with the freestream.

It has been shown that a maximum grid spacing Ag < ¢/64 in the “focus region” might be
required to obtained grid independent ppEs results. Consequently, additional ppEs simula-
tions on finer grids could be performed to assess whether the results are grid independent.
Moreover, the numerical modeling of the flow was shown to be very sensitive to the near
wall behavior. Therefore, UraNs simulations based on a higher fidelity model than the
Boussinesq hypothesis should be performed. Encouraging results were reported by Man-
nini et al. (2010) who showed that the Explicit Algebraic Reynolds Stress approach is able
to partly capture the Reynolds number sensitivity of the flow. Additionally, higher fidelity
simulations such as LEs or DNs could be used.

The present experimental studies are based on two-dimensional dynamic pressure mea-
surements. Knowledge of the overall flow behavior would greatly benefit from velocity
field measurements around the rectangular cylinder. This could be done through p1v mea-
surements and would allow to determine how the flow varies with the Reynolds number.
Moreover, the resulting data set would allow a better validation of numerical results.

Finally, only two-dimensional aspects of the flow have been studied. Therefore, the three-
dimensional effects could be further investigated, both numerically and experimentally.



CHAPTER 4

Detached flow around a flat plate

This chapter is dedicated to the study of the indirect calculation of aerodynamic loads from 2c2p prv. In
particular, this work presents, compares and discusses results obtained with the INSE and Noca methods,
two methodologies based on momentum balance. The indirect methods are applied to spatio-temporal
data for different separated flows around a flat plate. The effect of the user-defined parameters required
for the INSE and Noca approaches are studied and the accuracy of the results is assessed by comparison
with direct measurements and numerical results.

4.1 Introduction

Aerodynamic forces and moments are conventionally measured by means of a load balance. How-
ever, this approach has some limitations, such as high relative errors for small aerodynamic loads.
Moreover, when the body is moving, these devices measure not only the aerodynamic forces and
moments but also the structural response, which contaminates the measurements (Rival et al.,
2009). For such cases, another option is to calculate the loads directly from the flow field. This
calculation can be performed by using pressure sensitive paint (McLachlan and Bell, 1995), Pitot
tube wake rakes (Jones, 1936) or pressure taps (Tropea et al., 2007). Although these approaches
have been proven to be reliable and accurate, they also have limitations. Their accuracy can de-
crease with decreasing airspeed, they can be affected by zero drifting in time, they can be limited
in frequency sampling or they have an intrusive effect, disturbing the flow (Tropea et al.,, 2007;
Barlow et al,, 1999). An interesting alternative to these methods is to use piv velocity fields to
indirectly calculate the aerodynamic loads.

In the present work, the insg (Unal et al., 1997) and the Noca (Noca et al., 1999) formulations
are applied to spatio-temporal data obtained for the flow around a static or pitching flat plate.
These two methods have been described in detail in Secs. 2.3.2 and 2.3.3, respectively. The INSE
formulation has been applied to numerous cases, such as the steady flow around an airfoil (van
Oudheusden et al., 2006), the unsteady flow around a square (Kurtulus et al., 2007), the steady
supersonic flow around a bi-convex profile (van Oudheusden et al., 2007) or the phase-averaged
flow around an airfoil undergoing dynamic stall (Gharali and Johnson, 2014). On the other hand,
the Noca method was used to compute the instantaneous forces on a cylinder (Tan et al., 2005)
and, more recently, to estimate the unsteady loads on an airfoil with an actuated flap (Sterenborg
et al,, 2014). As shown by David et al. (2009) and Gharali and Johnson (2014), the velocity noise
impacts the accuracy of the pressure calculation and thus of the load estimation. Moreover, the
quality of the results is also affected by different parameters, such as the location and size of the
p1v window, the spatio-temporal resolution (David et al., 2009; Albrecht et al., 2013; Gharali and
Johnson, 2014) or the type of flow. The present work aims to extend these results by comparing
the 1Nse and Noca methods and by investigating the effect of several parameters.
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The indirect formulations are applied to three different cases of unsteady flows around a plate
having a 16:1 chord-to-thickness ratio. The first case considers a forced pitching motion with a
large amplitude at a Reynolds number Re = 2 x 10* based on the chord c. The objective is to
assess the ability of the INSE and Noca methods to deal with moving bodies. A sinusoidal pitching
motion o = &+ Aasin (27 ft) is imposed, with a mean angle of attack @ = 0° and an amplitude
Aa = 30°. The reduced frequency k = 7/</u, is 0.2 which corresponds to f = 0.217 Hz.
Three pivot axes are considered: at mid-chord and at the leading and trailing edges, which are
here denoted by LE and TE, respectively. The imposed pitching is used to synchronize the p1v
apparatus with the motion of the plate so that several p1v frames can be obtained at the same
specific phase of the motion. Consequently, the velocity field can be phase-averaged. Note that
Gharali and Johnson (2014) studied through the inse formulation the dynamic stall of an airfoil
which is similar to this first test case.

The second case corresponds to a static plate at two different angles of attack, 30° and 45°,
and a Reynolds number Re = 4 x 10*. As the shedding is not perfectly periodic, it cannot be used
to synchronize the p1v system as in the previous case. Moreover, the maximal sampling frequency
of the p1v apparatus is too low to ensure a sufficient resolution of a single cycle. Therefore, only the
mean flow is considered. This second test case aims to assess whether the indirect load calculations
are able to predict the mean fluid dynamic load coefficients based on the mean velocity field. More
specifically, in this particular case, the averaging operation in the INse and Noca formulations can
be understood as time-averaging, or more precisely as an ensemble average over all piv fields. Note
that Albrecht et al. (2013) applied both the iNsE and Noca formulations to a similar case.

The third case attempts to alleviate the lack of reference for phase averaging by forcing the
periodic shedding at a given frequency. To this end, a sinusoidal pitching motion &« = @ +
Aasin (27 ft) with a very small amplitude A is imposed around the mean angle of attack @.
The pivot axis is located at the center of the plate and the frequency is chosen to be as close as
possible to the shedding frequency of the static plate. The piv apparatus can then be synchronized
with the forcing frequency without strong alteration of the natural flow dynamics compared to
the static plate (Lam and Leung, 2005). The p1v velocity field can therefore be obtained at selected
phases and a phase-averaging procedure can be applied to analyze the time response of the velocity
field and fluid dynamic loads within a cycle. Here again, the Reynolds number is Re = 4 X
10* and the mean angle of attack is set to 30° and 45°. The imposed amplitude Ac around the
mean angle is 0.77° for the lowest mean incidence and 1.33° for the highest. In both cases, the
non-dimensional frequency, i.e., the Strouhal number, St = fesina/y, is 0.155. The forcing
frequency f equals 2.13 Hz and 1.47 Hz for the smallest and the largest angles, respectively.

This chapter is organized in six sections in addition to the present one. First, Sec. 4.2 details
the experiments. In particular the p1v procedure, the direct load measurements and the flow visu-
alization process are presented. The cFp simulations and their setup are then described in Sec. 4.3.
In Sec. 4.4, the experimental and numerical results are used to describe the flow dynamics of the
different test cases. Then, the iNse and Noca formulations are applied to piv fields. The different
studies are presented in two sections. First, Sec. 4.5 describes the effects of the user-defined pa-
rameters. Then, Sec. 4.6 discusses the ability of the iNsE and Noca formulations to estimate the
loads. Finally, this chapter closes with Sec. 4.7, which summarizes the main conclusions.

4.2 Experimental setup and measurements

The different experimental measurements are conducted in a low-turbulence free-surface water
channel at the University of Michigan. The present section describes the facility shown in Fig. 4.1,
the different experiments, the experimental devices and the post-processing applied to the data
acquired.
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=

Figure 4.1: Overall view of the water channel facility (Vandenheede et al.,, 2012).

4.2.1 Water channel and model

The channel test cross-section has dimensions 61 cm x 61 cm as shown in Fig. 4.2, which corre-
sponds to 8c X 8¢, ¢ being the chord length of the plate. The model is a polished stainless-steel
flat plate with 7.6 cm chord length spanning the height of the test section. The plate thickness is
4.7 mm and the leading and trailing edges are rounded with a radius of half the plate thickness.
As depicted in Fig. 4.2, the model is mounted vertically and the immersed span corresponds to
7.6¢. The distance between the model and the bottom wall of the test section is about 3 mm or
0.04c to minimize three-dimensional effects. In particular, the water channel bottom wall bound-
ary layer thickness at the plate location is about 2.5 cm, approximately three times larger than the
gap between the plate and the bottom wall. The gap is thus considered to be sufficiently small to
minimize three-dimensional wing tip effects.

The flow in the water channel is generated by a propeller located in the lower part of the facil-
ity. The freestream velocity is controlled trough the frequency of the motor driving that propeller.
In other words, the user does not directly impose the freestream velocity but the motor frequency.
Since the latter impacts the flow rate in the test section, the freestream velocity depends on the
motor frequency and the cross section, the latter varying with the water level. Through p1v mea-
surements, Yu (2014) established an empirical correlation between the freestream velocity U,
the motor frequency fas and the water level H,

Uy = 2.55f

—0. 4.1
Hoes 0.58, (4.1)

where Hy.y = 2211/16inch is the water level at which Eq. (4.1) was established. Note that the
water levels are measured in inches and without flow, while the dimensions of the freestream
velocity and the motor frequency are cm/s and Hz, respectively. Finally, the facility allows a
freestream velocity ranging from 5 cm/s to 55 cm /s with a turbulence intensity of about 1%. The
two freestream velocities used here are 26 cm /s and 52 cm /s, which corresponds to Re = 2x 10*
and 4 x 10%, respectively. At these flow conditions the water surface does not deform significantly
and, therefore, the free surface acts as a symmetry plane suppressing three-dimensional wing tip
effects.

4.2.2 Plate motion and kinematics

The plate is initially located in the middle of the water channel and aligned with the flow. The
plate motion is imposed by the mechanical system shown at the left of Fig. 4.2a. The position in
the streamwise direction and perpendicular to the flow is set through two linear traverses (Velmex
MN10-0400-E01-31 and MN10-0200-E04-31 BiSlide). The rotation around the span axis is imposed
through a rotary stage (Velmex B4872TS Rotary Table).
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Figure 4.2: Pictures and schematic view of the plate mounted in the water channel. The seven
small discs in (b) represent the location of the dye rake used in flow visualization (Sec. 4.2.3). The
light and gray lines in (b) represent the water level and the laser sheet, respectively, and the light
gray surface Spqq in (c) corresponds to the priv field of view (Sec. 4.2.4).

The pitching motions described in Sec. 4.1 are imposed through the rotary stage, which has
an advance per step of 0.0125° and a maximum speed of 12.5°/s. The complete kinematics of
the plate motion for the three different cases consists of three main parts. First, an initial mo-
tion imposes the initial orientation aip and rotational velocity o of the pitching motion. Then,
the desired sinusoidal pitching motion @ = & + Aassin (27 ft) is repeated several times. This
repetition enables the phase-averaging done in the context of piv and direct load measurements.
Finally, a last motion brings the plate back to its reference orientation, i.e., aligned with the flow,
to enable the quantification of the sensor drift. For the static case, the kinematics is very similar,
except that the repetition of pitching motion is replaced by a constant orientation. This allows the
time-averaging of direct load measurements. More details about the imposed kinematics can be
found in App. C.1. > The rotary stage is driven by a stepper motor that is controlled through the
COSMOS software. It requires to discretize the kinematics in such a way that it can be described
by a succession of steps made at a specific value of the rotational speed. The COSMOS input files
written for the three different cases can be found in App. C.2.

Finally, the stepper motor is able to send information while imposing a motion. More pre-
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cisely, the stepper motor controller has two user outputs that can be modified through the input
file. Specific commands enables to impose a “low” or a “high” output, corresponding to 0 V and
5V, respectively. As this information is recorded, a specific phase can be identified which provides
a reference to perform the phase-averaging of the loads.

4.2.3 Flow visualization

Dye visualization is used to obtain a qualitative overview of the flow for the different plate con-
figurations. The apparatus consists of a camera, colored dyes and, as shown in Fig. 4.3, a dye rake
and two syringe pumps. The rake is made of seven tubes of 0.8 mm outside diameter that are uni-
formly distributed over a distance of 15.2 cm or 2c¢, as represented by the small circles in Fig. 4.2c.
The syringe pumps generate blue and red streams made of food coloring dyes of 1012 kg/m® den-
sity, which is close enough to the water density to minimize density effects. The dye rake is located
at mid-span and a few chords upstream of the leading edge. The flow disturbances created by the
rake are small enough to not significantly impact the measurements.

Figure 4.3: Syringe pumps and dye rake used for flow visualization (Yu, 2014).

The images are acquired at a frame rate of 30 Hz with a Nikkon D3100 camera. The flow is
observed from both the side and bottom of the water channel. Because images acquired from the
bottom suffer from a distracting background consisting of reflections from the water surface and
view of the mounting system, a 5 mm thick white background board is fixed on the plate, parallel
to the water level and just below it.

Dye visualization is carried out at a freestream velocity Uy, = 26.5 cm/s and provides streak-
lines that are used to observe the flow topology and three-dimensional effects for the different cases
described in Sec. 4.1. When pitching motions are considered, the post-processing of the recorded
movies consists in the extraction of pictures of the flow at specific phases of the cycle. However,
the plate kinematics and the camera are not synchronized. Therefore, a reference phase is iden-
tified from the movies. Note that for the small amplitude pitching plate cases, the uncertainty on
the phase can be important as the amplitude and the period of the motion are small.

4.2.4 PIvV experiments

A quantitative study of the flow can be carried out through the analysis of p1v velocity fields. The
technique is explained in Sec. 2.3.1 and the present section details the procedure used in this par-
ticular measurement campaign. It first describes the apparatus, then the experimental procedure
and finally the applied post-processing.

4.2.4.1 p1v apparatus, seeding, synchronization and data acquisition

The prv apparatus, depicted schematically in Fig. 4.4, consists of a double-pulsed laser, light sheet
forming optics, a digital camera, control electronics and a computer which acquires images. Note
that this apparatus is also described in the theses of Baik (2011) and Yu (2014).

The laser (Spectra Physics PIV 300) consists of two Nd-YAG cavities generating at a nominal fre-
quency fi, = 10 Hz two distinct pulses of light, the laser beams. As shown in Fig. 4.4, each of the
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Figure 4.4: Schematic view of the p1v apparatus.

beams is transformed by mirrors and light sheet forming optics into a horizontal laser sheet of
2 mm thickness illuminating part of the water channel at a distance of 27.9 cm, or 3.7¢, from the
bottom, i.e. around the mid-span of the plate. Because of the flat water surface and the small gap
between the bottom wall and the plate, the PIv measurements are not significantly affected by end-
wall effects, which for unsteady flow phenomena may reach approximately one chord away from
the walls (Gardner et al., 2014). Note that, as illustrated by Fig. 4.4b, a shadow region is present on
one side of the plate where the velocity field cannot be measured. The two laser sheets are sightly
distant in space. According to Baik (2011), they overlap along 75% of their thickness, i.e. in a
region of 1.5 mm thickness, or 27 pixels for the magnification M imposed here by the camera
lens. The imposed particle displacement between image pairs is chosen here as Ax = 8 pixels.
The thickness of the laser sheet overlap enables to obtain image pairs of the same particle, and
therefore accurate piv fields, for a spanwise flow velocity up to 3Uy. Finally, the second laser
sheet is delayed with respect to the first one by a time At®, the time between exposures which is
of the order of a millisecond. This time At is determined by the imposed particle displacement
and is a function of the freestream velocity (in cm/s) and the magnification factor of the camera:

. Az
T 10MUy

The seeding is done with a powder of 3 pm titanium dioxide particles (Sigma-Aldrich). Before
each new experimental campaign, 3 g of this powder are added to the nearly 20 m® of water con-
tained in the water channel. The titanium dioxide is mixed with around 1 cm?® of dispersing agent
(DARVAN C-N, Vanderbilt Minerals) which helps the particles to stay in suspension. The amount of 1 g
of this powder is added every 24 h for experimental sessions lasting several days. The particles
eventually settle at the channel bottom. Therefore, after a campaign of tests, the channel needs to
be emptied, cleaned and refilled.

Images are acquired by a double frame digital camera (Cooke Corp. PC0.4000) equipped with
a Micro-Nikkor 105 mm lens, which leads to a magnification M of approximately 18 pixels/mm.
The camera provides 4 008 x 2672 pixels images, whose longer edge is aligned with the flow.
The acquisition frequency is limited by the download speed of images from the camera to the com-
puter. Here, the maximum acquisition frequency fI"*® is 1 Hz, which precludes the acquisition
of more than one image per period for some of the cases described in Sec. 4.1.

The two pitching cases described in Sec. 4.1 are studied through phase-averaged p1v velocity
fields. Therefore, it is necessary to acquire several pairs of images at the same phase of the motion.
To this end, the nominal laser pulsing frequency f;, has to be adjusted to obtain a sampling fre-
quency f as close as possible to the kinematic frequency fj. Moreover, the camera shutter has to
be opened at a specific phase of the motion. More details about the synchronization of the plate
kinematics with the pIv sampling are given in App. C.3.

At (4.2)
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4.2.42 Experimental procedure

For each test case detailed in Sec. 4.1, p1v fields are measured by repeating several times a short
acquisition of p1v images. For pitching cases, the short extent of a single acquisition prevents dif-
ference between the target phase and the actual phase being measured. This extent and thus the
number of images per acquisition set are determined in such way that the maximum shift is lower
than 1 ms, which is of the order of the time between the two components of a pair of p1v images.
The chosen number of p1v images to perform the averaging process is 200 for each test case. For
pitching cases, 20 phases uniformly distributed within the pitching cycle are considered. For static
cases, images are acquired in four sets of 50 images at a frequency of 0.75 Hz. For these cases, di-
viding the complete acquisition into several sets has no other interest that providing redundancy.
Finally, as previously mentioned, part of the flow around the plate is in a shadow region. However,
the knowledge of the velocity field in that area is necessary to indirectly compute the loads from
the piv fields. To obtain these data, the experiment corresponding to static and small amplitude
pitching cases is repeated with the plate mounted symmetrically with respect to the freestream
direction, i.e. +30° and +45°. For large amplitude pitching cases, as the motion is symmetri-
cal with respect to the freestream direction, the sampled phases are sufficient to circumvent the
problem.

4.2.4.3 Post-processing of raw images to obtain velocity fields

Raw images are post-processed using an in-house code developed at the University of Michi-
gan. As explained in Sec. 2.3.1, the particle displacement field, and thus the velocity field, is de-
termined in multi-passes using cross-correlation analysis. The first low-resolution and second
high-resolution passes are performed using an interrogation window size of 64 x 64 pixels and
32 x 32 pixels, respectively. Two filters are then applied to remove outliers: a median filter
based on spatially adjacent values and a 3 — o filter based on a pre-computed mean and stan-
dard deviation at one particular point. The data are obtained on a cartesian grid with a spacing of
16 pixels, which corresponds to a physical spacing of about ¢/85. From this p1v grid, a window of
size 2.4¢ x 2¢ can be extracted. The location of this largest window Syy,q With respect to the plate
is shown in Fig. 4.2c. Finally, for all cases of interest, the 200 p1v snapshots are used to calculate
time or phase-averaged p1v fields. Second order statistics are also computed, leading to estimates
of the standard deviation around the mean if the plate is static, and turbulent fluctuations when a
motion is imposed.

4.2.4.4 Post-processing steps required to use INSE and NocAa methods

As explained in Secs. 2.3.2 and 2.3.3, the INsE and Noca methodologies used to indirectly calculate
the loads are based on a control volume approach. Therefore, they require velocity fields measured
all around the plate, which is not possible to obtain with the setup described above. In other words,
the shadow region depicted in Fig. 4.4b prevents a straightforward application of the INSE and
Noca methods, and an additional post-processing step is thus necessary.

In the present work, the missing data points are obtaining by exploiting the symmetry of the
problem. To obtain the velocity field in the shadow region, the experiment is repeated with the
plate mounted symmetrically with respect to the freestream direction as illustrated in Figs. 4.5a
and 4.5b. The two sets of results are then stitched together. In particular, this stitching step is
performed on the mean and fluctuation of the velocity field obtained after application of the prv
algorithm and phase or time-averaging. Since points are missing in the shadow region only, over-
lap regions exist between the images obtained for the two sides. These overlap regions are illus-
trated in Fig. 4.5¢ and are used to align the two sets of images. Despite this geometric overlap,
the data usually do not match exactly. The two sets of data are thus stitched together based on a
weighted-average in order to avoid discontinuities in the global velocity field.
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Figure 4.5: Schematic view of the stitching post-processing step.

4.2.5 Direct load measurements

The fluid dynamic loads on the plate for the three flow configurations described in Sec. 4.1 are
measured directly with a force/torque transducer. For each case, both Re = 2 x 10* and Re =
4 x 10* are considered. This section presents the apparatus, the experimental procedure and the
post-processing applied to the acquired data.

4.2.5.1 Load measurement apparatus

Fluid dynamic forces and moments are directly measured with a six components ATI Mini40 silicon
strain gauge sensor. The transducer is made by ATI Industrial Automation and is shown in the right
side of Fig. 4.2a. The sensor is mounted as depicted in Fig. 4.6. Its sampling frequency is 5 000 Hz.
As the device is attached as close as possible to the pivot axis, the reference axes move with the
plate. Therefore, the forces and moments are measured at the pivot location and in the sensor axes
which correspond to the plate axes. A projection is then needed to obtain lift, drag and moment
around another point.

rotary
sensor

Sw

Figure 4.6: Schematic view of the ATI Mini40 mounting and resulting sensor axes.

The sensor with the SI-80-4 calibration used in the experiments is able to measure maxi-
mal forces of 8O N in the x and y-directions, 240 N in the z-direction and maximal torques of
4 Nm. The documented resolution for forces is 1/50 N along the = and y-axes, and /25 N in the
z-direction, while a resolution of 1/2000 Nm for torques is specified. The resolution can be ex-
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pressed for load coefficients after normalization by 1/2pUZ2 S,, and 1/2pUZ2 S,,c for the forces
and torques, respectively. The reference surface Sy, corresponds to the surface of the plate under
water Sy, = CSq, Where sy, is the span under water equal to 59 cm or 7.6¢. The maximum force
and torque coefficients and the corresponding resolution A are summarized in Tab. 4.1.

CcF, and cp, Cr, CM,, €M, and car,

max A max A max A

Re=2x10* 528 1.32x1072 1584 264x1072 347 4.34x1073
Re=4x10* 132 3.30x107%® 396 6.60x10"% 868 1.09x 1073

Table 4.1: Maximal range and resolution of the ATI Mini40 sensor expressed in terms of load coef-
ficients for the Reynolds numbers of interest.

4.2.5.2 Experimental procedure

Forces and moments are measured while the kinematics presented in Sec. 4.2.2 are imposed. The
load acquisition for each kinematics is repeated several times to obtain sufficiently converged time
or phase-averaged data. The repetition of short acquisitions is preferred to a single long acquisi-
tion to avoid sensor drifting. In particular, the longest acquisition time considered here is 275 s.
To verify that the sensor has not drifted, forces and torques at the beginning and end of each
measurement, i.e., while the plate is aligned with the flow, are compared. A relative difference
on mean loads below 1% is typically obtained. For the static and small amplitude pitching cases,
the acquisition is repeated 5 times, while for the large amplitude pitching case it is repeated 14
times. Additionally, to determine the variation of the load coefficients with the incidence angle
for a static plate, the loads are measured for angles between —45° and 45° in steps of 2.5°.

In addition to the fluid dynamic loads, the sensor measures the structural static and dynamic
loads due to gravity and inertia, respectively. These loads have to be subtracted from the sensor
output. The major effect of gravity can be removed by subtracting a bias calculated at the beginning
of each measurement. However, this bias corresponds only to the plate configuration at the time
at which it is acquired, i.e. at @ = 0°. Since the gravity impact changes with the incidence of the
plate and the pivot location, a static calibration needs to be performed. It consists in the acquisition
of loads at the different possible imposed plate incidences. The static calibration is performed for
angles between —46° and 46° in steps of 2.5°, with additional steps of 1° around 45° and 30°.
This procedure is repeated for both a full and empty water channel. Finally, inertial effects are
determined by carrying out the measurements in an emptied water channel.

4.2.5.3 Post-processing

Data are acquired at a sampling frequency of 5000 Hz so that the measurements contain high
frequency noise which has to be removed. A Butterworth low pass filter of order six with a cutoff
frequency of 10 Hz is used to this end. Note that this frequency is five times higher that the highest
kinematic or shedding frequency.

Each set of raw data consists of different parts used to compute load coefficients but also to
verify that the sensor is not drifting with time. They can be differentiated using the information
sent by the stepper motor at different instants of the motion. Moreover, transient phenomena
are contained in the measurements. Therefore, for static cases, the data corresponding to the first
seconds are discarded. For pitching cases, transient effects are removed by discarding the data
associated with the first cycles of each experiments. In all cases, the number of seconds or cycles
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discarded is determined by requesting that a perturbation is convected along a minimal distance
of 20c within this time.

The acquired data correspond to loads in the sensor axes which move with the body. There-
fore, the forces have to be projected onto the flow axes to obtain lift and drag. Moreover, the
recorded pitching moment is modified to be defined positive nose-up and computed about the
plate center. The lift, drag and pitching moment are calculated from

L= —Fysina+ Fysina,
D = Fycosa+ Fysina, 43)
M = —Mz—%Lsina—%Dcosa,

where a stands for the location of the pivot axis with respect to the mid-chord. In particular, the
leading edge corresponds to @ = —1 and the trailing edge to a = 1.

As discussed earlier, the measurements carried out in water contain fluid dynamic loads but
also structural inertial and gravity contributions that have to be removed. The structural inertial
loads, appearing only for a pitching plate, are eliminated by removing the loads acquired during
experiments performed in air. These data have to be post-processed as explained previously. The
effect of gravity is determined through static calibration experiments conducted at different in-
cidences. After being filtered, the loads corresponding to each incidence are determined. To this
end, the transient part is removed and the mean loads are calculated based on 7.5 x 10* samples.
Subsequently, the mean lift, drag and moment around the pivot axis are obtained using Eq. (4.3).
Finally, the results are approximated by a second order polynomial for & € [—46°,46°]. The
contribution of gravity to measurements can thus be easily calculated and removed.

First and second order statistics are then applied. For the static case, the mean loads and the
standard deviations are computed based on a minimum of 350 shedding periods. For the small
and large amplitude pitching cases, the phase-averaged loads and the corresponding standard de-
viations are calculated using a minimum of 500 and 200 cycles, respectively. Subsequently, first
and second order statistics are computed on the phase-averaged loads. Finally, these results are
non-dimensionalized to obtain load coefficients.

4.3 Numerical setup

The flow around the 16:1 plate at an incidence of 30° is studied through ppEs simulations. This
CFD technique was preferred to URANS as Giiner (2015) demonstrated that it provides a more accu-
rate estimation of the flow. This section described the numerical setup. Two cases are considered,
first the static plate and then the plate undergoing small amplitude pitching oscillations. For both
cases, the Reynolds number is Re = 4 x 10%.

The sa turbulence model (Spalart and Allmaras, 1994) closes the URANS equations appear-
ing in the ppEs methodology. The pDEs equations are solved by means of a transient solver for
incompressible flows called pimpLE. It is based on a combination of the piso and simpLE algo-
rithms (Ferziger and Peri¢, 1996) and it allows the use of a large time-step. The non-dimensional
time step 2tUs /c is set to 5 x 10~ which leads to a cFL number of around 4. The smallest time
scales of the flow are assumed to be captured accurately as the time step corresponds to 1/600th
of a typical vortex shedding cycle. The second order implicit backward Euler scheme is used to
advance equations in time while second order schemes are chosen for the spatial discretization. In
particular, the advective term u;0;u; is discretized through a Lust scheme (Patruno et al., 2016).
The piMPLE solver is combined with a moving mesh technique when a small amplitude pitching
motion is imposed. In particular, the small pitching motion o« = 30° + 0.77° sin (27 ft) is im-
posed to the plate by enforcing a rigid body rotation of the cells inside the smallest disc depicted
in Fig. 4.7a.

The computational domain is shown in Fig. 4.7a. It consists of two discs surrounding the
plate. The largest disc of radius 50c is the external border of the computational domain while
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the smallest disc of radius 2.5¢ is used to impose the pitching motion. Inside this smallest disc,
four arcs of ellipse result in cells with reasonable skewness around the plate edges. Finally, the
plate is directly surrounded by a thin layer of 0.026¢ height that leads to a smooth mesh next
to the walls. The grid is shown in Fig. 4.7b and consists of 17000 quadrangles in the z — y
plane. The plate is discretized into 200 cells. Each straight part is divided into 66 cells distributed
with a geometric progression equal to 1.3. Moreover, 34 cells are equally spread over each of the
rounded edges. In the direction perpendicular to the wall, the layer next to the plate is composed
of 15 cells distributed with a geometric progression of 1.26. The smallest and largest discs are
discretized radially with 34 and 36 cells, distributed with a progression equal to 1.12 and 1.08,
respectively. The ensuing mesh is non-conformal as the mesh nodes at the interface between the
largest and smallest circles do not coincide. The two-dimensional grid is extruded along the z
direction. Two span lengths are considered, s = c and s = 7.5¢, the latter being close to the
span length of the plate used in the experiments. For both span lengths, the discretization along
z is such that Az = ¢/32. The two grids consist thus of 544 000 and 4 080 000 hexahedra for the
shorter and the longer span, respectively. These grids and the associated computational domain
were designed based on the work of Giiner (2015), which shows that the ensuing numerical results
are mesh independent.

At walls, the no-slip condition is imposed for the velocity. A Neumann homogeneous condi-
tion is set for the pressure while the turbulent variable ¥ is zero. At the inlet, a Neumann homo-
geneous boundary condition is set for the pressure while a freestream velocity is imposed. The
variable 7 is set through a Dirichlet boundary condition such that ?/v = 6, i., slightly above
the upper limit suggested in Sec. 2.2. At the outlet, a combination of Neumann and Dirichlet
conditions are set for the velocity, the pressure and the turbulent variable. For u; and 7, this com-
bination leads to a zero-gradient boundary condition in case of an outflow. Conversely, if the flow
enters the computational domain, u; and ¥ are enforced through a Dirichlet condition setting the
inlet values. For the pressure, the Neumann and Dirichlet boundary conditions are combined to
lead to the opposite behavior. On the boundaries of the domain normal to the extrusion direction,
periodic boundary conditions are adopted for all variables. Finally, a boundary condition that al-
lows the passing of fluxes through non-conformal interfaces is set for faces between the largest

and smallest discs.
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Figure 4.7: Computational domain and grid used for the ppEs simulations of the flow past a plate
undergoing small amplitude pitching motion around an incidence of 30°.

Initial ppEs simulations are first run until a fully-developed periodic response of the load
coefficients is reached. Then, simulations are run for 150 additional non-dimentional time units.
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Detached flow around a flat plate

This temporal window corresponds roughly to 45 shedding cycles, which has been shown to be
sufficient in order to compute converged statistics (Giiner, 2015).

4.4 Overview of flow features

This section presents the p1v results and the direct load measurements obtained for the three test
cases. It aims to provide an overview of the flow features and phenomena. First, the flow around
a flat plate undergoing large amplitude pitching oscillations is described. Then, the phenomena
occurring for a static plate at high angle of attack are presented, the plate being first static and then
undergoing small oscillations.

4.4.1 Large amplitude pitching case

This section presents an overview of the flow around a plate undergoing a sinusoidal pitching
motion @ = Aasin (27 ft) where the amplitude is Acw = 30°. The flow features and loads are
first described for a pivot axis located at the plate center. Then, the differences appearing when
the location of the pivot axis is modified are highlighted.

The phase-averaged flow around a plate oscillating about its center obtained from p1v mea-
surements is presented in Fig. 4.8 for the first half of the pitching cycle. It corresponds to the plate
pitching up from 0° to 30° and then going back to zero incidence. The second half of the cycle
is not shown since the flow is symmetrical with respect to the freestream: the flow features above
and below the plate are the same but shifted in time by half a cycle. Therefore, the flow can be
entirely described by analyzing the first half of the cycle, first considering the flow above the plate
and then the flow below it. In Fig. 4.8, the plate incidence is zero and the flow along the upper side
of the plate is attached. As the angle of attack increases, a recirculation bubble appears at the lead-
ing edge of the plate. This is visible in Fig. 4.8c. Figure 4.8d shows that this recirculation bubble
grows forming a clockwise vortex called LE vortex that lies on a counter-clockwise rotating zone
of vorticity. When the incidence further increases, the LE vortex grows and is convected down-
stream while the counter-clockwise vorticity zone extends forming a conter-clockwise vortex.
These phenomena are visible from Figs. 4.8d to Fig. 4.8f. Note that for the maximum incidence
a = 30°, the phase-averaged flow is still attached despite an incidence much higher than the
static stall angle & &~ 7° (Granlund et al., 2013). When the incidence starts to decrease, the LE
vortex detaches from the upper side of the plate. This allows the further growth of the counter-
clockwise vortex visible in Fig. 4.8g. Between phase ¢ = /7 = 0.3 and ¢ = 0.35, the free
shear layer below the plate rolls up around the TE to form a counter-clockwise vortex visible in
Fig. 4.8h. This vortex merges with the counter-clockwise vortex below the LE vortex, which leads
to the so-called TE vortex. This merging is depicted in Figs. 4.8h and 4.8i and occurs while the LE
vortex is shed into the wake. As the plate incidence continues to decrease, the TE vortex is also
shed. Between ¢ = 0.45 and ¢ = 0.6, the flow on the upper side of the plate exhibits a free
shear layer extending from the plate LE. This is visible above the plate from Fig. 4.8j to Fig. 4.8k
and below it from Fig. 4.8a to Fig. 4.8c. As the incidence decreases further, the flow reattaches and
remains attached from the LE to the TE for the rest of the pitching cycle. This is visible below the
plate from Fig. 4.8d to Fig. 4.8k.

The phase-averaged load coefficients are plotted as functions of time and incidence angle
in Fig. 4.9. The variation of the load coefficients with the incidence angle for a static plate is
also shown for comparison. In particular, the time response of the lift coefficient is depicted in
Figs. 4.9a and 4.9b. At zero incidence, i.e. for ¢ = 0, the generated lift is zero. Then, the lift coefhi-
cient increases linearly with the incidence until &« ~ 27° or ¢ &~ 0.18. The lift slopeis cr, ~ 4.5
which is lower than the slope measured for a static plate ¢, ~ 6.76. Moreover, the linear in-
crease in lift continues far beyond the saturation observed for o > 5° for the static plate. The
maximum lift is ¢z, &~ 2.36 and occurs at the maximal amplitude o« = 30°. Figure 4.8 seems to
indicate that the linear variation of the lift with the incidence angle corresponds to the emergence
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Detached flow around a flat plate

and growth of the LE vortex. The maximum lift occurs just before the shedding of the LE vortex. At
this point, the plate is pitching down and the lift quickly decreases. From ¢ = 0.35 to ¢ = 0.45,
the lift response exhibits a perturbation in its continuous decrease, which is probably due to the
rolling up of the shear layer and the shedding of the TE vortex. As the plate returns to zero inci-
dence, the lift reaches zero. Because the pitching motion is symmetrical, the time response of the
phase-averaged lift during the second half of the pitching cycle is the same as during the first half
but with negative values. One can finally observe that the maximum value of the lift coefficient is
more than twice that of a static plate at the same incidence angle, for which ¢z, ~ 1.04 as shown in
Fig. 4.9b. Note that stall delay is characteristic of dynamic stall (McCroskey, 1981). The response
of the phase-averaged drag coeficient is shown in Figs. 4.9¢c and 4.9d. Because drag consists mostly
in pressure drag, it exhibits a time response similar to that of the lift. It increases along the first
quarter of the cycle, as the LE vortex emerges and grows. Then, the drag reaches its maximum
value cp ~ 1.3 at the maximum incidence. Again, this value is much larger than the correspond-
ing static value cp &~ 0.65 shown in Fig. 4.9d. The drag decreases then with incidence during the
second quarter of the cycle, i.e., as the LE vortex is shed into the wake and convected downstream.
The time response of the drag coefficient exhibits small oscillations around the phase-averaged
value. Nonetheless, similarly to the lift, a perturbation due to the TE vortex is visible between
¢ = 0.35to ¢ = 0.4. Finally, the variation of the phase-averaged pitching moment coefficient
about the plate center is shown in Figs. 4.9¢ and 4.9f. Similarly to the lift, the time response of cs
is anti-symmetrical. Moreover, as for the lift and drag coefficients, its maximum, cps ~ 0.45, is
much larger than that of a static plate, for which cps = 0.12 as shown in Fig. 4.9f. However, this
maximum does not occur at the maximum incidence, but before, at o & 0.18, which corresponds
to an incidence av & 27.2°. This can be explained by the dynamics of the flow structures. At the
beginning of the cycle, the growing LE vortex is located close to the leading edge. This location
far from the plate center maximizes the lever-arm and thus its contribution to cps. Therefore,
because of the strong suction induced by the vortex, the pitching moment increases quickly with
incidence. This can be visualized by comparing the variation of cys in Fig. 4.9¢ and the flow field
in Fig. 4.8 for phases ¢ = 0 to ¢ = 0.15. Then, as the incidence continues to increase, the vortex
is convected downstream and finally past the plate center. The contribution of the LE vortex to
¢ becomes negative and the pitching moment decreases. Similarly to the lift, the impact of the
TE vortex is visible from ¢ = 0.3 to ¢ = 0.5, the drop in cys being associated with the pitch
down caused by the suction at TE due to the counter clockwise vortex.

In addition to the results for a pivot axis located at the plate center, Fig. 4.9 also depicts the
time response of the phase-averaged coefficients associated with the two other pivot axis locations
considered here, i.e., at the leading and trailing edges of the plate. The main impact of a change
in the pivot axis location is clearly visible in Figs. 4.9a, 4.9c and 4.9¢. It corresponds to a shift in
time of the response associated with the load coefficients. Figures 4.10 and 4.11 show the phase-
averaged p1v fields obtained for cases associated with a pivot located at the LE and TE of the plate.
By comparing these figures with Fig. 4.8, it appears that the structure of the flow is similar but
with a shift in the dynamics of the flow features. More precisely, compared to a pivot located a the
plate center, a similar flow pattern occurs for lower and higher incidences for pivot located at the
LE Or TE, respectively. In particular, this shift can be seen by comparing Fig. 4.10b and Fig. 4.11c
which both depict the emergence of the recirculation bubble at « = 9.3° and o = 17.6°, for a
pivot at LE and TE respectively. This is also clearly visible in Fig. 4.10f and Fig. 4.11g where the
flow starts to detach at phase ¢ = 0.25 and ¢ = 0.3. Finally, a comparison of the flow structure
for the three pivot locations at phase ¢ = 0.35 shows that the LE vortex center is located farther
downstream when the pivot axis is closer to the LE of the plate.

The cause of this temporal shift can be determined by using the theoretical model proposed
by Theodorsen (1935). Under the approximations of potential fully-attached flow, planar wake
and the fulfillment of the Kutta condition, this theoretical approach provides an estimation of the
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Figure 4.9: Phase-averaged load coeflicients obtained by direct load measurements for a plate
undergoing large amplitude sinusoidal oscillations about three different pivot axes. (a,c,e) Time
variation over a pitching period 7" the dashed lines in (a) correspond to the theoretical predictions
of Theodorsen’s theory. (b,d,f) Variation as a function of the incidence angle for half a pitching

period; the black line corresponds to a static plate.
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Detached flow around a flat plate

lift associated with unsteady aerodynamics. In the context of a purely pitching motion, it gives

mc [ « ac ac |1

non-circulatory lift circulatory lift

where & and & stand for the first and second temporal derivatives of the incidence angle. The
complex-valued transfer function C' (k) is called Theodorsen’s function and accounts for the in-
fluence of the vorticity shed into the wake. It acts as a filter that depends on the reduced frequency
k. The results of this model applied to the present case are depicted by the dashed lines in Fig. 4.9a.
Comparing the experimental and theoretical data shows that this model provides a very accurate
estimation of ¢; in the first part of the pitch-up motion. Discrepancies appear from ¢ = 0.1 to
o = 0.25, i.e., during the second part of the pitch-up motion. Nevertheless, the lift approximation
is still quite accurate. In particular, the maximum c, is very well approximated, both in value and
location. As the theory proposed by Theodorsen (1935) assumes a fully attached flow, large dis-
crepancies are observed during the pitch-down motion. Nonetheless, the temporal shift observed
when modifying the pivot location is accurately modeled. Therefore, the causes of this shift can be
determined by analyzing the different components of the lift predicted by Theodorsen’s theory.
In particular, Eq. (4.4) shows that the lift consists of a circulatory and a non-circulatory com-
ponent. The non-circulatory contribution is caused by added mass effects while the circulatory
contribution is due to a change in circulation. By comparing the variation of the different terms in
Eq. (4.4) with the pivot location, it appears that the second term of the circulatory lift contributes
the most to the temporal shift. Therefore, this temporal shift is mainly caused by a modification
of the motion-induced angle of attack. Figure 4.12 shows the variation of the phase-averaged lift

coefficient with the effective angle of attack aer = @ + 2;}; [1 — a], for the three pivot axes.

2
It shows that the curves cr, (c.g) associated with the different pivot axes tend to match for the
linear growth, contrary to what is depicted in Fig. 4.9b for cr, («). This confirms the impact of the
motion-induced angle of attack on the temporal shift. Finally, note that the same analysis could
be conducted using the experimental lift slope cr,, ~ 2.157 in Eq. (4.4) instead of the thin airfoil
theory result ¢;, = 27. However, this would increase the modeled maximum lift and the modeled
lift slope of the dynamic curve of about 10%.

3 T
Pivot at LE
Pivot at center
2 Pivot at TE N

cr [-]

et [°]

Figure 4.12: Phase-averaged lift coeflicients obtained by direct load measurements for a plate un-
dergoing large amplitude sinusoidal oscillations about three different pivot axes. Variation as a
function of the effective incidence angle g for half a pitching period.

4.4.2 Static case

The time-averaged flow fields around a plate at 30° and 45° incidence are depicted in Fig. 4.13.
For both incidences, the mean flow is detached and two free shear layers extend downstream of the
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4.4 Overview of flow features

LE and TE. Two vortices appear in the mean flow topology. A large clockwise vortex called the LE
vortex lies above the upper surface of the plate. It extends from the LE shear layer to another vortex
rotating conter-clockwise and called TE vortex and extending to the TE shear layer. Comparing
Figs. 4.13a and 4.13b, it appears that both the LE and TE vortices become larger as the incidence
increases. In particular, for & = 45°, the two vortices extend farther downstream.

(@) a = 30°. ‘ (b) o = 45°.

Figure 4.13: Time-averaged p1v velocity and vorticity fields around a static plate at large incidence.
The red and blue fields correspond, respectively, to positive and negative vorticity, i.e. counter-
clockwise and clockwise vortices. The field of view corresponds to a square of size 2¢ centered
on the plate center.

The mean load coefficients are shown in Tab. 4.2. The LE vortex induces suction along the up-
per surface of the plate. This suction combined with the positive pressure coefficient along most
of the lower surface (Breuer et al., 2003; Lam and Wei, 2010) leads to a positive force perpendicu-
lar to the chord axis. This normal force corresponds to positive lift and drag forces, whose values
are comparable to those reported by Granlund et al. (2013). The mean lift obtained for the two
angles is almost the same. Note that the value of ¢z, obtained for o = 30° is much lower than the
cr, obtained for a similar angle when a large amplitude pitchig motion is imposed (see Sec. 4.4.1).
This illustrates the difference between static and dynamic stall. For & = 45°, the pressure con-
tributions to the lift and drag are equal. Therefore, the total drag reported in Tab. 4.2 is higher
than the total lift due to friction effects. Finally, the reported mean pitching moment coefficient
is positive and identical for the two incidences. This positive value is due to the mean pressure
distribution along the lower side of the plate, which is positive for the first 60 percent of the plate
and negative for the remaining part, while suction is almost constant along the upper side (Breuer
et al, 2003; Lam and Wei, 2010). The mean flow leads thus to a nose-up moment at the plate
center. The standard deviation of the load coefficients is also reported in Tab. 4.2. As the loads
are time-averaged, the standard deviation provides an estimate of the amplitude of the variations
around the mean. Note that the large values reported for « = 45° may be partly caused by the
plate vibrations observed during the experiments.

L cl, D cp cM v
a=30° 0.99 0.055 0.63 0.036 0.12 0.005
a=45° 1.01 0.304 1.09 0.345 0.12 0.011

Table 4.2: Time-average and standard deviation of the load coefficients for a static plate at large
incidence angle and Re = 4 x 10*.
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4.4.3 Small amplitude pitching case

This section investigates the flow fields around a plate at an incidence of @ = 30° and@ = 45° un-
dergoing small amplitude pitching oscillations, i.e, & = @+ Aasin (27t/T), where Aav = 0.77°
and 1.33° for the smallest and largest mean incidences, respectively. As explained in Sec. 4.2,
these oscillations are imposed in order to provide a phase reference for the pIv measurements.
The present section is divided into two parts. First, the impact of the imposed oscillations is in-
vestigated through experimental and numerical results. This aims to demonstrate that the imposed
kinematics does not significantly impact the flow features. Then, the phase-averaged flow features
obtained experimentally are depicted.

4.4.3.1 Impact of the imposed small amplitude pitching oscillations

The impact of the imposed pitching oscillations is investigated using both the measured load coef-
ficients and the results of numerical simulations. The time-averaged load coefficients are reported
in Tab. 4.3 for @« = 30°. The results obtained for the static case are repeated to facilitate the
comparison. The mean coefficients obtained with and without the imposed small amplitude os-
cillations are similar. In particular, their relative difference is below 10%. However, the standard
deviations increase when a small pitching motion is imposed. As discussed below in more detail,
this is likely due to an increase of the coherence of the flow along the span.

cr L 95} cp cM cu
EXP static 0.99 0.055 0.63 0.036 0.12 0.005
exp small amplitude pitching 1.08 0.079 0.69 0.044 0.13 0.019
DDES static s = ¢ 1.11  0.120 0.68 0.056 0.13 0.010
DDES static s = 7.5¢ 1.08 0.057 0.66 0.026 0.12 0.004

DDEs small amplitude pitching s = ¢ 1.17 0.250 0.73 0.130 0.12 0.026
pDEs small amplitude pitching s = 7.5¢ 1.19 0.130 0.73 0.054 0.12 0.012

Table 4.3: Time-average and standard deviation of experimental and numerical load coefficients
for a plate at an incidence angle o« = 30° and Re = 4 x 10, The plate is either static or undergoes
small amplitude pitching oscillations around the mean angle of attack.

The impact of the imposed motion on the flow dynamics can be further investigated by us-
ing cFp. Table 4.3 presents the results of ppEs simulations conducted for two span lengths, with
and without forced pitching motion. For a static plate, the standard deviation of the load coefhi-
cients decreases when the span length is increased from s = cto s = 7.5¢. This indicates that
the amplitude of the load coefficient time responses decreases. Conversely, the time-averaged load
coefficients do not vary much with the span length. As discussed by Giiner (2015) who investigated
the same case, the variation of the standard deviation is due to three-dimensional phenomena. In
particular, the flow is not entirely two-dimensional and therefore its coherence along the span is
reduced. This is illustrated in Fig. 4.14a which depicts iso-surfaces of the pressure coeflicient for a
static plate of span length c at a time corresponding to a local maximum of the lift coefficient. When
the span length increases, more flow structures can develop in the z-direction. Moreover, the im-
pact of the periodic boundary conditions imposed on the borders of the computational domain
perpendicular to the z-direction decreases. Therefore, the flow is more three-dimensional, which
leads in turn to a decrease of the coherence in the z-direction, as depicted in Fig. 4.14b. This phe-
nomenon causes a phase shift in the load distribution along the span. In particular, the minimum
and maximum of the two-dimensional load coefficients along the plate do not occur at the same
time within the shedding cycle. This impacts the time response of the three-dimensional load co-
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4.4 Overview of flow features

eflicients obtained by span-averaging the distribution of two-dimensional load coefficients. More
precisely, as illustrated in Fig. 4.15, the amplitude of the load coefficient time responses decreases,
which explains the decrease of the corresponding standard deviations. Finally, the comparison
of the statistics of the load coefficients obtained from direct measurements and pDEs simulations
performed for s = 7.5c indicates that the cFp is able to approximate the flow around a static
plate. Note that this was demonstrated in detail by Giiner (2015) who used pmbD to compare the

flow fields.

(a) Static case with s = c. (b) Static case with s = 7.5¢.

(c) Pitching case with s = c. (d) Pitching case with s = 7.5¢.

Figure 4.14: Surfaces of constant pressure around a static and small amplitude pitching plate at
a = 30° obtained by ppes for different span lengths. The iso-surfaces correspond to equidistant
values of C'p, ranging from —0.6 to —1.9 (red to blue) and the time considered corresponds to the

maximum lift in a shedding cycle.
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Figure 4.15: Schematic explanation of the decrease in amplitude caused by a phase shift in the
two-dimensional load time responses at two spanwise positions z1 and z».

When the plate undergoes small amplitude pitching oscillations, the statistics of the computed
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load coefficients vary with span length in a manner similar to that of the static case. An increase of
the span length leads to a decrease of the standard deviations while time-averages do not vary sig-
nificantly. This is reported in Tab. 4.3 and illustrated in Figs. 4.14c and 4.14d. More interestingly,
by comparing the results obtained for the static plate and the forced motion, it is observed that
the standard deviations of the coefficients increase when oscillations are applied, while the mean
coefficients are not impacted. The imposed weak oscillation is likely sufficient to increase the flow
coherence along the span as illustrated by Figs. 4.14b and 4.14d. As explained before, this increase
of coherence causes an increase of the amplitude of the load coefficient responses and in turn of
their standard deviation. Despite these differences, the load coefficients and the flow features do
not seem to change much when small forced oscillations are applied.

In conclusion, it seems that the forcing of a pitching motion does not significantly impact
the mean flow dynamics. Therefore, a better understanding of the flow features can be gained by
studying the corresponding phase-averaged p1v fields.

4.4.3.2 Overview of flow features

The flow fields around a plate at incidence of @ = 30° and @ = 45° are shown in Figs. 4.16 and
4.17, respectively. In particular, these figures present the phase-averaged velocity and vorticity piv
fields. As explained before, the p1v fields are obtained by applying a small amplitude sinusoidal
pitching motion to provide a phase reference for the prv measurements. Mathematically, this mo-
tion is given by & = @ + Aasin (27t/r), where Aa = 0.77° and 1.33° for the smallest and
largest mean incidences, respectively.

The vortex shedding phenomenon that occurs for a mean incidence of @ = 30° is depicted
in Fig. 4.16. Similarly to the previous large amplitude pitching case, two vortices develop from
the LE and TE of the plate, respectively. They are then convected downstream and shed into the
wake. However, the flow is asymmetric about the wake centerline. The vortex appearing at the
TE is small and has a high vorticity level at its center while the vortex developing from the LE is
larger but less powerful (Lam and Wei, 2010). Moreover, the mechanisms leading to the vortex
formation are very different.

The counter-clockwise rotating vortex forming next to the TE originates in the roll-up of the
shear layer that extends from the trailing edge. The emergence and growth of the TE vortex are
visible from Fig. 4.16g to Fig. 4.16j. During this stage, the TE vortex moves slowly. Subsequently,
the velocity of the TE vortex center increases as the vortex is shed into the wake and convected
downstream, as shown in Fig. 4.16a to Fig. 4.16e. Conversely, the formation and shedding of
the clockwise vortex emerging from the leading edge does not involve the roll-up of the shear
layer. In this case, a number of shear layer vortices are generated from the separation occurring
at the LE, as visible in Figs. 4.16a or 4.16b. Breuer et al. (2003) demonstrated through LEs that
the small vortices result from a Kelvin-Helmholtz instability and are then convected downstream.
Figures 4.16b to 4.16f show that these vortices progressively agglomerate into a large clockwise
recirculation region called the LE vortex. At ¢ = 0.6, the LE vortex starts to detach from the upper
part of the plate and is then shed into the wake, as depicted in Fig. 4.16h to Fig. 4.16k. Figures 4.16h
and 4.16k illustrate the beginning of the LE and TE vortices detachment, respectively. These two
vortices are shed approximately at the same downstream distance 0.65¢ from the plate center.
According to Breuer and Jovic¢i¢ (2001) and Lam and Leung (2005), there is a strong interaction
between the LE and TE vortices. The size, detachment and shedding of the LE vortex is affected
by the development of the TE vortex, and conversely. More precisely, the LE vortex has space to
grow only after the shedding of the TE vortex, as shown in Fig. 4.16b. Moreover, the growing
stage of the LE vortex stops as the TE vortex emerges, as seen in Fig. 4.16g. This is followed by an
upward motion of the TE vortex as it grows, which causes the detachment of the LE vortex. This
phenomenon is visible in Figs. 4.16h and 4.16i.

Finally, the measured load coefficients are presented in Fig. 4.161 while Tab. 4.4 reports their
mean and standard deviation. The phase-averaged time responses of the lift, drag and pitching
moment coeflicients exhibit a nearly sinusoidal behavior. In particular, the maximum and mini-
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Detached flow around a flat plate

mum lift occurs at ¢ = 0.4 and ¢ = 0.9 while drag extrema take place 0.057" later. As the flow
is separated, the total drag consists mostly of pressure drag. Considering only this contribution,
the lift and drag time responses should be in phase (Lam and Wei, 2010). Therefore, the observed
shift is due to the contribution of friction. As the flow does not vary much along the lower sur-
face of the plate, it can be concluded that the temporal load variations are mainly caused by the
flow topology and dynamics along the upper surface. In particular, the flow corresponding to the
maximum lift is shown in Fig. 4.16e. At this phase of the cycle, the TE vortex has been shed into
the wake and the LE vortex lies along the entire upper surface. The negative pressure associated
with the vortex causes a large suction force perpendicular to the plate which leads to large lift
and drag. For subsequent phases of the cycle, the emergence and growth of the TE vortex leads to
the shedding of the LE vortex. This reduces the suction along the upper surface and consequently
leads to the decrease of lift and drag. The minimum lift corresponds to ¢ = 0.9, i.e. the end of
the growing phase of the TE vortex and the beginning of its shedding. As the TE vortex is shed, the
LE vortex has more space to grow. The time responses of the fluid dynamic forces are thus mainly
caused by the variation of pressure induced by the LE vortex. However, the time response of the
pitching moment coefficient is due to the suction caused by both the LE and TE vortices. In par-
ticular, cps is minimum at ¢ = 0.8, for which the TE vortex is located close to the TE of the plate,
causing a large suction at this location. The suction caused by the TE vortex is probably the most
important contribution to the pitching moment as the LE vortex is being shed into the wake and
thus located far from the plate upper surface. As cas is defined positive nose-up, a high suction
along the rear part of the upper surface leads to a negative contribution to the pitching moment.
After the shedding of the TE vortex into the wake, the pitching moment increases. Its maximum is
achieved at ¢ = 0.3 for which, as shown in Fig. 4.16d, the LE vortex lies along the upper surface.
The maximum pitching moment is then probably caused by the combination of an asymmetry in
the suction due to the LE vortex and the pressure along the lower surface being higher near the LE.

L cr ¢h cp et ch

0° 1.08 0.079 0.69 0.044 0.13 0.019
5° 1.07 0.210 1.15 0.224 0.12 0.020

3
=4

_l QI

Table 4.4: Time-average and standard deviation of the load coeflicients for a plate undergoing
small pitching oscillations at large incidence and Re = 4 x 10®.

The phase-averaged flow fields and loads for a mean angle @ = 45° are presented in Fig. 4.17.
The same behavior as for the smaller incidence is observed. Increasing the mean incidence & in-
creases the characteristic length of the wake which scales with c¢sin « (Fage and Johansen, 1927).
Therefore, the field of view should be larger to be able to visualize the entire shedding phe-
nomenon. Nonetheless, the main mechanisms described above are still present. In particular,
at ¢ = 0.8, the TE vortex is sufficiently far downstream to allow the emergence of the LE vortex.
Then, the LE vortex grows and moves downstream, as depicted by Figs. 4.17ito 4.17c. At ¢ = 0.3,
the rolling-up of the lower shear layer creates a new TE vortex. As this TE vortex grows, the LE
vortex is shed into the wake. This is visible in Fig. 4.17d to Fig. 4.17h.

The corresponding loads are depicted in Fig. 4.161. It appears that the time response is less
smooth than for the loads measured at @ = 30°. This is possibly due to vibrations of the plate
occurring at @ = 45°, but also to an increase of the vortex strength. Finally, at this incidence, the
pressure contributes equally to the lift and drag. As reported in Tab. 4.4, the mean lift and drag
have similar values and the differences in their time response are probably due to friction.
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Detached flow around a flat plate

4.5 Impact of user-defined parameters in the INSE and Noca methods

The goal of the present chapter is to assess the INSE and Noca indirect load calcluation methods.
These formulations are applied to the different flows described in Sec. 4.4. Before discussing their
accuracy, the effects of the user-defined parameters appearing in the INsE and Noca methodologies
are studied.

The user-defined parameters can be categorized into two types: the parameters related to the
input prv fields, and those related to the INsE and Noca methods themselves. The parameters re-
lated to the p1v fields are first studied in Sec. 4.5.1. In particular, this section describes the effects
of: i) the number of p1v images used in the averaging procedure, ii) the spatial resolution of the prv
measurements and, for unsteady phenomena, iii) the number of phases sampled within a pitch-
ing/shedding cycle. Then, in Sec. 4.5.2, the effects of the user-defined parameters appearing in the
nNoca and iNse methodologies are investigated. Four different parameters are studied: i) the size
and location of the control surface S, ii) the mathematical formulation of the volume term in the
Noca approach, iii) the position of the origin for the location vector x; in the Noca method, and
iv) the threshold value I'5™*°® for the pressure correction in the INse methodology.

To perform a relevant analysis, the different user-defined parameters cannot be modified si-
multaneously. Therefore, unless otherwise specified, the default values given below are used. The
average p1v fields are obtained from 200 snapshots. The control surface S surrounding the plate is
a square of side length 2c¢ centered around the plate, as shown in Fig. 4.18. This surface is divided
into points distant by Az = ¢/s5 which form a uniform cartesian calculation grid. For the large
and small amplitude pitching plate cases, a cycle is divided into 20 phases and an averaged pr1v
fields is computed for each of those. In the context of the Noca approach, formulation (2.43) is
used for the calculation of forces. Therefore, the initial temporal term that consists of a volume
integral is rewritten as surface integrals. Conversely, to improve the accuracy of the methodology,
the calculation of the pitching moment involves formulation (2.66) where the volume integral is
retained. The origin of location vector x; appearing in Egs. (2.43) and (2.66) is set at a horizontal
distance of 0.925c downstream of the plate center. It is represented by the black dot labeled I in
Fig. 4.18. Finally, for the INSE approach, I'; is calculated through Eq. (2.68), where length [ is cho-
sen as | = 0.138c. The threshold on I'; used for the pressure correction is set to thres = 0.05.

It is known that the estimated loads given by the indirect formulations applied on two ad-
jacent contours Co can vary significantly (Albrecht et al., 2012). In order to limit that effect, the
aerodynamic coefficients obtained in this work are presented in terms of statistics of the nondi-
mensionalized loads calculated on several contours. More specifically, the control surface is asso-
ciated with twelve additional surfaces that are up to 0.15¢ narrower, as illustrated in Fig. 4.18 by
the shaded zones along the right boundary. The load coefficients presented are thus calculated by
ensemble averaging the results obtained from the corresponding thirteen control surfaces. In ad-
dition, the standard deviation associated with these different surfaces is presented as it measures
the sensitivity of the results to S.

4.5.1 Parameters defining the p1v fields

This section studies the effects of the user-defined parameters required to define the p1v fields. In
particular, the effects of the number of images used to compute statistics and the spatio-temporal
resolution of p1v fields are investigated.

4.5.1.1 Number of p1v images for averaging

The impact of the number of P1v images used to obtain averaged p1v fields is investigated by apply-
ing the two indirect methodologies to velocity fields obtained from 50, 100, 150 and 200 snapshots.
The results presented below are obtained by applying the INSE approach but similar conclusions
can be drawn from the Noca methodology.
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Figure 4.18: Schematic view of the default location of the control surface with respect to the plate.
The small disc denoted I represents the location considered as origin in the Noca method.

For the large amplitude pitching plate, Fig. 4.19 shows that the time response of the lift and
drag coefficients are very similar for the four numbers of images considered. The pitching mo-
ment coefficient results are not shown here as they are very similar to those obtained for the drag.
The mean and rms calculated from the time responses plotted in Fig. 4.19 are almost the same
for the different number of snapshots considered. A maximum relative difference of 4% is calcu-
lated by comparing the statistics obtained from the time responses corresponding to 50, 100 and
150 snapshots with those corresponding to 200 snapshots. Therefore, 50 images would already
be enough to obtain a good estimation of the load coefficients. Surprisingly, this number differs
significantly from the results presented by Gharali and Johnson (2014) who reported a minimum
of 500 images required for a similar case.

For the static plate, the convergence analysis (not shown) indicates that the piv mean flow field
based on 50 snapshots leads to a reasonable estimation of the mean coefficients. Nonetheless, 150
images are needed to compute standard deviations, i.e., sensitivity to the control surface location,
similar to the results obtained with the maximum number of snapshots. Note that the number of
images required to obtain converged statistics increases compared to the large amplitude pitching
case. This is probably because the coherence between snapshots decreases.

Finally, for the small amplitude pitching plate case, the mean coefficients are similar whether
computed with p1v fields obtained from 50, 100, 150 or 200 images. Nonetheless, it seems that
increasing the number of snapshots leads to a decrease of the noise in the coefficient responses, as
depicted in Fig. 4.20.

4.5.1.2 Spatial resolution

Spatial resolution includes three aspects: i) the magnification of the camera lens in the p1v setup,
ii) the size of the interrogation windows in the p1v processing and iii) the spacing of the grid on
which the 1Nse and Noca approaches are applied. The magnification is related to the p1v setup.
More precisely, a prv image consists of a fixed number of pixels. A physical length is thus divided
into several pixels corresponding to the magnification produced by the camera lens. The size of
the field of view captured by each p1v image varies with this magnification: the larger the field
of view, the lower the magnification. Gharali and Johnson (2014) applied the iNsE method to prv
fields obtained with several magnifications. They demonstrated that a lower magnification can
be used to increase the possibility to find a location for the downstream boundary of S that is
not in the vortical region (see Sec. 4.5.2). However, they showed that the lower spatial resolution

109



Detached flow around a flat plate

Direct
—@— 50 images
7—.— 100 images
—2 | —@— 150 images |
—0— 209 images ‘ ‘ ‘ ‘ ‘

0 T/4 T 3T/ T 0 T/a T/ 3T/s T
@ . (b) cq.

Figure 4.19: Impact of the number of snapshots on the variation of the lift and drag coefficients
within a pitching period 7" for large amplitude plate oscillations around a mean angle of attack of
0°: indirect calculation using INSE (symbols) and direct measurements (thick continuous line). The
error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.
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Figure 4.20: Impact of the number of snapshots on the variation of the lift and drag coefficients
within a pitching period T for small amplitude plate oscillations around a mean angle of attack
of 30°: indirect calculation using INSE (symbols) and direct measurements (thick continuous line).
The error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.

could be problematic for moving bodies. The setting of the size of the p1v interrogation windows
is required for the p1v process described in Algo. 1. In particular, a small interrogation window for
the second pass captures smaller scales. This is explained in more details in Sec. 2.3.1. Finally, the
piv fields are obtained on a grid having a prescribed spacing Ax. Because the indirect calculations
use the same grid, a larger Az introduces larger discretization errors.

In the present work, the magnification is constant and its impact on the indirectly computed
loads is not studied. On the other hand, the size of the interrogation windows and the grid spacing
are varied. More precisely, the results obtained by applying the INSE and Noca formulations on
two P1v grids are compared. The first one corresponds to the default parameters. As stated in
Sec. 4.2, the grid spacing is Az = ¢/85 and the size of the first and second pass interrogation
windows are 64 x 64 pixels and 32 x 32 pixels, respectively. The second grid is obtained by
increasing the grid spacing while the overlap of the first pass interrogation windows IWag and
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IWhy is kept constant. In particular, the grid spacing of the second grid is Az = </42 while the
size of IWg and IW; are 128 x 128 pixels and 64 x 64 pixels, respectively. The second grid is
then coarser and its dynamic range is reduced compared to the first default grid. This procedure
leads to a smoother field than the one that would result from selecting every second point of the
first grid.

The time response of the lift and drag coefficients calculated by applying the iNse method
in the context of the large amplitude pitching plate are depicted in Fig. 4.21. It appears that the
indirect calculation is not severely impacted by the increase of Ax. Moreover, similar conclu-
sions can be drawn for the results obtained from the Noca approach and those associated with the
small amplitude pitching plate (not shown). Therefore, in combination with the work of Ghar-
ali and Johnson (2014), it can be concluded that the effect of magnification on the indirect load
computation is stronger than that of a decrease of dynamic range or an increase of grid spacing.

3 1.5

| —— Direct
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—0— Az = c/42
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Figure 4.21: Impact of the spatial resolution on the variation of the lift and drag coefficients within
a pitching period T" for large amplitude plate oscillations around a mean angle of attack of 0°:
indirect calculation using INSE (symbols) and direct measurements (thick continuous line). The
error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.

4.5.1.3 Temporal resolution

The temporal resolution is studied by varying the size of the time-step that discretizes one cycle of
the shedding/pitching phenomena. More precisely, the iNse and Noca methods are applied for: i)
AT = T)a,ii) AT = T/10 and iii) AT = T/5. Note that the variation of the time-step is consid-
ered only in the computation of the temporal derivative. Therefore, the loads are still calculated
for each of the 20 phases in the shedding/pitching cycle. The impact of the temporal resolution is
studied on both the large and small amplitude pitching plate cases and the corresponding results
are presented in Figs. 4.22 and 4.23.

For the large amplitude pitching case, the time response for the lift and drag coefficients es-
timated through the iNse approach are depicted in Fig. 4.22. The effect of At on the pitching
moment is similar to the effect on drag (not shown). Increasing the temporal resolution clearly
improves the predictions, especially for the drag. Moreover, larger discrepancies are observed be-
tween time instances 37/10 and 72, and 87 /10 and T'. As discussed in Sec. 4.4.1, these time instances
correspond to the shedding of the LE vortex. As visible in Fig. 4.8, this shedding is associated with
rapid flow variations.

The effect of the time resolution on the estimated loads for the small amplitude pitching case
differs significantly from the previous case, as shown Fig. 4.23. Increasing the time resolution
does not seem to improve the results. This is possibly due to the noise present in the p1v fields, the
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number of snapshots, and/or an insufficient spatial resolution.

Despite the inconclusive results of the second case, it is evident that a sufficient time resolution
is required to accurately capture the load variation. While these results have been obtained from
the INSE method, similar conclusions can be drawn for the Noca method.
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Figure 4.22: Impact of the temporal resolution on the variation of the lift and drag coefficients
within a pitching period 7" for large amplitude plate oscillations around a mean angle of attack of
0°: indirect calculation using INSE (symbols) and direct measurements (thick continuous line). The
error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.
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Figure 4.23: Impact of the temporal resolution on the variation of the lift and drag coefficients
within a pitching period 7 for small amplitude plate oscillations around a mean angle of attack
of 30°: indirect calculation using INsE (symbols) and direct measurements (thick continuous line).
The error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.

4.5.2 Parameters appearing in the INsE and Noca approaches

This section presents the effects of the user-defined parameters explicitly appearing in the INse and
Noca formulations. First, the effect of the choice of the control surface S in both methodologies
is discussed. Then, in the context of the Noca method, the effects of the mathematical formulation
of the temporal term and of the origin of the vector location are investigated. Finally, the effect of
I'5"™*S in the INsE methodology is studied.
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4.5.2.1 Size and location of the control surface S

The effects of S, in particular its size and location, are studied by applying the INsSE and Noca
methodologies to the large amplitude pitching plate test case. The study is conducted by varying:
i) the upstream edge noted D-E in Fig. 4.18, ii) the upper and lower edges noted A-B and C-D
and, finally, iii) the downstream edge B-C. The different edges are then moved within the limi-
tation of the available p1iv window Synqs depicted in Fig. 4.2c. In particular, for each case three
different surfaces are considered, as illustrated in Fig. 4.24. As explain before, each of these three
control surfaces is associated with additional surfaces that are up to 0.15¢ narrower, as illustrated
in Fig. 4.24 by the shaded zones. The results are then reported in terms of statistics where the stan-
dard deviation measures the sensitivity to the location of the upstream edge. The results of these
three cases obtained with the INsE method are presented in Figs. 4.25, 4.26 and 4.28. A similar
sensitivity to S is observed for the Noca formulation.
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(c) Downstream edge study.

Figure 4.24: Schematic view of the location of the control surfaces with respect to the plate. The
solid lines define the border of the default contour chosen to compare the indirect methods and
the dashed lines denote the additional contours used in the parameter study. The small black discs
represent the locations considered for the origin in the Noca method.

The sensitivity of the lift and drag estimations to the upstream edge D-E is shown in Fig.4.25.
The variation of the pitching moment is not depicted but it shows a sensitivity similar that of the
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Figure 4.25: Impact of the upstream edge of the control surface location on the variation of the
aerodynamic coeflicients within a pitching period 1" for large amplitude plate oscillations about
a pivot axis at the plate center: indirect calculations using INsE with ['5$™™*% = 0 and different
edge D-E positions (symbols) and direct measurements (thick continuous line). The error bars
correspond to the sensitivity of the results to the control surface used in the indirect methods.

lift coefficient. The results are almost insensitive to the location of the upstream edge. As also re-
ported by David et al. (2009) and Gharali and Johnson (2014), this insensitivity of the aerodynamic
coefficients to " is expected since the flow is very smooth in this location.

Figure 4.26 shows the sensitivity of the aerodynamic coefficient response to the location of
the upper and lower edges. It appears that the results obtained for y* = cand y* = 0.8c are
mostly similar, only small differences are visible between 77/20 and 97 /20, and between 177 /20
and 197 /20. However, the results obtained for y* = 0.5¢ differ considerably. The discrepancies
for the lift and drag coefficients are large between 27/10 and 47 /10 and between 77'/10 and 97 /10.
Large error bars also indicate a higher sensitivity to a small change in the location of the right
edge. As discussed in Sec. 4.4.1, a large vortex emerges at the leading edge, grows and is then shed
into the wake. When y* = 0.5¢, the upper and lower edges are so close to the body that they
may be crossed by this large vortex, which induces error in the load estimation. In particular,
the errors in the pressure calculation appearing in the INsE method are not compensated by the
pressure correction step as the error is supposed to be only generated along the downstream edge
(see Sec. 2.3.2.2). The results obtained with the Noca approach also show this behavior although
the method does not explicitly require the knowledge of pressure. Figure 4.27 depicts the flow
field at two phases. In Fig. 4.27a, the leading edge vortex is small and the upper and lower edges
are then located away from the vorticity region. However, in Fig. 4.27b, the leading edge vortex
is large enough to perturb the calculation along the upper edge if y* = 0.5¢. Nonetheless, when
y" = 0.8cor y“ = c, this edge is located far enough from the body. This demonstrates that the
aerodynamic coefficients are not very sensitive to the location of the upper and lower edges, as
long as they are far enough from the body, i.e. outside the high vorticity regions. This observation
was also reported by David et al. (2009) and Gharali and Johnson (2014).

Figure 4.28 shows the sensitivity of the aerodynamic coefficients to the downstream edge.
Note that the results are computed by the iNse method in which the pressure correction is applied
to the entire edge B-C, i.e, ['$"™*® = 0. The main differences are observed between 77/20 and
5T /10, and between 177 /20 and T'. At these phases, the leading edge vortex is located in the wake
and crosses the downstream edge (see Fig. 4.8). The lift coefficient is only weakly impacted by the
choice of ¢, as depicted in Fig. 4.28a. The effects on the pitching moment coefficient are larger,
as seen in Fig. 4.28c. However, the variation of the error with ¢ does not exhibit any clear trend.
Finally, as shown in Fig. 4.28b, it seems that choosing the downstream edge closer to the body
slightly improves the drag estimation as indicated by the smaller discontinuous jumps. However,
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Figure 4.26: Impact of the upper and lower edges of the control surface location on the variation
of the aerodynamic coefficients within a pitching period 7" for large amplitude plate oscillations
about a pivot axis at the plate center: indirect calculations using INsE with [5**® = 0 and different
edge B-C positions (symbols) and direct measurements (thick continuous line). The error bars
correspond to the sensitivity of the results to the control surface used in the indirect methods.
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Figure 4.27: Phase-averaged p1v velocity and vorticity fields at two phases in the large amplitude
pitching cycle. The red and blue fields correspond, respectively, to positive and negative vorticity,

i.e. counter-clockwise and clockwise vortices. The red boxes correspond to three different control
surfaces.
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additional studies demonstrate that the downstream edge cannot be located too close to the body
because the sensitivity to a small change in the surface location increases in this case. This sensitiv-
ity of the drag to the choice of % was also observed by David et al. (2009) and Gharali and Johnson
(2014). Moreover, Gharali and Johnson (2014) reported that this sensitivity can be reduced by in-
creasing the size of the prv window in order to find a location for the downstream boundary far
from vortical structures. To this end, Gharali and Johnson (2014) proposed to decrease the mag-
nification factor of the p1v camera lens increasing then the size of the field of view. However, they
also reported that the resulting decrease in spatial resolution may become problematic.
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Figure 4.28: Impact of the downstream edge of the control surface location on the variation of the
aerodynamic coefficients within a pitching period 1" for large amplitude plate oscillations about
a pivot axis at the plate center: indirect calculations using INsE with ['5"™™*% = 0 and different
edge B-C positions (symbols) and direct measurements (thick continuous line). The error bars
correspond to the sensitivity of the results to the control surface used in the indirect methods.

4.5.2.2 Temporal term in the Noca formulation

In the Noca formulation the temporal term appearing in the integral Navier-Stokes equations (2.36)
is written in terms of surface integrals using only the borders of the control volume. As explained
in App. A.2, this is mathematically expressed as

—dtjudV= §n~’yFt dS —d¢ Eﬁn-(pux) ds. (4.5)
v
© Sp

A comparison between the lift and drag time responses obtained from the Noca method using
avolume or a surface integral formulation for the temporal term is shown in Fig. 4.29. No signif-
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icant differences are observed. Note that as stated in Sec. 2.3.3.2, the pitching moment is always
calculated based on a volume integral formulation.
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Figure 4.29: Impact of the mathematical formulation of the temporal term as either volume or
surface integral on the variation of the aerodynamic coefficients within a pitching period T" for
large amplitude plate oscillations about a pivot axis at the plate center: indirect calculations using
Noca (symbols) and direct measurements (thick continuous line). The error bars correspond to
the sensitivity of the results to the control surface used in the indirect methods.

4.5.2.3 Origin of location vector z; in the NocA formulation

Although the results obtained with the Noca method should be in theory independent of the choice
of the origin, they depend quite strongly on it in practice. This is particularly true for turbulent
flows but this dependence was also demonstrated by Noca et al. (1999) for a laminar case. This
impact is illustrated here with the large amplitude pitching plate test case. Figure 4.30 depicts the
three origin locations considered here. The default origin is labelled I, while the locations IT and III
aim to study the effect of a horizontal and vertical modification of the origin location, respectively.

0.15¢
o
111}
0.5¢
0.925¢
2c
11 1
-1
-1 —-0.5 0 0.5 1
2c
(a) With respect to the control surface. (b) With respect to the flow at 0.47".

Figure 4.30: Schematic views of the locations considered for the study of the effect of the origin
in the Noca method. The different origins are represented by the small discs denoted I to III.

117



Detached flow around a flat plate

Figure 4.31 shows the time response of the lift and drag coefficients. The results for the pitch-
ing moment are not presented here but their sensitivity to the origin is similar to that of the lift.
In Fig. 4.31a, it appears that the lift is only impacted by a horizontal modification of the origin
location. An origin located farther from the downstream edge (II compared to I and III) leads to
higher discrepancies with the experimental results. In particular, the origin denoted II leads to
spurious oscillations and jumps in the time response of ¢;. Figure 4.31b shows the same behavior
for the drag coeflicient regarding locations I and II. Compared to location I, location III leads to
a reduction of the first jump in cq but an increase in the amplitude of the second one. As shown
in Fig. 4.30b, a vortex core is located near point III at the phase corresponding to the first jump.
Assuming that the largest errors occur in the wake region where vorticity is large, these results
indicate that the contribution from this region is smaller when the distance ||x|| in Egs. (2.46)
and (2.67) is small. Having an origin in the critical region thus reduces the overall error and pro-
vides a better estimation of the drag. Consequently, it should be possible to further improve the
Noca results by adapting the location of the origin of x; to the flow topology.

—— Direct
—l— origin |

—— origin II
—— or‘igin 111

| | |
0 T /4 T/2 3T /4 T 0 T/y T /2 3T /4 T

@ ¢. () cq.

Figure 4.31: Impact of the origin defining the location vector x; on the variation of the aerody-
namic coefficients within a pitching period 7" for large amplitude plate oscillations about a pivot
axis at the plate center: indirect calculations using Noca with different origin locations (symbols)
and direct measurements (thick continuous line). The error bars correspond to the sensitivity of
the results to the control surface used in the indirect methods.

4.5.2.4 Threshold value thres in the INSE formulation

The pressure correction step appearing in the iNse methodology requires a threshold value I's*®%.
As described in Sec. 2.3.2.2, this value is used to determine the part of the downstream edge B-C
where the pressure correction is applied. Several values of I'§™**® are considered for three different
control surfaces differing by the location of their downstream edge 2% (see Fig. 4.24¢).

Figure 4.32 shows the results obtained for the drag coefficient. The lift and pitching moment
coefficient are not shown because they are not impacted by a variation of I'§***. As shown by
Fig. 4.32a for the default control surface, an increase of thres, i.e., a decrease of the portion of the
downstream edge where the pressure correction is applied, reduces the amplitude of the jumps.
Nonetheless, increasing F;hres above 0.05 does not seem to further improve the results. Moreover,
Fig. 4.32b and Fig. 4.32c show that the impact of T'5"**® decreases when the downstream edge
moves closer to the body.
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Direct
—— T =0

g —0— '™ = 0.025
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Figure 4.32: Impact of the threshold value I'5**°* on the variation of the drag coefficient within
a pitching period 1" for large amplitude plate oscillations about a pivot axis at the plate center:
indirect calculations using INSE (symbols) and direct measurements (thick continuous line). The
error bars correspond to the sensitivity of the results to the control surface used in the indirect
methods. Three positions % of the downstream edge are considered.

4.6 Evaluation of the indirect methods for computing aerodynamic loads

The present section describes the results obtained by using the INsE and Noca formulations to
compute the loads on the large amplitude pitching plate, the static plate and the small pitching
plate. The two-dimensional lift and drag coefficients, and the pitching moment coeflicient about
the mid-chord are computed and compared to three-dimensional direct measurements. The ac-
curacy of the indirect methods is discussed, and their limitations are highlighted. For all results,
the choice of the user-defined parameters is based on the guidelines provided previously and cor-
responds to the default values introduced at the beginning of Sec. 4.5.

4.6.1 Large amplitude pitching plate

The time responses of the load coeflicients during a complete cycle of the large amplitude motion
are shown in Fig. 4.33. The loads are indirectly computed using both the INsE and Noca formu-
lations for the three cases corresponding to the three locations of the pivot axis. Note that the
symmetry around the half-period is a direct consequence of the p1v field stitching procedure. The
results compare rather well with direct measurements. As shown from Fig. 4.10 to Fig. 4.11, the
loads are very well estimated during the middle stage of the upstroke and downstroke, i.e. when
the plate increases its relative incidence with respect to the freestream. These phases correspond
to the growth of the leading edge vortex. Conversely, for other parts of the cycle, the amplitude
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4.6 Evaluation of the indirect methods for computing aerodynamic loads

of the lift is slightly underestimated while the accuracy of the drag and pitching moment coef-
ficients decreases. Similar results were obtained by Gharali and Johnson (2014). Both the drag
and pitching moment, and to a much lesser extent the lift, exhibit discontinuous jumps. The am-
plitude of these jumps depends on the method and, as described in Sec. 4.5, the chosen values for
user-defined parameters. In particular, the difference in the jump amplitude observed between the
INSE and Noca methods is due to the pressure correction step applied in the former methodology.
Moreover, the location of the discontinuous jumps changes with the position of to the pivot axis,
as clearly visible by comparing Figs. 4.33f and 4.331. This is due to the change in the flow topology
when varying the pivot location, as described in Sec. 4.4. Note that for a pivot axis located at the
LE or TE, the last term in Eq. (2.45) contributes to the lift coefficient. However, this contribution
corresponds to less than 0.3% of the maximum lift and the impact of the body motion can thus
be considered as negligible.

The discontinuous jumps observed in Fig. 4.33 are linked to the shedding of vortices into the
wake. As previously discussed and also highlighted by Gharali and Johnson (2014), a vortex that
crosses the integration path in the wake impacts the results. Figures 4.8, 4.10 and 4.11 show the
velocity and vorticity fields during half a pitching cycle for a field of view that corresponds to
the control surface S. The comparison of the coefficient responses with the flow fields shows
that the accuracy of the load estimation decreases with the increase of flow disturbance on the
downstream edge of S, a jump in the estimation appearing when vortices cross this edge. The
increased measurement noise associated with regions of strong vorticity probably induces an in-
crease in numerical errors. As an example, for a pivot axis located at LE, Fig. 4.10 shows that the
large leading edge vortex still located near the plate at 37/10 is convected downstream and crosses
the downstream edge at 77//20 and to a lesser extent at 47/10. These phases correspond to the large
discrepancies visible in Figs. 4.33b and 4.33c.

Time-averaged and root-mean-square statistics of the aerodynamic coefficients are summa-
rized in Tab. 4.5 and should be analyzed in light of Fig. 4.33. The mean lift and moment coefficients
are both close to zero. This result is expected as the pitching motion is symmetric with respect to
the freestream but also because two velocity fields distant in time by half a cycle are built from the
same P1v snapshots. The mean and rms of the drag coefficient are generally lower than expected
because of the underestimation of their response amplitude. Similarly, the rms value of the lift
coeflicient estimated by both indirect methods is slightly lower than the direct measurements. Fi-
nally, the rMs value of the moment coefficient is artificially improved by the presence of the jumps
in its time response.

In conclusion, both indirect methods are able to estimate reasonably well the aerodynamic co-
efficients of a flat plate undergoing a large amplitude pitching motion. However, the Noca method
is more sensitive to noise even if the user-defined parameters are carefully chosen. Nonetheless,
the estimated load responses must be considered with caution for detached flows especially when
avortex crosses the downstream edge of the control surface.

4.6.2 Static plate

The mean load coeflicients calculated for the static plate using indirect methods are shown in
Tab. 4.6, together with the mean results obtained from direct measurements. Due to the time-
averaging used in this case, the major contribution to the term uju’; stems from the unsteady
flow dynamics and not from the turbulence itself. As described above, the standard deviation is
computed from the results obtained using different control surfaces S.

Albrecht et al. (2013) studied a similar flow using the iNse and Noca approaches. Their results
were shown to be highly sensitive to the choice of indirect approach. They concluded that noca
should be used for the lift, while INsSE provides better results for the drag. Moreover, a high sen-
sitivity to the location of S was reported. The present work leads to different conclusions. First,
the results show that the two indirect methodologies can provide a reasonably good estimation of
the mean load coefficients for both angles of attack. In particular, the mean lift is predicted with a
maximal relative error of about 2%. The relative error on the mean drag coefficient is higher for
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Pivot at leading edge

a g™ e " Cm Cm
INSE 0.03 1.45 048 0.64 0.00 0.40

NOCA 0.03 1.45 0.50 0.65 0.00 0.37
Direct —0.01 1.57 0.54 0.68 —0.01 0.24

Pivot at center

a ™ e eyt Cm Coy
INSE 0.01 1.36 0.49 0.63 0.01 0.22

NOCA 0.01 1.36 0.54 0.75 0.00 0.26
Direct —0.05 1.56 0.60 0.75 —0.01 0.25

Pivot at trailing edge

a C;\MS ] CZMS G ngls
INSE —-0.02 135 0.57 0.68 0.01 0.27

Nnoca —0.01 1.36 0.61 0.77 0.01 0.23
Direct —0.02 1.55 0.58 0.74  0.00 0.22

Table 4.5: Mean and rms values of the aerodynamic coefficients for large amplitude plate oscil-
lations around different pivot axes at Re = 2 x 10% computed with the indirect methods and
obtained from direct measurements.

both methodologies with a maximum of 13% at an angle of attack of 30°. The relative error is
25% for the mean pitching moment coefficient at an angle of attack of 45°, an error that should
be considered in light of the relatively small value of the directly measured coefficient. Finally,
the sensitivity to the control surface is low and similar for the two methods, as shown by the low
standard deviations.

In conclusion, the INsE and Noca methodologies are both able to provide an accurate indirect
estimation of the mean load coefficients. Moreover, they exhibit a similarly low sensitivity to the
location of the control surface S.

4.6.3 Small amplitude pitching plate

The 1nse and Noca methods are now applied to the plate undergoing small amplitude pitching
oscillations around a large incidence. First, the estimates from the indirect formulations are pre-
sented and the discrepancies with the direct measurements are discussed. Then, the pmp is used
as a pre-processing step to reduce the noise in the pr1v field and therefore improve the indirect es-
timations of load coefficients. Finally, the causes of the discrepancies between direct and indirect
results are investigated.

4.6.3.1 Estimation from INSE and Noca methods

The time responses of the phase-averaged load coefficients are shown in Fig. 4.34 for a mean angle
of attack of 30° and 45°. They are very noisy whether calculated by INSE or Noca. For @ = 30°,
only global trends can be seen for the lift coefficient computed by both the Noca and INSE methods.
The noise in the drag and pitching moment response is even higher, so that only mean values
are meaningful. Additionally, the large error bars in Fig. 4.34c indicate a strong sensitivity of the
results to the choice of the control surface. The results corresponding to @ = 45° exhibit the same
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Angle of attack 30°

cl Cd Cm
INSE 1.00+0.00 0.56+0.04 0.12+0.01
NOCA 1.00 +£0.00 0.574+0.04 0.124+0.01

Direct 0.99 0.63 0.12
Angle of attack 45°
[ Cd Cm

INSE 1.00 +£0.01 1.12+0.07 0.15+0.01
Nnoca  0.99+0.02 1.13+0.07 0.16 +0.02
Direct 1.01 1.09 0.12

Table 4.6: Mean value of the aerodynamic coefficients for a static plate at an incidence angle of
30° and 45° and Re = 4 x 10* computed with the indirect methods and obtained from di-
rect measurements. The standard deviations indicated for the indirect calculations represent the
sensitivity of the results to the choice of control surface S.

Angle of attack
30° +0.77° 45° +1.33°
cr Cd Cm cr Cd Cm
INSE 1.15 066 0.10 1.10 1.12 0.10

Noca 1.15 068 0.11 1.09 1.11 0.10
Direct 1.08 0.69 0.13 1.07 1.15 0.12

Table 4.7: Mean values of the aerodynamic coefficients for small amplitude plate oscillations
around a mean angle of attack of 30° and 45° at Re = 4 x 10? computed with the indirect
methods and obtained from direct measurements. Results are shown for the original data (with-
out DMD pre-processing).

type of behavior although the global trend of the drag response is better estimated. Finally, despite
the noise in the load responses, the time averaged of the load coefficients are well approximated,
as shown in Tab. 4.7.

4.6.3.2 Application of DMD as a pre-processing step

As shown in Fig. 4.34, the time responses of the indirectly estimated load coefficients are very
noisy. This noise probably originates in the p1v velocity. Therefore, the phase-averaged p1v fields
are filtered by applying pmb (see Sec. 2.4). Only the first three modes are retained to approximate
the original fields. These modes correspond to the mean flow, the shedding/pitching frequency
and its first harmonic.

This pre-processing step leads to the smoother responses depicted in Fig. 4.35. The qualitative
behavior of the lift and drag time responses is well predicted for @ = 30° and &@ = 45°, respec-
tively (Figs. 4.35a, 4.35d). However, several quantitative discrepancies remain. In particular, the
maximum lift obtained with the Noca method for @ = 30° is overestimated and slightly shifted in
time compared to the direct measurements. The behavior of the other load coefficient responses

123



Detached flow around a flat plate

o

! ! !
Ty 3T/ T T/ T 3T/ T
() ¢q for @ = 30°. (d) cq for v = 45°.

!
0 T/4

|
0 T/4 T/ 3T, T 0 /4 T/ 3T, T

(e) cm fora = 30°. (f) ¢y, for o = 45°.

Figure 4.34: Variation of the aerodynamic coefficients within a pitching period 7" for small am-
plitude plate oscillations around a mean angle of attack of 30° and 45° at Re = 4 x 10 without
DMD pre-processing: indirect calculation (symbols) and direct measurements (thick continuous
line). The error bars correspond to the sensitivity of the results to the control surface used in the
indirect method.
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is not improved by the pmp pre-processing (Figs. 4.35¢, 4.35¢, 4.35b and 4.35f). The noise in the
p1v fields is probably too high to determine the frequency content of their responses.

|
0 T/y T/ 8T/, T
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(d) cq for @ = 45°.
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Figure 4.35: Variation the aerodynamic coefficients within a pitching period 7" for small amplitude
plate oscillations around a mean angle of attack of 30° and 45° at Re = 4 x 10" with pmp pre-
processing: indirect calculation (symbols) and direct measurements (thick continuous line). The
error bars correspond to the sensitivity of the results to the control surface used in the indirect
method.

4.6.3.3 Three-dimensional flow and phase-averaging

As reported by David et al. (2009), these unsatisfactory estimations provided by the indirect meth-
ods can be partially explained by three-dimensional effects. Three-dimensional features are in-
duced by massive flow separation and lead to a decrease of the flow coherence along the span, as
discussed in Sec. 4.4.3. Additionally, experimental measurements and pDEs simulations show that
the flow strongly varies from one shedding period to the next, and that the shedding phenomenon
does not occur at a precise constant frequency.

Dye visualization was performed for a plate undergoing small forced oscillations. Because the
flow visualization is not synchronized with the plate kinematics and because the amplitude and
period of oscillations are very small, it is challenging to identify the different phases of the cycle in
the recorded movies. This problem is overcome using crp simulations. Figure 4.36 presents the
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pressure coefficient at the mid-span of the plate at the same phase of the pitching motion but for
different cycles. Each of the Figs. 4.36a to 4.36d depicts a pressure field that corresponds to a large
LE vortex standing along the upper surface and a TE vortex being shed into the wake. Nonetheless,
the location of the flow features is very different for the four cycles considered here.

This lack of coherence between the snapshots is a source of noise in the averaged piv fields.
Moreover, the two sets of data for the top and bottom sides of the plate do not match well in the
overlapping regions, introducing additional noise in the velocity field during the stitching phase.
These different noise contributions can explain why the application of INSE and Noca methods
leads to the unsatisfactory results depicted in Figs. 4.34 and 4.35. The convergence study per-
formed on the number of snapshots that are used to compute the p1v flow fields at each phase
supports these conclusions (see Sec. 4.5.1). In particular, increasing the number of snapshots de-
creases the noise in the estimated load response. Therefore, better results can be expected if a
larger number of p1v images is used for each phase.

Finally, the case of the plate undergoing large amplitude oscillations is investigated for com-
parison purposes. Figure 4.37 depicts dye flow visualization images at a specific phase of the
motion for four different cycles. It can be observed that the the location of the flow features is
much more similar from one cycle to the next compared to the small amplitude pitching case (see
Fig. 4.36). This is due to the large amplitude of the imposed pitching motion that increases flow
coherence along the span. The resulting flow is more two-dimensional, which explains the more
accurate results obtained in Sec. 4.6.1.

4.7 Conclusions and future work

This chapter has investigated the indirect calculation of two-dimensional loads from p1v measure-
ments in the context of detached flows. Two formulations of the momentum balance have been
studied: one using the integral Navier-Stokes equations and a second that uses the flux equation
proposed by Noca et al. (1999). These methodologies have been tested on two main cases: the
flow around a flat plate undergoing a large amplitude pitching motion and the flow around a flat
plate at large incidence. The results obtained through the INsE and the Noca methods have been
compared to each other and to fluid dynamic loads acquired directly. Moreover, the effects of the
user-defined parameters related to the two formulations and the prv measurements have been de-
termined. Finally, numerical simulations have been performed to further study the different flows
and understand the limitation of the indirect methodologies.

The combined experimental and numerical approach has led to a better insight in the flow
dynamics for the cases considered.

+ The flow around the plate undergoing large amplitude pitching oscillations is characterized
by load coefficients larger than those generated by a static plate at similar incidence. This
corresponds to the dynamic stall phenomenon. The flow is attached during approximately
half of the cycle, while the incidence increases. During this phase, a large vortex forms at
the leading edge, grows and is convected downstream. As the incidence angle decreases,
the leading edge vortex is shed into the wake. Then, the trailing edge free shear layer rolls
to form a vortex which is subsequently also shed. This flow is mostly two-dimensional and
periodic in time.

+ The flow around a plate at large incidence angle consists of the growth, convection and
shedding of both leading and trailing edge vortex. The leading edge vortex emerges from
several vortices that grew in the leading edge free shear layer. They agglomerate and merge
into a large vortex that covers the entire upper surface of the plate. As the leading edge
vortex is shed into the wake, a smaller vortex grows at the trailing edge from the rolling
up of the shear layer. The trailing edge vortex is shed into the wake as a new leading edge
vortex starts to develop. Therefore, the interaction between the two vortices is critical and
determine their respective size and dynamics. This type of flow exhibits a lack of coherence
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(a) 32" pitching cycle. (b) 39™ pitching cycle.

(c) 46™ pitching cycle. (d) 54 pitching cycle.
Figure 4.36: Pressure coefficient field on a xy-plane located at mid-span of a plate undergoing
small oscillations around @ = 30°. The results are obtained through ppEs with a span length

s = 7.5c and the iso-surfaces corresponds to C), varying from —1.8 to 1 (blue to red). The phase
¢ = 0.25 is presented for different cycles.

a) 3" pitching cycle. b) 4™ pitching cycle.
() 5 pitching cycle. (d) 6 pitching cycle.

Figure 4.37: Dye visualization of the flow around a plate undergoing large amplitude oscillations
around &@ = 0°. The phase ¢ = 0.3 corresponding to v = 28.5° is presented for different cycles.
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in the third dimension that increases with the span of the plate. Because of these three-
dimensional effects, the flow is not perfectly periodic in time.

The Noca and INsE methodologies have been applied to these test cases and the effects of the

different user-defined parameters have been investigated. From these studies, several conclusions
have been drawn.

+ The indirect methods are able to provide an accurate estimation of the mean load coeffi-

cients for the detached flows considered. The phase-averaged time response of the load
coefficients can be determined with reasonable accuracy if the phase-averaged piv velocity
fields are sufficiently converged. In the present work, satisfying results were obtained for
the large amplitude pitching plate test case, which is mostly two-dimensional. However,
even a qualitatively meaningful time response could not be obtained for the plate at large
incidence angle. It has been argued that the three-dimensional effects result in poorly con-
verged phase-averaged prv fields. The noise in these fields is most likely amplified by the
stitching procedure needed to obtain the required view of the flow around the plate.

It has been demonstrated that the iNsE and Noca methodologies behave similarly. In par-
ticular, the pitching moment is estimated with the same accuracy both through the INsE
method and the new formulation derived in the present work. However, to obtain the best
performance of the indirect computation methodologies, the user-defined parameters have
to be chosen carefully.

The sensitivity analysis performed on the user-defined parameters has shown that the ac-
curacy of the time response estimated indirectly is very sensitive to the convergence of
the phase-averaged piv fields. Moreover, as previously reported by Gharali and Johnson
(2014), the downstream edge of the control surface S should be located as far as possible
from the vortical zone. If this is not possible, it has been shown that the accuracy of the
indirect calculation decreases when a vortex crosses this edge. This is mostly due to errors
appearing in the estimation of the pressure contribution and can be improved by carefully
choosing the threshold value I'5™*** and the origin of the location vector x; in the Noca
and the 1Nse formulations, respectively.

This work has been limited by several simplifications and hypotheses. Moreover, additional

studies could be performed.
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+ The three-dimensional features of the flow around a plate at large incidence have been

studied only qualitatively. The ppEs simulations were shown to provide accurate predic-
tions that could be used to further investigate this aspect of the flow.

The determination of the pressure contribution is critical to the accuracy of the load esti-
mation. The pressure correction performed in the iNsE methodology could be improved by
using the knowledge of the flow dynamics. In particular, a new correction method could
be designed by applying the inse formulation on numerical results for which the pressure
and the loads are known. A weighted-correction based on flow features such as I's, w,
or 0;p could be considered. To further improve the load estimation provided by the Noca
method, the origin of the location vector z; could be set at the vortex core and then be
function of time. Additionally, the post-processing stitching step applied to piv data and
required to obtain a complete view of the flow around the body should be avoided as it
introduces additional noise. Therefore, the p1v setup should be designed to prevent the
shadow created on one side of the body. To this end, a transparent model could be used
or the laser beam could be split to illuminate both sides of the body. If adaptations of the
experimental setup are not possible, the stitching process could be improved. A possible
procedure is the use of a sub-grid translation of the averaged p1v fields acquired at each
side of the body. The rotation and deformation of the p1v fields could also be considered.



4.7 Conclusions and future work

« Finally, two-dimensional flow has been assumed all along the present work. For the phe-
nomena exhibiting significant three-dimensional effects, a three-dimensional instantaneous
approach should be considered. Schneiders et al. (2016) and Laskari et al. (2016) reported
promising results for the determination of the instantaneous pressure field from 3c3p piv.
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CHAPTER >

Conclusion

The main focus of this thesis was the study of detached flows around bluff bodies. As discussed
in Chap. 1, this aspect is of primary importance in wind engineering where the knowledge of
building aerodynamics is needed to understand and control undesirable aeroelastic phenomena.
In the present work, two canonical geometries have been investigated: a 4:1 rectangular cylinder
and a flat plate at large incidence or undergoing large amplitude pitching motion. The rectan-
gular cylinder geometry has been chosen as it approximates several elongated civil engineering
structures such as bridges and towers. Both numerical and experimental approaches have been
applied to this study. The flows around a flat plate with different configurations have been se-
lected as test cases to assess an indirect load measurement technique that uses p1v velocity fields.
In particular, the capabilities of the two-dimensional iNs and Noca approaches, both based on
the momentum balance, have been tested. These indirect approaches are well suited for analyzing
aeroelastic phenomena where the structural response of the moving bodies contaminates the di-
rect load measurements. In addition to v experiments, numerical simulations have been used to
better understand the limitations of the indirect methodologies.

The rectangular cylinder at several incidence angles has been studied in Chap. 3 through dy-
namic pressure measurements along a cross-section combined with urans and ppEs simulations.
The conclusions and perspectives of this work have been discussed in detail in Sec. 3.9. In sum-
mary, this simple geometry involves complex flow separation-reattachment phenomena that is
highly sensitive to the freestream velocity. In particular, the mean lift slope ¢;,, increases rapidly
with the Reynolds number in the range 3.1 x 10* < Re < 7.6 x 10*. This increase was found to
be linked to an increase/decrease of the suction along the upper/lower surfaces of the rectangular
cylinder, respectively. Moreover, it has been shown that the detached flow around a 4:1 cylin-
der is very challenging to capture numerically. In particular, both uraNs and DDEs simulations
overestimate the experimental lift. This is mainly due to an overestimation of the suction along
the upper surface. Despite discrepancies in the pressure intensity, URANS is able to accurately es-
timate the main features of the flow for incidences lower than the stall angle. In particular, the
global spatio-temporal variation of vortices is correctly captured. It has been shown that DDEs is
surprisingly not able to provide an accurate estimation of the flow as it incorrectly estimates the
chordwise location of vortices. However, pDEs performs better for post-stall angles as it captures
the characteristic decrease in suction along the upper surface and the resulting decrease in lift.
The original contributions of the research work presented in Chap. 3 are:

« toprovide experimental measurements for different incidence angles of the spatio-temporal
pressure coefficient along a cross-section of the 4:1 rectangular cylinder;

+ to demonstrate that the variation of the mean lift coefficient with Reynolds number is not
caused by a variation in the reattachment point location along the lower surface, but rather
due to a modification of the size/strength of the corresponding mean recirculation bubble;
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Conclusion

+ toshow that DDEs is not able to correctly estimate the flow around a 4:1 rectangular cylinder
neither at zero nor higher incidences, at least for the classical numerical setup considered
here.

Finally, several questions remain open and additional studies should be performed to further un-
derstand key aspects.

+ Where does the high sensitivity of the flow come from?
Additional studies should be performed to better identify the causes of this sensitivity and
the different parameters influencing the flow. In particular, prv experiments should be con-
ducted to investigate the variation of the flow features with the Reynolds number and then
determine the cause of the strong variation in lift. The effect of the freestream turbulence
should also be further studied and the uncertainties associated with experimental measure-
ments should be considered.

+ Why is DDEs not able to accurately estimate the flow?

URANS performs better than ppEs to simulate the flow around the rectangular cylinder al-
though the latter should provide a more accurate representation of turbulence and thus of
the flow features. Further work should be carried out to understand the causes of DDEs
failure and to determine an accurate numerical approach. This work has shown that the
DDEs results strongly differ when varying the maximum grid spacing in the “focus region”
Ap. Consequently, additional simulations could be performed with a finer Ao. However,
LEs results reported by Patruno et al. (2016) for a 5:1 rectangular cylinder also exhibit sig-
nificant discrepancies compared to experiments. This seems to suggest that even a finer
mesh and a more accurate approach would not lead to better results. The effect of numer-
ical dissipation, which Mannini et al. (2011) identified as a key factor, of the freestream
turbulence and of the span length could also be investigated.

Chapter 4 discussed the capabilities of the INSE and Noca approaches to indirectly estimate
the loads by using p1v velocity fields. The conclusions are detailed in Sec. 4.7. To summarize, it
has been demonstrated that the two indirect methodologies perform similarly for all the cases
considered. In particular, the new formulation established in Sec. 2.3.3.2 for the calculation of
the pitching moment provides similar results to the INseE method. Both the INsE and Noca ap-
proaches are able to accurately estimate the mean loads for the detached flows considered here.
The phase-averaged time response can also be estimated with reasonable accuracy as long as the
corresponding p1v fields are sufficiently converged, i.e. for a sufficient number of piv snapshots
acquired at the same phase. This has been demonstrated in the context of the flow around a flat
plate at high incidence. The imposed low amplitude pitching motion at the shedding frequency
allows the measurement of phase-averaged p1v fields. Because of its low amplitude, this imposed
motion does not significantly impact the flow, which has been shown to remain three-dimensional
and not perfectly periodic. It was found that the accuracy of the load estimates calculated by the
two indirect methods is generally negatively impacted by the decrease in spanwise flow coher-
ence due to three-dimensional effects and the lack of a clear single shedding frequency. In that
respect, the present results could be improved by using more snapshots, and thus phase-averaged
p1v fields that are better converged. The magnification of the camera in the p1v setup has been
shown to be critical for ensuring sufficient spatial resolution. A value of 18 pixels/mm seems
to be sufficient to obtain accurate results for the flows investigated in this work. The number of
phases in a cycle should be adapted to the time response of the flow. To this end, the temporal
resolution could be varied within the cycle based on a preliminary analysis of the flow. The effects
of additional user-defined parameters have been investigated. It has been shown that the location
of the control surface downstream edge has the most significant effect on the accuracy of the in-
direct load estimations, particularly whenever it is crossed by a vortex. The indirect approaches
perform better if this downstream edge is located far away from the vorticity zones. However, this
strategy is not always possible because of the limited size of the prv window. For such cases, the
user-defined parameters impacting the estimation of the pressure contribution have to carefully
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chosen. More precisely, the threshold value I'5**°® in the INsE method should be increased as the
downstream edge moves closer to the body. Moreover, the origin of the location vector x; in the
Noca method should be defined as close as possible to the vortex center. Finally, as far as it is
possible, the p1v setup should be designed to provide a complete view of the flow around the body.
This removes the need for an additional post-processing step that introduces additional noise in
the measurements. In summary, the original contributions of the present work are:

« the derivation and validation of a new formulation for the indirect calculation of moments
that does not require the knowledge of pressure, in the same spirit as the Noca method for
the force estimation;

« the detailed comparison of the INSE and Noca capabilities using several detached flows;

« practical guidelines for setting the user-defined parameters of the indirect estimation, and
a quantitative assessment of the impact of these user-defined parameters, in particular of
the origin of the location vector x; in the Noca approach.

Finally, the two indirect methodologies could be further improved. In particular, a pressure cor-
rection step that is based on the flow physics could be developed for the INSE approach by using the
knowledge of the flow features. A possible strategy towards this goal would be to rely on numer-
ical simulations as they provide information about all flow quantities everywhere. Additionally,
the control surface, and the origin of the location vector x; required in the Noca method could
vary with the vortex core location.

This thesis has demonstrated the added value of integrating numerical and experimental stud-
ies. The two approaches are complementary and enable a deeper understanding of the physics.
The comparison of numerical and experimental results obtained for the flow around a flat plate at
high incidence has demonstrated that the ppEs approach is able to provide an accurate estimation
of the flow features. Therefore, the pressure and velocity fields provided by the simulations can be
used to further study specific aspects that would be elusive to available experimental techniques,
such as the three-dimensional effects or the origin of the frequency content. In turn, the additional
physical insights provided by cFp can be used to design an experiment focused on these aspects.
On the other hand, one should be very cautious with simulations without experimental validation.
Relying solely on numerical results can lead to incorrect conclusions. This is well illustrated by
the two cases considered here. While pDDEs leads to good results for the flat plate at high angle of
attack, it fails to provide accurate predictions in the case of the rectangular cylinder. Both cases
involve massively separated flow, for which ppEs should yield good predictions, or at least better
than those obtained by urans. This is clearly not the case for the rectangular cylinder, and, with-
out experimental validation, the DDEs results would have been considered as the most accurate
ones. This clearly demonstrates the need for validation, even for simple geometries.

In conclusion, this thesis provides original and useful contributions towards a better under-
standing of separated flows around bluff bodies. Nevertheless, much remains to do, especially in
the context of realistic civil engineering applications that involve higher Reynolds numbers and
more complex geometries.
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APPENDIX A

Indirect calculation of loads from pIv measurements

A.1 Vector identities

The derivation of Noca’s flux equation involves the following vector identities

a=V.(ax) — (V-a)x, (A1)

x (V x a) = ( —la+V(x-a)— V- (xa), (A2)
Vx(xxol)= —¢pWN —DI—(x- Vo)l +xVo, (A.3)
xX (nx[axx])=n-(x[xxa]) (A4)
xx(xx[axn])=n-({faxI] x}x— |x|? [a x 1) (A.5)
xx (nx[axb])=n-(b[xxa] —a[xxDb]) (A.6)
x><(n><a)—n(x~a)—n‘(xa) (A7)

where X is the location vector, a, b and ¢ are arbitrary vectors and scalar, respectively, I is the
unit tensor and ' is the number of spatial dimensions. These identities can be proven straight-
forwardly using index notation.

A.2 Derivation of Noca’s flux equation
In tensor notation, the Noca’s flux equation is written as
F= §n~ (»yFt—f—'pr—puu—i-T) dS —d; §n-(pux) ds, (A.8)
Seo Sp

with

7 == p(dru)x
-

Fp _ P 2 4
7§HuHI+N_1[w(x><u)—u(x><w)] "
P A9
N1 [(x - 0pu)I — x0pu]
1

where u is the velocity, w the vorticity, X the location vector, p the constant density, T the viscous
stress and I the unit tensor. The space dimensionality N can be 2 or 3. It is assumed that there is
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Indirect calculation of loads from p1v measurements

no flow through the body surface Sy. Moreover, the external surface S, unlike Sy, is considered
constant in time. As sketched in Fig. A.1, the unit vector normal to the surface is defined positive
outward.

Sp(t)

[e')

Figure A.1: Domain of integration for the determination of aerodynamic forces on a body (in dark
gray) using momentum-based approaches.

With these assumptions, the Noca’s flux equation can be derived from the integral formulation
of the Navier-Stokes equations,

F= _dtf pudV + %n- [—pI — puu + 7] dS, (A.10)
v

S

where p is the pressure and V the volume enclosed between the surfaces S, and Sp.

The derivation done by Noca et al. (1999) consists of two steps: first the elimination of pres-
sure, then the elimination of volume integrals. Note that the original derivation was done for the
general case where the surface Sy is a function of time and where there can have a flow through
the body.

Elimination of the pressure
Using the so-called pressure identity

(N—l)fﬁpndS=—f£xx(npr)dS, (A.11)

S S

derived in Sec. A.3 and the differential form of Navier-Stokes equations, the pressure gradient can
be written as

Vp = —patu—V(gHqu) fpuxw+ VT, (A.12)
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A.2 Derivation of Noca’s flux equation

as (u-V)u = V(2u-u) — u x w. The pressure term becomes then

2
_ jgpndsz—N”_l ffxx(nxatu) as
S Soo
_ ﬁ jQX % (n x V]ul?) dS
So
+N{:1f§x><(n><[u><w])d8
+ﬁ§xx(nx[v-f])d5.
S

Then, applying again the pressure identity in conjunction with Egs. (A.6) and (A.7), the integral
Navier-Stokes equations (A.10) can be written as

F:fdtfpudv+ i;n-[’)/prpllll+T] ds,
v

S
with
Fp _ gHuHQI + _/\/’p_ 1 [w(x x u) —u(x x w)]
p
— 57— L+ Geu)l — x0u]
+ 1 x- (V- 7)I—x%x(V-7)].

N -1

Unlike the integral form of the Navier-Stokes equations, it does not explicitly require the pressure.
However, an integration over the entire volume V remains. The purpose of the second step of the
derivation is to transform this volume integral into surface integrals.

Elimination of the volume integral

The volume integral appearing in Eq. (A.10) can be expressed in terms of surface integrals using
Gauss’ theorem and taking advantage of vector identity (A.1). This leads successively to

S +Sp
= jgn ~FtdS — d, %n- (pux) dS,
Sw S
with .
¥ = —p(oru)x

Noca’s flux equation is thus retrieved.

Simplification in case of rigid body motion

In case of a rigid body motion, the time derivative of the body surface integral appearing in
Eq. (A.8) can be expressed as a function of the motion parameters only (Noca, 1997). If the body
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Indirect calculation of loads from p1v measurements

displacement can be decomposed into a rigid translation at velocity u’ and a rotation at angular
velocity &", defined negative according to right-hand rule, the velocity of the body surface u” is

W =u+a x(x —x), (A.13)

where X" is the location vector of the center of rotation. Using the Gauss’ theorem, the term of
interest becomes successively,

—dq fﬁpn- (ux) dS = dtf

] Vb,oV~ (ubx> dv,

= pdtf V- |u'x]+ V- [(&" x {x" —x})x] dV,
IT
where V), is the body volume as sketched in Fig. A.1. Examining the two terms separately leads to
I =,
II=a"x (x" —x),

since u’ and &" and X" are constant in space. Moreover, u’ and &" are constant on Vj, so that

—d %pn- (ux) dS = pd; utj

dVJrJ (x—x") dVvxa'" |,
Vi Vi
Sp

III A%

where I11 is the body volume and I'V the first moment of volume calculated with respect to the
pivot point. The latter can be linked to the position of the centroid X" of V;, with respect to the
pivot point

X'V, = J. (x—x") dv.
Vi
Finally, since only u’ and & vary in time, the body surface integral becomes

—dy jgpn- (ux) dS = pVpdiu’ + pVX" x dpi”.

Sp

A.3 Derivation of the pressure identity

The pressure identity Eq. (A.11)

(Nfl)ff)pndS:figxx(nXVp)dS (A.11)
S S

rewritten here for convenience, can be derived from the Impulse-Momentum identity for a simply-
connected domain (Noca et al,, 1997). If the domain is multiply-connected, this derivation fails
since the volume integrals are ill-defined in some parts of }V (Noca et al., 1997). Another derivation
starts from the vector identity Eq. (A.3) multiplied by the normal vector n and integrated over a
surface S:

Jn.[vX (x x ¢1)] dS=—(/\/’—1)J¢>ndS
S S
—an(x-v¢) —(n-x)V¢dS.
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A.4 Derivation of extended pressure identity

The integrand of the second term on the right-hand side can be transformed using Eq. (A.7)
n(x-Ve¢) — (n-x)Vep = x x (n x V).
In case of a single-valued scalar field ¢, the left-hand side term becomes, using Stokes’ theorem,
j[)m [V x (x x ¢1)] dS 3€(x x 61) - tdC,
S c

where t is tangent to curve C. If the surface S is closed, C tends infinitesimally to a point, so that
the above integral vanishes. Using these simplifications, the identity

(N—1)if¢nds_—ff§xx (n x Vo) dS

S

is obtained and, with ¢ = p, the pressure identity is retrieved.

A.4 Derivation of extended pressure identity

The extended pressure identity can be written as

1
fﬁp(nxx) dS:NjEXX[XX(Van)] ds, (A.14)
s s
Note that the domain enclosed by S can be multiply-connected.

The identity (A.14) can be derived from the pressure identity (A.11). Therefore, if r is an

arbitrary position vector and assuming an arbitrary scalar field ¢p; so that ¢,; = ¢re€piq, it can
be written successively

N—-1)¢éd(nxr)dS= (N—1)Pdnireepiq dS,
;19 §

S

(N — 1) %’lﬁm‘ni dS,
S

- §$]‘nlamd)pi6¢jk€klm ds.
S

Using
amwpi = (Tqam(i) + ¢5mq) €piq,

the identity becomes

(N71)§¢(nxr) dS:fﬁrx[xx(quxn)] deffmS(nxx) ds.
s

S S

Finally, assuming that r = x and with ¢ = p, Eq. (A.14) is retrieved.
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APPENDIX B

Detached flow around a 4:1 rectangular cylinder

B.1 Sensitivity analysis on the dynamic pressure correction

Dynamic pressure is measured with a multi-channel prpms transducer which is connected to the
pressure taps with tubes. Each tube forms a pneumatic line that acts as a filter and causes amplitude
and phase distortions of the unsteady pressure signal measured. To retrieve the original unsteady
pressure, a correction should be applied and the methodology proposed by Bergh and Tijdeman
(1965) is used for that purpose. As shown by Rigo (2017), this method performs accurately when
applied to data acquired with the particular ppms transducer used for the experiments described
in Sec. 3.2. The correction is based on a FRF modeling the pneumatic line by linking the true and
measured C)p. The theoretical expression of this FRF depends on many physical parameters that
are subject to uncertainty. The sensitivity of the corrected C), to these uncertainties is studied in
this section.

Bergh and Tijdeman (1965) identified the most significant parameters appearing in the FRF
as the atmospheric pressure patm, the pressure transducer volume V5, the tube length [; and the
tube internal diameter d;. Their nominal values for the experiments described in Sec. 3.2 are
presented in Tab. B.1 and the results discussed in Chap. 3 were established on this basis. However,
these parameters are subject to uncertainty. In particular, V5 is not known precisely, measurement
errors impact Patm, I+ and d¢, and patm could vary during the experiment. Additionally, Bergh
and Tijdeman (1965) showed that the values of the physical parameters may have to be slightly
modified to obtain a theoretical FRF modeling accurately the pneumatic line. A sensitivity analysis
is then conducted to determine how uncertainties impact C),. First, the variation range of each

Parameter set Iy [m] dy [mm] Patm [Pa] Vs [mm3]
Nominal values 1.34 1.32 99 250 0
LENGTH 1.33 —-1.35 1.32 99 250 0
DIAMETER 1.34 1.25 99 250 0
PRESSURE 1.34 1.32 98 250 — 100 250 0
VOLUME 1.34 1.32 99250 150
MIXED A 1.35 1.25 98 250 150
MIXED B 1.33 1.32 100 250 0

Table B.1: Nominal values of physical parameters and parameter sets corresponding to the sensi-
tivity analysis.
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Detached flow around a 4:1 rectangular cylinder

physical parameter is determined. Then, the different FrRF associated with the boundaries of these
ranges are calculated, and the corresponding corrections are applied to the measured C),. Finally,
the effects of uncertainties are analyzed through the variation of Cj,. Initially, the variation of each
parameter is considered separately. In a second time, the uncertainties are combined to obtain the
highest variation of C},.

The uncertainty ranges are determined from the potential measurement errors, the parameter
analysis made by Bergh and Tijdeman (1965), and the ppms transducer characterization performed
by Rigo (2017). The subsequent sets of parameters that define the different Frr are listed in Tab. B.1.
The measurement error on the tube length is assumed to be below 1cm. The set of parameters
called LENGTH is thus determined by varying the nominal /; by less than 1%. Bergh and Tijdeman
(1965) reported that the measured d; has often to be slightly reduced (around 5%) to obtain an
accurate theoretical Frr. Therefore, the parameter set DIAMETER corresponds to a reduction of 5%
of the documented internal diameter. The parameter set PRESSURE is associated with a variation of
the atmospheric pressure. The latter was measured twice during the experimental session, which
allows to assume that p, ¢, does not vary more than within 1kPa, i.e., 1% of its nominal value. The
transducer volume is the most difficult physical parameter to determine. Rigo (2017) measured
Vs = 100 mmB, but had also to assume Vs = Omm? to obtain a theoretical FrRF modeling
accurately the pneumatic line. Therefore, for the parameter set voLUME, the upper limit of V; is
supposed to be 150 mm?, which corresponds to an increase of 50% compared to the measurement
performed by Rigo (2017).

The Bode plots of the theoretical FRF computed with the sets of parameters reported in Tab. B.1
are depicted in Fig. B.1. It shows that the uncertainties associated with the tube diameter and
the transducer volume significantly impact the Frr. In particular, its amplitude is modified by a
reduction of d; and an increase of V, the latter modifying also slightly the peak distortion location
in the frequency spectrum. Conversely, the uncertainties on the tube length and the atmospheric
pressure do not have significant effect. Finally, the rrr phase is only modified by a variation of
volume.

1.5 T
Nominal
[[] LENGTH
1.25 DIAMETER |
[__] PRESSURE

VOLUME

amplitude [—]
—

0 50 100 150 200 250

[en]
|

phase [—]

| |
0 50 100 150 200 250
frequency [Hz|

Figure B.1: Bode plots of the theoretical FrF associated with the parameter sets in Tab. B.1.
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B. 1 Sensitivity analysis on the dynamic pressure correction

As discussed in Sec. 3.2.2.3, the peaks of distortion caused by the pneumatic line are located
in the frequency range of the studied phenomena. Therefore, the FrF variations impact the cor-
rected C)p. This is illustrated in Fig. B.2 that shows the C}, distribution obtained after correction
with the different Frr depicted in B.1. In particular, Figs. B.2a and B.2b confirm that C}, is only
impacted by uncertainties on V; and d¢. Both an increase of the transducer volume and a decrease
of the tube diameter lead to an increase of C},, with respect to the nominal case. This is consistent
with the increase in the FRr amplitude depicted in Fig. B.1. To have an idea of the maximum vari-
ation of C},, the boundary values of the parameter ranges are combined to obtained the largest
increase/decrease of C},. The subsequent sets of parameters are called MIXED A and MIXED B, re-
spectively, and they are reported in Tab. B.1. The standard deviation of the corrected C), obtained
from these two sets are depicted in Figs. B.2c and B.2d. It appears that the most critical combi-
nation of uncertainties (MIXED A) leads to an increase of maximum 20% of Cz/a' However, this
increase does not take place similarly all along the rectangle surface. In particular, Fig. B.2c shows
that the uncertainties have no impact on Cj, at 7 ~ 0.55, the frequency spectrum of C}, at this
location being probably not in the frequency range of large signal distortions. Finally, the global
shape of C’;, i.e., the location of minimum and maximum, is not modified.

In conclusion, this sensitivity analysis shows that the nominal physical parameters used in
Chap. 3 could lead to an underestimation of the temporal variation of C}, around C). Under the
worst scenario, this underestimation could be of the order of 20%. However, since the global
shape of C}, is conserved, it can be assumed that the overall dynamics of C}, is correctly captured.
Moreover, many of the studies reported in Chap. 3 are based on the distribution of C), which is
not impacted by the pneumatic line. Therefore, it can be concluded that the conclusions drawn in
Chap. 3 are robust to uncertainties.
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Detached flow around a 4:1 rectangular cylinder
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Figure B.2: Sensitivity to the theoretical FRF parameters of the standard deviation of C), along the
rectangle surface obtained experimentally at @ = 2° and Re = 4.2 x 10*. Each parameters are
considered separately (Figs. (a) and (b)) and together (Fig. (c) and Fig. (d)) The vertical gray lines
represent the leading and trailing edges and the coordinate 7 is defined in Fig. 3.4.
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APPENDIX C

Detached flow around a flat plate

C.1 Kinematic description

The one associated with the small amplitude pitching case consists of three different parts. The
plate incidence is first linearly increased to achieve the main angle of attack @, i.e. 30° or 45°.
Then, the desired small amplitude sinusoidal motion is imposed an repeated 117 times. Finally,
the plate goes back linearly to zero incidence. For the static case, the kinematic is the same that
the one described above, except that no motion is imposed. Therefore, the plate holds its position
during approximately 117 shedding periods. The large pitching amplitude kinematic consists of
14 sinusoidal motions of 30° amplitude around a mean incidence of 0°. For implementation
reasons, it begins and finishes by a linear motion from 0° to 30° or —30°, respectively, followed
by a return to zero incidence.

C.2 Kinematic files

This section provides some examples of input files required by COSMOS software. They impose
to the rotary stage the three motions describe in Sec. C.1, i.e., the kinematics corresponding to
the large and small amplitudes pitching plate and the static plate. In the following files, the most
used commands are SmMx and ImMy, which imposes at motor m a speed of x step/s and a number
of steps y to cover. Detailed information about the Velmex language can be found in the VXM
Stepping Motor Controller User’s Manual (Velmex INC, 2004).

C.2.1 Kinematic corresponding to the large amplitude pitching plate

S1M3268, I1M151,
S1M3247, I1M1560,
S1M3225, I1M149,
S1M3182, I1M147,
S1M3139, I1M145,
S1M3074, I1Mi142,
S1M2987, I1M138,
S1M2900, I1M134,
S1M2814, I1M130,
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Detached flow around a flat plate

S1M2706, I1M125,
S1M2576, I1M119,
SiM2446, I1M113,
S1M2316, I1M107,
S1M2165, I1M100,
S1M1991, I1M92,
S1M1840, I1M85,
S1M1667, I1M77,
S1M1472, I1M68,
S1M1299, I1M60,
S1M1104, I1M51,
S1M909, Ii1M42,
SiM714, I1M33,
S1M519, I1M24,
S1M303, I1Mi4,
S1M108, I1M5,
S1iM108, I1M-5,
S1M303, I1M-14,
S1M519, I1M-24,
S1M714, I1M-33,
S1M909, I1M-42,
S1M1104, I1M-51,
S1M1299, I1M-60,
S1M1472, I1M-68,
SiM1667, I1M-77,
S1M1840, I1M-85,
J2,

;Program 2

PM-2,

S1M1991, Ii1M-92,
S1M2165, I1M-100,
S1M2316, I1M-107,
Si1M2446, I1M-113,
S1M2576, I1M-119,
S1M2706, I1M-125,
SiM2814, I1M-130,
S1M2900, I1M-134,
S1M2987, I1M-138,
S1M3074, I1M-142,
S1M3139, I1M-145,
S1M3182, I1M-147,
S1M3225, I1M-149,
S1M3247, I1M-150,
S1M3268, I1M-151,

U5, ;sync point at 0.49992%2PI => output 1 high
S1M3268, I1M-151,
uv4, ;sync point => output 1 low

S1M3247, I1M-150,
S1M3225, I1M-149,
S1M3182, I1M-147,
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C.2 Kinematic files

S1M3139, I1M-145,
S1M3074, I1M-142,
S1M2987, I1M-138,
S1M2900, I1M-134,
S1M2814, I1M-130,
S1M2706, I1M-125,
S1M2576, I1M-119,
S1M2446, I1M-113,
S1M2316, I1M-107,
S1M2165, I1M-100,
S1M1991, I1M-92,
S1M1840, I1M-85,
Si1M1667, I1M-77,
S1M1472, I1M-68,
S1M1299, I1M-60,
S1M1104, I1M-51,
J3,

S1M909, Ii1M-42,
SiM714, I1M-33,
S1M519, Ii1M-24,
S1M303, I1M-14,
S1M108, I1M-5,

S1M108, I1M5,

S1M303, IiMi4,

S1M519, I1M24,

SiM714, I1M33,

S1M909, I1iM42,

S1M1104, I1M51,
S1M1299, I1M60,
S1M1472, I1M68,
SiM1667, I1M77,
S1M1840, I1M85,
S1M1991, I1M92,
S1M2165, I1M100,
S1M2316, I1M107,
S1M2446, I1M113,
S1M2576, I1M119,
S1M2706, I1M125,
S1M2814, I1M130,
S1M2900, I1M134,
S1M2987, I1M138,
S1M3074, I1Mi142,
S1M3139, I1M145,
S1M3182, I1M147,
S1M3225, I1M149,
S1M3247, I1M150,
S1M3268, I1M1b51,

>
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Detached flow around a flat plate

;sMAIN PROGRAM in O

U5, ;beginning of starting motion => output 1 high
S1M800,

I1M-2400,

I1M2400,

uv4, ;end of starting motion => output 1 low
;Kinematic: multiple sines

U7, setPA200,
LMO,
JM1,
L21,
U92,

;Last motion form Odeg to -30deg then return to in 6s

Us, ;beginning of last motion => output 1 high
S1M800,

I1M2400,

I1M-2400,

U4, ;end of last motion => output 1 low

;Delay for bias

SiM421, IiMiO0,
S1M379, I1M9,
S1M379, I1M9,
S1M337, I1M8,
S1M295, I1M7,
S1M2563, I1M6,
SiM211, I1M5,
Si1M168, I1M4,
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S1M84, I1M2,
S1M42, TiM1,

S1M42, TiM-1,

SiM84, IiM-2,

S1M168, I1M-4,
SiM211, I1M-5,
S1M253, I1M-6,
S1M295, I1M-7,
S1M337, I1M-8,
S1M379, I1M-9,
S1M379, I1M-9,

SiM421, I1M-10,

Us,

SiM421, I1M-10,

u4,
S1M379, I1M-9,
S1M379, I1M-9,
S1M337, I1M-8,
S1M295, I1M-7,
S1M253, I1M-6,
SiM211, I1M-5,
S1M168, I1M-4,
SiM84, I1M-2,
S1M42, IIM-1,
SiM42, IiMi,
S1M84, I1M2,
S1M168, I1M4,
S1M211, I1MS,
S1M253, I1M6,
J2,

S1M379, I1M9,
SiM421, I1M10,

;MAIN PROGRAM in O

C.2 Kinematic files

;sync point at 0.5%2PI => output 1 high

;sync point => output 1 low

;beginning of starting motion => output 1 high
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Detached flow around a flat plate

S51M800,

I1M-2400,

U4, ;end of starting motion => output 1 low
;Kinematic: multiple sines

U7, setPA200,

LMO,

JM1,

L117,

U92,

;Final motion form 30deg to Odeg in 3s

A1M2,

Us, ;beginning of final motion => output 1 high
S1M800,

T1M2400,

U4, ;end of final motion => output 1 low

;Delay for bias

C.2.3 Kinematic corresponding to the static plate

E,
;sMAIN PROGRAM in O

;First motion form Odeg to 30deg in 3s

A1M2,

Us, ;beginning of starting motion => output 1 high
S1M800,

I1M-2400,

v4, ;end of starting motion => output 1 low

5
;Delay for acquisition

U5, ;beginning of final motion => output 1 high



C.3 Synchronization of the plate kinematics on the prv sampling

T1M2400,
U4, ;end of final motion => output 1 low
;Delay for bias

C.3 Synchronization of the plate kinematics on the pIv sampling

To phase-average the p1v velocity fields, several pairs of images have to be acquired at the same
phase of the motion. To this end, the nominal laser pulsing frequency f;, has to be adjusted to
obtain a sampling frequency fs as close as possible to the kinematic frequency fj. Moreover, the
camera shutter has to be opened at a specific phase of the motion.

The first condition is enforced by skipping some laser pulses, i.e. artificially reducing the laser
frequency. The frequency divider Ny, is determined by rounding the ratio of the laser nominal
frequency fi, to the kinematic frequency fi. The sampling frequency fs is then 1/r, = N /r,
which has to be lower than the maximal sampling frequency f;"**. If it is not, the frequency
divider has to be increased as kN, until the criterion is achieved, k being an integer. Finally,
since the frequency divider is an integer, the obtained frequency is not exactly the same as the
kinematic frequency. Therefore, after a certain number of cycles, the sampled phase differs from
the desired one. As it varies with f, this drift has to be quantified for each kinematics.

The second condition is enforced by delaying the kinematics with respect to the laser pulses.
The delay is determined by synchronizing two signals as illustrated in Fig. C.1. The first one comes
from the camera shutter. The rising edge corresponds to the camera shutter opening, i.e., when the
first laser pulse occurs and the first of the images pair is acquired. The falling edge of the camera
signal appears after the sampling of the first image but before the sampling the second one. The
period of this signal is the sampling period Ts = 1/f,. The second signal is sent by the stepper
motor. As explained in Sec. 4.2.2, its rising edge corresponds to a chosen phase of the kinematics
which has period T, = 1/,. To determine the delay of the kinematics Ay, the falling edge of the
camera signal has to be aligned with the rising edge of the kinematics. This is illustrated by the
vertical gray lines in Fig. C.1.

Camera signal

Kinematic signal
t=0
Figure C.1: Schematic view of the determination of Ay, the delay in kinematics required to obtain
PIV images at a specific phase in the motion.
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