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ABSTRACT 

Building energy performance characterization at design 

stage is theoretical and could be subject to errors. In 

operation, it is difficult to verify the reliability of these 

calculated parameters. The aim of this paper is to set 

in, a method of verification based upon full-scale 

dynamic measurements. It presents a complete 

experimentation of identification/validation of energy 

performance parameters, upon the “Jacques Geelen” 

climate chamber of Arlon campus in Belgium.  

The experiment uses a co-heating method for 

identification under stationary regime and grey box 

model under the dynamic regime. Additionally, a 

Kalman filter is used to estimate the different 

disturbances of internal gains in the grey box model. A 

reliable mathematical model is finally provided for 

identification of building energy performance 

parameters.   

INTRODUCTION 

Estimation of the buildings energy performance is part 

of the design phase by calculating the theoretical 

energy use. Actual performance after realisation may 

deviate significantly from this theoretically design-

based performance. Building performance 

characterization based on full-scale dynamic 

measurements could help to bridge the gap between 

theoretically predicted and real life performance of 

buildings (Roels, 2011).  

The purpose of the following experimentation is to 

build a robust mathematical model for the 

identification of building energy performance 

parameters. The structure of the paper follows up the 

approach leading to this goal.   

It presents in thefirst section the “Jacques Geelen” 

climate chamber and the theoretical calculation, as per 

the design data, of the U value (heat transfer 

coefficient) characterizing its energy performance. 

Second section concerns the verification of the 

calculated energy performance under stationary regime 

by means of co-heating method.  

Third section is about the verification under dynamic 

regime by means of mathematical identification. In a 

first step, verification considers a dynamic regime 

without disturbance. In the second step, it considers 

through a Kalman filter, the disturbances of internal 

gains. The results of each step of identification are 

compared to co-heating results in order to validate (or 

not) the obtained mathematical models. 

Figure 1 describes in “blue” the methodology of 

verification and in “red” the construction of the 

mathematical models, which will give finally, an 

algorithm of verification usable in other similar case of 

verification/validation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Methodology of identification of energy 

parameters of the climate chamber  

 “JACQUES GEELEN” CLIMATE 

CHAMBER PRESENTATION 

Presentation  

Jacques Geelen” climate chamber is a testing platform 

for building energy systems combining building 

demand, heating and cooling emitters, water-based and 

air-based distribution systems, storage systems and 

heat and cool production systems.  

It was built between 2000 and 2002 and includes a 

climate chamber in which a well defined climate can be 

controlled in terms of temperature and humidity. 

(André, 2003).   
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It includes 4 zones as shown in figure 2: the climate 

chamber which is surrounded by a buffer space (1 m 

wide) where a given temperature profile can be 

imposed (internal view in figure 3); the offices zone 

where the measurement interfaces are located and the 

technical area where all the production, storage and 

distribution equipment is located. (André, 2003). 

The dimensions of the climate chamber are 5m x 4m x 

2.5m. The buffer space is 1m wide. The climate 

chamber can be the object of the testing (by submitting 

the energy system to controllable and reproducible 

heating and cooling loads) or can host the tested device 

(floor heating, air diffusion system, new concept of 

wall, etc).  

 

 

 

 

 

 
 

 

 

 

Figure 2 Floor plan of the fog chamber building 
 

 

 

 

 

 

 

 

 

 

 

Figure 3 Internal view of the climate chamber 

 

Walls composition is as follows: Wooden panel, 

thickness 12 mm; Wooden structure including rock 

wool panels, thickness 140 mm (wooden pieces, 89 

mm thick, placed each 40 cm and separated by rock 

wool panels) ; Wooden panel, thickness 12 mm.  

Floor composition is: Stone 200 mm; Sand 50 mm; 

Water bareer; Reinforced concrete 140 mm; Extruded 

polystyrene 80 mm; Mortar slab (including heating / 

cooling pipes) 100 mm; Floor covering; Rock wool 

60mm;  Underfloor heating. 

Windows properties are: U = 1.1 W/m2K.  

Doors properties are: U = 1.1 W/m2K. 

Theorical calculation of the U value  

Global heat loss of the chamber is the sum of heat 

losses due to transmission, infiltration and thermal 

bridges, as given by equation 1. 
 

UA global= UA transmission +UAinfiltration +UA th bridge        (1) 
 

Calculation of the heat transfer coefficient for "walls in 

series" (regular multilayer construction) Us and 

“parallel walls” (construction with different sections) 

Up, are given by equations 2 and 3. Equation 4 gives 

the calculation of the UAinfiltration.  

    

Us = 1/(Rsi + ∑ e/λ + Rse)                (2) 

 

Us : Heat transfer coefficient of the wall, W/m².K 

e : material thickness m (meter) 

λ: Lambda coefficient of thermal conductivity of 

materials, W/m.K)             

Rsi : Inside surface resistance m².K/W. 

Rse : Outside surface resistance m².K/W.              
 

    Up = (f1 ∗ Up1) + (f2 ∗ Up2) + ⋯ (fn ∗ Upn)     (3) 

 

Up : Total heat transfer coefficient of the wall, W/m².K 

Up1 : Heat transfer coefficient of the wall 1, W/m².K 

Up2 : Heat transfer coefficient of the wall 2, W/m².K 

f1, f2 : represents f1% and f2% of the total area (may 

vary depending on the walls)   

                     UAinfiltration=1/3*n*V                        (4) 

 

Where V: Volume of the chamber (m3) and n: air 

change rate (h-1).  

UAth bridge  is calculated using THERM software 

(Mirchell et al., 2013).   

According to these equations, Global U value 

calculation gives following results: 

UA transmission =37.26 W/K 

UA infiltration= 3.06 W/K 

UA thermal bridge = 0.2744 W/K 

Then, 

UA= 40.598 W/K , Total area= 94 m²,  

U-value= 0.4318 W/m²K  

CALCULATION OF THE U VALUE BY 

CO-HEATING  

Co-heating test 

The co-heating method has been developed and further 

improved resulting in the current experimental 

guidelines available in the UK (Wingfield et al. 2011).  

It is a quasi-stationary method based on the linear 

regression analysis of dynamic measurement data. It 

can be used to measure the whole building heat loss 

attributable to an unoccupied construction.  

The test consists on heating the inside of an unoccupied 

construction electrically, using electric resistance point 

heaters, to a mean internal temperature (typically 25 

°C) over a number of days. The period of test typically 

ranges from 1 to 3 weeks once the construction has 

been heat saturated (Steskens, 2015).  

Whilst heating the construction, a number of 

parameters are measured, namely total electrical energy 

input, internal temperatures and relative humidity, and 
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various external climate conditions. By measuring the 

total amount of electrical energy that is required to 

maintain the mean elevated, internal temperature each 

day in response to the external conditions, the daily 

heat input (in Watts) to the construction can be 

determined. The heat loss coefficient can then be 

calculated by plotting the daily heat input against the 

daily difference in temperature between the inside and 

outside of the construction (ΔT). The resulting slope of 

the plot gives the raw uncorrected heat loss coefficient 

in W/K. (Johnston et al., 2012). The co-heating test 

essentially assumes the following heat balance on the 

investigated building:              

                                            Q + R.S = (∑A.U + C v).ΔT                        (5)  

Where Q is the heat input from electric heaters  [W]; R 

is the solar aperture [m²]; S the solar radiation [W/m²]; 

ΔT the temperature difference inside outside [K]; 

∑A.U is the sum of Uvalues [W/m²] and respective 

areas of the thermal envelop [m²], given in [W/K]; and 

Cv is the infiltration heat loss [W/K]. 

In our case : R.S=0 (the chamber is inside the buffer 

zone and the blinds of the window are closed). So we 

can write the equation 6 as follows:  
 

                         Q = (∑A.U ).ΔT                                 (6) 
 

The experimental conditions  

The experimentation consists on using three values of 

power heating. In the three cases, the temperature of 

the buffer is fixed at 18°C. The U value is determined 

when the steady state is reached. 

The main items of equipment deployed within the 

tested climate chamber are: temperature sensors, fan 

heaters with three powers (400W ,900W, 1600W), 

circulation fans,  thermostats,  kWh meters, data logger 

able to record all data needs to be obtained from the 

climate chamber and buffer zone. These data are 

temperature from the sensors and kWh meters of the 

fan heaters. 

The experiments were performed over period of 25 

days, starting the 05/09/2013 and ending the 1/10/2013 

as shown in table 1. 

Table 1 

Planned experimental schedule 

 
 

POWER 
START 

TIME 
STOP TIME 

TOTAL 

TIME 

(HOURE) 

400 W 
5/09/2013 

12:05 

13/09/2013 

16:12 
196 h 

900 W 
13/09/2013 

16:20 

20/09/2014 

14:00 
100 h 

involuntary 

power 

failure 

20/09/2014 

14:10 

23/09/2013 

15:00 
72 h 

1600 W 
23/09/2013 

15:00 

1/10/2013 

11:00 
188 h 

 

 

Experimentation results  

The results are obtained by plotting the heat input of 

each experience against the difference in temperature 

between the inside and outside (ΔT).  

The resulting slope of the plot gives the heat loss 

coefficient in W/K as in table 2 and figure 4. 

  

Table 2 

UA heat loss coefficient calculated by co-heating 

 
 

SLOPE OF THE 

GRAPH = UA (W/K) 

U (W/m
2
K)   

FOR A=94 m
2
 

40.95 0.435 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Heating power (Q [W]) as a function of 

temperature difference (ΔT [K]) between the indoor 

and outdoor air temperature 

 

It results from this work that the U value calculated by 

the theoretical method is equal to the U value measured 

by experimentation. The value obtained is 0.43 

W/m²K. As the U value is now verified by 

experimentation, the identification under a dynamic 

regime can be undertaken. 

IDENTIFICATION WITH GREY BOX 

MODEL 

Identification consists of searching mathematical 

models of systems from experimental data and data 

available as initial conditions. These models should 

provide a close approximation of the behaviour of the 

underlying physical system in order to estimate the 

physical parameters or design simulation algorithms, 

forecasting, monitoring or control (Garnier, 2006).  

The conventional approach is to formalize the available 

data, collect experimental data and estimate the  

structure, parameters and uncertainty of a model, 

finally validate (or invalidate) the model. (Mejri, 

2010).  

The principle of a "grey box" is to use a simplified 

physical representation of a system and to identify the 

parameters of this model to minimize the prediction 

errors. Buildings can be modelled by simple dynamic 

differential equations representing conduction, 

convection and capacitive phenomena (Madsen, 2008).  
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These equations have been widely studied in the 

literature. It consists of a set of continuous stochastic 

differential equations formulated in a state space form 

that is derived from the physical laws which define the 

dynamics of the building (Madsen, 2008). The model 

space state is formulated by equations 7 and 8. 

( ) ( ) ( ) ( ) ( )X t A X t B U t    (7) 

( ) ( ) ( ) ( ) ( )Y t C X t D U t  
 (8) 

Equation 7 is the state equation, where X(t) is the state 

vector, Xdot(t) is the change of the state vector and 

U(t) is a vector containing the measured inputs of the 

system. Equation 8 is the output equation, where A is 

the state matrix, B the input matrix, C the output matrix 

and D the direct transition matrix. The model structures 

are derived from resistance-capacitance (RC) networks 

analogue to electric circuits to describe the dynamics of 

the systems. Thereby the distributed thermal mass of 

the chamber is lumped to a discrete number of 

capacitances, depending on the model order.  

The unknown parameters θ in these equations are 

derived using estimation techniques. For current case 

study, the used technique was the Prediction Error 

Method (PEM).  

The goal is to find the parameter set that minimizes the 

error between the simulation result and the 

measurements. PEM method is given according to 

equation 9. 

                 

                          (9) 

 

  ̂  are the estimated parameters based on the data set 

called “estimation data”. ( )t   is the simulation error 

depending on the time and parameter value. 

Following estimation of parameters θ, validation 

process will ensure that the model is useful not only for 

the estimation data, but also for other data sets of 

interest. Data sets for this purpose are called validation 

data. To quantify the model’s accuracy, the goodness 

of fit (fit) performance criteria were used as per 

equation 10. 

,

, ,

( )
100.(1 )

( )

norm y y
fit

norm y y


 

  (10)           

Where y’ is the measured signal, 
,y is the average 

measured signal; y is the simulated signal norm(y) is 

the Euclidean length of the vector y, also known as the 

magnitude. 

DYNAMIC TESTING AND PARAMETERS 

IDENTIFICATION  

Test control strategy 

The period of experimentation was 2 weeks. The 

temperature of the buffer was variable according to the 

sequence of the real external temperatures of 

September 2013 in Arlon, Belgium. The indoor 

temperature was measured. The heating system worked 

according to the following schedule of power along 

with the experimentation: 

 1.5 days initialization with constant low power 

100W into test room; 

 1.5 days constant low power 100W; 

 1.5 days constant high power 1000 W; 

 3.5 days pseudo-random on/off power 1000W; 

 2 days medium power 500W; This sequence 

may be followed by a validation sequence: 

 4 days low power 100W. 

Data set measurements  

The thermal model’s output and inputs data used for 

estimation parameters are presented in figure 5, 

respectively to the following description: Indoor 

temperatures (the output) noted Tint[°C] Outdoor 

temperatures (of the buffer) noted Text[°C] and the 

heat powers P[W]. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5 Estimation data 
 

The thermal model’s output and inputs data used for 

validation parameters are presented in figure 6 in the 

same order of estimation data in figure 5.  

  

 

 

 

 

 

 

 

 

 

 

Figure 6 Validation data 

RC model of the climate chamber 

The model has been built to have a little number of 

parameters, simple enough to be identifiable but 

complex enough to represent all physical phenomena. 

Hazyuk (Hazyuk et al., 2011) proposes to use a two 

order model. The chamber is modelled by a linear 

second order differential equation RC.  

2

1

ˆ arg min{ ( ) ( )}

N

t
t

S


   


  
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Obtained model is made of three resistances and two 

capacities (R3C2 using the electrical analogy), as in 

figure 7, where: 

 Cm and Ci represent the structure and the 

interior air capacities, 

 The inverses of Rf, Rint, Re represent the 

thermal conductance. 

 

 

 

 

 

 

 

 

Figure 7 RC model of the climate chamber 

 

It uses two inputs [ ]T
extU T P : the outdoor 

temperature Text and the heating power P. It has the 

indoor air temperature intY T as output. 

The state space matrices of the RC model are: 
 

int int

int int

1 1 1
( )

* * *

1 1 1
( )

* * *

i f i i

m m e m

R C R C R C
A

R C R C R C

 
  

  
 

 
  

 

1 1

*

1
0

*

f i i

e m

R C C
B

R C

 
 

  
 
  

   1 0C   0 0D   

int[ ]T
mX T T  the state vector including the 

indoor temerature Tint, the structure temperature Tm. 

Results of parameters estimation   

The grey-box model was simulated using MATLAB 

software. The result of identification under MATLAB 

is shown in figure 8. The performance of the model 

expressed by the fit (see equation 10) is given by 

MATLAB and is equal to 75.82 %. The result of 

validation under MATLAB is shown in figure 9. The 

fit is given by MATLAB and is equal to 93.82%. 

Figure 8 Identification: Comparison of simulated and 

measured indoor temperatures ( fit of 75.82 %) 

 

 

 

 

 

 

 

 

 

 

Figure 9 Validation: Comparison of simulated and  

measured indoor temperatures ( fit of 93.82 %) 

 

Analysis of residuals    

Inspite of good values of fit criteria, it is important to 

make an analysis of residuals to ensure an adequate 

model. 

The residuals from a fitted model are defined as the 

differences between the response data and the fit to the 

response data at each predictor value (r = y – ŷ). 

(Ljung, 2000). 

. Thus, residuals represent the portion of the validation 

data not explained by the model.  

Analysis of residuals consists of two tests: the 

whiteness test and the independence test. 

According to the whiteness test criteria, a good model 

has the residual autocorrelation function inside the 

confidence interval of the corresponding estimates, 

indicating that the residuals are uncorrelated. If the fit 

for the signal is good, the residuals should be white 

noise.  

According to the independence test criteria, a good 

model has residuals uncorrelated with past inputs.  

Evidence of correlation indicates that the model does 

not describe how part of the output relates to the 

corresponding input. For example, a peak outside the 

confidence interval for lag k means that the output y(t) 

that originates from the input u(t-k) is not properly 

described by the model.  

Figure 10 shows the autocorrelation and cross 

correlation for the thermal model. The yellow area 

represents the confidence interval. The model’s 

autocorrelation exceed the confidence interval  in some 

points. Ljung in (Ljung, 1999) states that less attention 

should be paid to the autocorrelation function if no 

error model is included. 

The cross correlation of all inputs is within the 

confidence interval: this shows that the models’ 

structure is correct and that it describes the influence 

from inputs to outputs correctly. Accordingly, table 3 

summarizes the parameters values with the related 

uncertainty. 
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Figure 10 The autocorrelation and cross 

correlation functions of the thermal model fitted to 

in situ measurements. The yellow area represents 

the confidence interval  

 

Table 3 

Estimated parameters values 

 

PARAMETERS  
ESTIMATED 

VALUE   

 UNCERTAINTY 

(+/-)  

Rf (K/W)  0.0372  0.2939*1.0e-008 

Re (K/W) 0.0243  0.0125*1.0e-008 

Rint (K/W) 0.0502  0.3232*1.0e-008 

Ci (J/K) 250  0.2161*1.0e-008 

Cm (J/K) 430.35  0.1505*1.0e-008 

 

Where Rf, Re and Rint are respectively: Equivalent 

strength light walls and infiltration, External 

convection resistance +½ of the wall conduction, 

Internal convection resistance +½ of the wall 

conduction resistance.  

It results that the overall heat losses coefficient of 

the chamber is :  

 UA = 40.65 W/K => U = 0.429 W/m²K. 
 

This result of verification under dynamic regime gave a 

similar result to the calculation by co-heating method 

under stationary regime.  

The obtained grey box model is then enough accurate 

to estimate performance parameters when there is no 

disturbance in the construction.  

Next step of the experimentation is to adapt the 

identification model to a dynamic condition with 

disturbance of internal gains. This adaptation is 

performed using a Kalman filter. 

DYNAMIC TESTING AND PARAMETERS 

IDENTIFICATION WITH INTERNAL 

GAINS DISTURBANCES 

Kalman filtering 

Kalman filtering is a rigorous estimation technique, to 

estimate time varying unknown parameters. The 

Kalman filter can effectively estimate unmeasured 

states (which evolve in time) with the use of 

knowledge of the system, dynamics of measuring 

devices and statistical descriptions of the system noise, 

measurement errors, and uncertainty in the dynamic 

models (Kim et al., 2012).  

This last step of experimentation addresses the 

estimation performance of a Kalman filter for internal 

gains disturbance. The internal gains consists on heat 

gains of: people, lightings, equipments, etc.   

Test control strategy 

The period of experimentation was for a week, during 

November 2014. Climate room was considered as an 

“office of two persons” with the following scenario: 

 The temperature of the buffer was variable 

according to the sequence of the real external 

temperatures of September 2014 in Arlon, 

Belgium. 

 A mechanical ventilation with constant double 

flow of 100m³/h and heat exchanger of 65%.  

 Internal temperatures were fixed at 20°C 

during work hours and at 16°C the rest of the 

time.  

 Internal gains were considered for: two 

persons (100W/person); two PCs, a printer and 

a lamp (88W for the total of equipments). 

 Heating power was measured.   

The internal gains were generated in the 

experimentation by an emulator of human presence.  

RC model of the climate chamber 

The model has been built on the same manner as for 

the experimentation “without disturbance”.  Figure 11 

represents the obtained RC model where Pv is heating 

supplied by the ventilation system and Padd is the sum 

of internal gains. 

 

 

 

 

 

 

 

 

Figure 11 RC model of the climate chamber under 

dynamic with disturbance 
 

 

For state descriptions, it is common to split 

disturbances into contributions from measurement 
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noise (t)  and process noise (t) , acting on the 

states, so that the equations 7 and 8 are rewritten: 

 

              X(t) = AX(t) + BU(t) + (t)             (11) 

              Y(t) = CX(t) + DU(t) + (t)              (12) 

 

 The state space equations of the RC model  are: 
 

1

int
int int

int

1 1
* *( ) *( ) ( )v addi m ext

f

dT
C T T T T P P P t

dt R R
             (13) 

2int

int e int e

1 1 1 1
* * * ( )* ( )

R R

m
m ext m

dT
C T T T t

dt R R
              (14)              

 

Where Padd is considered as a state described by a first 

order equation as (Pedersen et al., 2013): 

 

3

( ) 1
* ( ) ( )

add

add

add

dP t
P t t

dt



                           (15) 

 

int( ) ( ) ( )Y t T t t  are measured data. 

Where Cm, Ci, Rf, Ri, Re, 1 2 3, , ,    , add , are 

unknown, with : 1 2 3, ,    represent the noise of the 

three equations state 10,11, 12 and   represents the 

noise of sensors. 

To minimize the number of parameters to be estimated 

the variance of the four noise elements 1 2 3, , ,   

as well as add  have been kept constant in the 

estimation and have been chosen using physical 

insight. 

Accordingly the prediction model based on the 

equations 10, 11, 12 using a Kalman filter is : 

 

1 int

int
int int

int

1 1
* *( ) *( ) *( )i m ext

f

dT
C T T T T P Pv Padd K Y T

dt R R
        

2 intint

int e int e

1 1 1 1
* * * ( )* *( )

R R

m
m ext m

dT
C T T T K Y T

dt R R
     

3 int

( ) 1
* ( ) *( )

add

add

add

dP t
P t K Y T

dt 
            (16) 

 

The Kalman gain [K1 K2 K3]
T is determined using 

rough estimates of the noise properties. This includes 

the variance 1 2 3, ,   as equal to 0.3 and the variance 

of   as equal to 0.4. 

Results of parameters estimation   

The result of identification under MATLAB is shown 

in figure 12. The performance of the fit of the model is 

equal to 93.82%.  The result of validation is shown in 

figure 13. The fit is given by MATLAB and is equal to 

85.7%.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Identification: Comparison of simulated and 

measured indoor temperatures ( fit of 93.82 %) 

 

 

 

 

 

 

 

 

 

 

Figure 13 Validation: Comparison of simulated and 

measured indoor temperatures ( fit of 85.7 %) 

Analysis of residuals    

Figure 14 shows the evolution of the residuals  

 

Figure 14 Prediction error for the identified model 

 

The residuals appear to behave randomly and wth zero 

mean. It suggests that the model fits correctly the data.  

Figure 15 shows the obtained residual autocorrelation 

for the model inside the confidence interval delimited 

by the blue lines (from tag 2). The residuals of the 

model can be considered as  white noise. 

Figure 16, represents the cross-correlation between 

each input and the residuals. In the three graphs, the 

cross-correlation functions are inside the confidence 

interval delimited by the blue lines. This shows clearly 

that there is no correlation between the inputs of the 

model and the residuals. 

 

 

 

 

 

 

 

 

Figure 15Autocorrelation of residuals   
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Figure 16 The cross correlation functions between 

inputs and residuals  
 

Table 4 

Estimated parameters values 

 

PARAMETERS  
ESTIMATED 

VALUE   

UNCERTAINTY 

(+/-)  

Rf (K/W) 0.0485 0.7382*1.0e-003 

Re (K/W) 0.027 0.03458*1.0e-003 

Rint (K/W) 0.0307 0.0587*1.0e-003 

Ci (KJ/K) 268 0.1472*1.0e-003 

Cm (KJ/K) 630 0.3625*1.0e-003 

K1 0.9079*10-5 

 
K2 0.6361*10-5 

K3 0 
 

Table 4 summarizes the parameters values. It results 

that the overall heat losses coefficient of the chamber :  

 UA = 38 W/K => U = 0.404 W/m²K. 

CONCLUSION  

A verification and validation of the energy 

performance of the “Jacques Geelen” climate chamber 

was presented based on co-heating and grey-box 

models. The first verification was by co-heating in 

order to obtain a value of reference which could 

validate or not the results of mathematical 

identification. Second verification and validation was 

with grey-box model. The building model in state 

space form was presented with an inverse modelling 

approach to identify parameters. Results were analysed 

according to fit criteria. Additionally, validation took 

into account an analysis of residuals. Obtained model 

shows that it is capable to simulate most indoor 

temperature and internal gains disturbance accurately. 

Results of calculation were also similar to results of co-

heating experimentation. This could allow to draw the 

conclusion that the obtained model can be considered 

enough reliable to perform other identification of 

parameters constructions in same test conditions.  
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