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ABSTRACT: The use of old mines as a reservoir in the context of pumped storage hydroelectricity rises
the question of their stability especially upon cyclic loading due to filling and emptying the mines. This paper
presents the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at
low confinement. The main features of the behaviour evidenced by experiments in the literature depict a pro-
gressive degradation and deformation of the material with the number of cycles. A constitutive law based on a
boundary surface model is developed. It represents the brittle failure of the material as well as its progressive
degradation. It also encompasses a fatigue resistance under which no degradation of the material holds. Param-
eters are calibrated with respect to laboratory experiments from the literature. A parametric study is carried out
to highlight the role of different parameters.

1 INTRODUCTION

Over the last decade, the part of renewable energy has
considerably grown in the energy mix. However so-
lar and wind energy particularly suffer from a crucial
drawback. The period of maximum production does
not necessarily coincide with the period of maximum
consumption (Førsund 2015). The pumped-storage
hydroelectricity stores energy as gravitational poten-
tial energy. Water is pumped from a lower reservoir
into a higher reservoir when electric power is avail-
able at a low cost (off-peak of consumption) (Steffen
2012). During the peak of energy consumption, tur-
bines produce energy at a higher cost, ensuring the
economic viability of the system. The overall allows
a storage of the energy.
The idea arose to reuse disused mines, pits and quar-
ries as lower reservoirs for pumped-storage. Ensuring
the overall stability of mine galleries and quarries is
one of the main challenges for engineers. Indeed the
numerous pumping and filling phases of the old gal-
leries modify continuously the stress and pore water
distributions within the surrounding rock. This results
into a fatigue loading of the rock material whose re-
sistance has been shown to be lower than the mono-
tonic resistance (Royer-Carfagni & Salvatore 2000,
Erarslan & Williams 2012).
This papers aims at developing a constitutive law to
reproduce the fatigue behaviour of rock materials at
low confinement, representative of the overall prob-
lem. The formulation proposed hereinafter is based on

the bounding surface model framework already devel-
oped for sands (Taiebat & Dafalias 2008), assuming
the material is rate independent. The original model
is modified to take into account the salient features of
the rock behaviour upon both monotonic and cyclic
loading.
Experimental results are firstly presented to introduce
and detail the main features of the rock behaviour. A
triaxial formulation of the constitutive law is then de-
tailed. Finally a comparison with experimental data is
provided together with a parametric study illustrating
how the parameters influence the results.

2 EXPERIMENTAL REVIEW

2.1 Monotonic behaviour

Failure of brittle rock is mainly driven by the genera-
tion of micro-cracks and cracks within the rock sam-
ple. An example of such a behaviour is depicted in
Figure 1 for a simple compression experiment. Fol-
lowing the pioneering work of (Bieniawski 1967a, Bi-
eniawski 1967b) the brittle behaviour of rocks is clas-
sically delineated into five phases for simple compres-
sion tests.

(I) The first phase corresponds to the closure of
the microcracks initially existing within the rock
sample. Acoustic emissions (AE) recorded in
(Cai, Kaiser, Tasaka, Maejima, Morioka, & Mi-
nami 2004) correspond to sound waves emit-



ted when microcracks or fractures are created or
propagated. During this first phase, the number
of AE is almost equal to zero. It lasts up to a ver-
tical stress equal necessary to ensure the crack
closure σcc.

(II) The second phase is purely elastic. There is no
initiation of cracks nor propagation. There are
still no AE and the volumetric deformation is
equal to the elastic one.

(III) From a vertical stress equal to σi, microcracks
initiate or propagate and are mainly parallel to
the applied stress. They induce a volumetric di-
lation. The number of acoustic emissions rises up
but remains limited. This phase is termed ”stable
crack growth”.

(IV) During the last phase, the coalescence of all
microcracks takes place at σd around 0.7 to
0.8 times the peak strength (Bieniawski 1967a,
Martin 1997, Cai, Kaiser, Tasaka, Maejima,
Morioka, & Minami 2004). The dilation strongly
increases as well as the number of AE.

(V) Finally failure is reached at σf . The rock sample
may exhibit shear bands or macrocracks.
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Figure 1: Stress-strain diagram exhibiting the dif-
ferent stages of the monotonic behaviour of brittle
rocks, (Martin 1997, Cai, Kaiser, Tasaka, Maejima,
Morioka, & Minami 2004)

The brittle behaviour of rock is not limited to the
simple compression experiments. It is observed also
when the sample is subjected to a confinement as
shown in Figure 2. It is known that the ductility in-
creases with confinement (Liu & He 2012). The fail-
ure may become totally ductile at very high confine-
ment. However this paper will focus on low confine-
ment behaviours. Many other features are not illus-
trated here but are relevant for the formulation of
a constitutive law such as the material (Attewell &
Farmer 1973) or load-induced anisotropy (Benz &
Schwab 2008).
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Figure 2: Brittle failure in Lac du Bonnet granite,
(Martin 1997)

2.2 Cyclic behaviour
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Figure 3: Monotonic and cyclic simple compression
(constant amplitude) tests on Lorano marble, data
traced from (Royer-Carfagni & Salvatore 2000)

The typical behaviour of a sample of Lorano mar-
ble is illustrated in Figure 3 for both monotonic and
constant cyclic amplitude experiments. The mono-
tonic failure is brittle and presents more plastic de-
formation laterally than vertically. The cyclic exper-
imental results highlight an accumulation of plastic
deformation cycle after cycle. The increment of de-
formation increases progressively and cycles are more
open at the end.

A cyclic indirect tensile test on Brisbane tuff is pro-
vided in Figure 4. This test consists in a ramp signal,
i.e. the load oscillates between an increasing average
load. It is observed in (Erarslan & Williams 2012) that
the cyclic resistance is systematically lower than the
monotonic one. Moreover the modes of failure are
different. The monotonic samples present a straight
crack while cyclically loaded samples are surrounded
by debris and crushed rock material. This suggests
that much more microcracks are generated.

It is finally observed that upon constant amplitude
cycles, a threshold exists below which there is no fail-
ure of the material even upon a large number of cy-
cles (Erarslan & Williams 2012). Figure 5 presents
the number of cycles as a function of the amplitude
applied. When the amplitude is below 70% of the
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rect tensile strength results of Brisbane tuff, (Erarslan
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Figure 5: S-N curve for indirect tensile strength of
Brisbane tuff, (Erarslan & Williams 2012)

monotonic resistance, no failure was observed even
after more than 500000 cycles. This threshold may be
defined as the fatigue resistance of the material.

3 TRIAXIAL FORMULATION OF A
CONSTITUTIVE LAW

3.1 Triaxial notations

In triaxial conditions, only the diagonal components
of the deformation ǫ and stress σ tensors are different
from zero. Two stress invariants describes the stress
state of the material

p = (σ1 + 2σ3)/3, (1)

q = σ1 − σ3, (2)

where σ1 and σ3 are respectively the vertical and
lateral effective stresses applied to the sample. The
stresses are gathered into the vector s

T = [q, p]
where T is the transpose operator. A reduced devia-
toric stress ξ is defined according to

ξ =
q

p + pc

, (3)

where pc will be further defined. Similarly strain in-
variants are defined according to

ǫv = ǫ1 + 2 ǫ3, (4)

ǫq = ǫ1 − ǫ3, (5)

where ǫ1 and ǫ3 are the vertical and lateral defor-
mations. They are assembled into the vector e

T =
[ǫq, ǫv].

3.2 Yield, hardening and other surfaces

The model is defined by different surfaces in the p-q
plane. Only the surfaces on the compression side are
presented in Figure 6 for clarity. Their common apex
is located on the p-axis at coordinate -pc which is a
function of the cohesion c and the friction angle φ

pc =
c

tanφ
, (6)

where φ is the friction angle.
The yield surface has an opening of 2My. Its mathe-
matical formulation reads

f y ≡ (q− (p + pc) α)
2 − (p + pc)

2 (My)2 (7)

where α is termed the back-stress tensor of the sur-
face. It describes the variation of its position and is
limited by

α+ My ≤ Mb in compression, (8)

α− My ≥ Mb/δb in extension, (9)

where Mb is the slope of the bounding surface and δb

is the ratio between the compression and extension
openings of the bounding surface. The slope Mb is
related to the friction angle through

Mb =
6 sinφ

3− sinφ
. (10)

The yield surface is then a function of two internal
variables: α and pc. The bounding surface is described
by

f b ≡ q2 − (p + pc)
2
(

Mb
)2

(11)

and depends only on the internal variable pc.
The last two surfaces are termed hardening (open-

ing Mh) and decohesion of (opening Mpc) surfaces.
They are homothetic to Equation (11).
The purpose of the hardening surface is to allow a
brittle failure of the material. Indeed in the bounding
surface models (Taiebat & Dafalias 2008), the plas-
tic modulus is a function of the distance between the
yield and the bounding surface α+ My − Mb. When
those surface are very close, the plastic modulus tends

3
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model (compression side): α back-stress tensor, My
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Figure 7: Difference between ductile and fragile fail-
ure

to zero and the failure is very ductile as shown in Fig-
ure 7. If the plastic modulus is computed with respect
to the hardening surface Mh ≥ Mb, the bounding sur-
face is reached before the plastic modulus is set to
zero and the failure is brittle.

The decohesion surface of slope Mpc defines the fa-
tigue resistance of the rock as a function of its con-
finement. If the stress path lies within the decohesion
surface, there is no decrease of the cohesion variable
pc.

3.3 Yield surface

The yield surface is activated in both monotonic and
cyclic loading, before failure. It is subjected to kine-
matic (on α) and isotropic (on pc) hardening.

3.3.1 Flow rule

The flow rule is associated in the deviatoric direction
and non-associated in the volumetric direction, which
is classical in many cyclic constitutive laws. The vari-
ations of the plastic components of deformation is de-
fined such that

ė
p =

[

ǫ̇pq
ǫ̇pv

]

= λ̇

[

ξ
Ad ξ

]

= λ̇G (12)

where λ̇ is the variation of the plastic multiplier and
Ad is a parameter of dilatancy.

3.3.2 Hardening of internal variables

The kinematic hardening law of the yield surface
reads

α̇ = λ̇ h
(

αh − α
)

|αh − α|N−1 = λ̇ h1, (13)

where N is a parameter that rules the stiffness and
brittleness of the material, and h is defined as (Taiebat
& Dafalias 2008)

h =
b0

(Mh (1 + 1/∆b)− 2My − (αh − α))2
, (14)

where b0 is a material parameter. The definition of the
αh variable depends on the loading or unloading

αh = Mh − My q − (p + pc) α > 0, (15)

αh = −Mh/δb + My q − (p + pc) α < 0. (16)

Such a definition allows different stiffness in loading
and unloading.

The isotropic hardening rule simply reads

ṗc = λ̇Ac (pres − pc)

〈

(α− αpc)
q

|q|

〉

= λ̇ h2, (17)

where Ac is a parameter ruling the rate of decohesion,
the operator 〈X〉 = 0.5 (|X|+X) is the Mc Cauley
brackets and

αpc = Mpc − My q > 0, (18)

αpc = −Mpc/δb + My q < 0. (19)

The hardening laws are written in compact form
such that

v̇ =

[

α̇
ṗc

]

= λ̇

[

h1

h2

]

= λ̇H. (20)

3.3.3 Plastic multiplier

Assuming the classical additive decomposition of de-
formation between plastic and elastic components
(Simo & Hughes 1998), the triaxial stress-strain re-
lation is written

ṡ = E · (ė − ė
p) (21)

where

E =

[

2G 0
0 K

]

(22)

where G is the shear modulus and K the bulk modu-
lus. The consistency condition is then written

ḟ y ≡

[

∂f y

∂s

]T

· ṡ +

[

∂f y

∂v

]T

· v̇ = 0 (23)
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Inserting Equations (12), (20) and (21) into Equation
(23) leads to the following expression of the plastic
multiplier

λ̇ =

[

∂f

∂s

]T

· E · ė

[

∂f

∂s

]T

· E · G −

[

∂f

∂v

]T

· H

(24)

where

[

∂f

∂s

]T

=

[

∂f y

∂q

∂f y

∂p

]

(25)

and

[

∂f

∂v

]T

=

[

∂f y

∂α

∂f y

∂pc

]

. (26)

3.4 Bounding surface

When the yield surface reaches the bounding one,
the second mechanism is activated. The kinematic
hardening of the yield surface is stopped since it has
reached its limit, i.e. α̇ = 0. However the cohesion
continues to degrade but at a higher rate. The cohe-
sion degradation is similar to Equation (17) but the
parameter Ac is replaced by Ac2 such that

ṗc = λ̇Ac2 (pres − pc)

〈

(α− αpc)
q

|q|

〉

. (27)

Moreover the derivatives of f y in the plastic multi-
plier definition, Equation(24), are replaced by deriva-
tives with respect to f b.

4 EXAMPLES OF SIMULATIONS

Elasticity
My [-] E [GPa] ν [-]

0.1 70 0.16

Bounding
Mb [-] pres [MPa] δb [-]

1.4 5 1

Decohesion
Mpc [-] Ac [-] Ac2 [-]

0.5 20 500

Hardening
Mh [-] Nexp [-] b0 [-]

1.5 2 3 · 104

Volumetric
Ad0 [-]

-1.8

Table 1: Parameters of the model

Comparison with experimental results are based
on results published in the literature for the Lo-
rano marble material. The simple compression mono-
tonic and cyclic stress paths are presented in (Royer-
Carfagni & Salvatore 2000). Elastic and failure pa-
rameters are extrapolated from (Cattaneo & Labuz
2001, Stavropoulou, Liolios, & Exadaktylos 2004,

α0 [-] pc0 [MPa]
0 34

Table 2: Initial internal variables

Ferrero, Migliazza, & Spagnoli 2009).
Parameters and initial internal variables resulting
from the calibration process are provided in Tables 1
and 2. The following sections compares experimental
results and numerical simulations. A parametric study
is also carried out to highlight the main role of some
parameters.

4.1 Comparison with experimental data

Results of monotonic simulations are compared with
experimental data in Figures 8 and 9. Elastic parame-
ters as well as friction angle and cohesion were esti-
mated from the literature. Indeed triaxial tests at dif-
ferent confinement pressures would have been neces-
sary.
The brittle failure is well captured in terms of both
peak resistance (∼ 85MPa) and maximum deforma-
tion (∼ 0.22%). The behaviour of the material was set
identical in compression and extension since no data
are available in extension.
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Figure 8: Comparison of monotonic simple compres-
sion simulation and experimental results, stress devi-
ator vs. axial deformation

The post-peak behaviour of the samples was not
investigated in (Royer-Carfagni & Salvatore 2000).
However according to other studies the unconfined
failure is probably brittle (Cattaneo & Labuz 2001).
A steep post-peak behaviour was assumed with a slow
but non zero cohesion residual parameter. It is shown
in Figure 8 for different values of parameter Ac2.
The dilatancy parameter is calibrated with respect to
the volumetric deformation results presented in Fig-
ure 9. Only the pre-peak part of the results is exhib-
ited to prove the good agreement of simulation results
with experiments.

The evolution of the pc internal variable is provided
in Figure 10. The pre-peak variation of the cohesion
pc is very limited. It steeply decreases afterwards due
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to the activation of the boundary surface. Therefore
this is a consequence of the failure and not a cause.
Since pc is almost not decreased at failure, the cohe-
sion at peak can be used to estimate the initial value
of pc. This is true especially if the degradation rate Ac

is low.
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Figure 10: Evolution of the pc internal variable during
the simple compression test

It was impossible to reproduce the cyclic experi-
ment with the same set of parameters due to the large
variability of experimental results. Indeed it can be
observed that monotonic test and the first compres-
sion of the cyclic test diverge in Figure 3. Results
of a simulation are provided in Figure 11 assuming
Mh = 1.7, b0 = 105, Mb = 1.6 and Ac = 150.

The experimental result exhibit a failure of the sam-
ple after almost 30 cycles. The numerical simulation
leads to failure after 25 cycles. Numerical results well
capture the accumulation of deformation. However
the deformation is a bit too high. The difference be-
tween lateral and axial deformation is also well re-
produced. The opening of the last cycles is increasing
which was required.
Failure is finally reached due to the progressive al-
teration of the cohesion (pc internal variable), as de-
picted in Figure 12. In this case, degradation of the
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Figure 11: Comparison of cyclic simple compression
simulation and experimental results (envelope only),
stress deviator vs. axial deformation

cohesion is the cause of the failure. This is consistent
with the most diffusion and progressive mechanism
of failure. The post-peak behaviour is not modelled
since the simulation is stress-driven.
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Figure 12: Evolution of the pc internal variable during
the cyclic simple compression test

The non-linear unloading part of the cycles is not
reproduced. Indeed, this feature is probably due to the
re-opening of crack within the sample. The crack clo-
sure phase is not captured by the model. Therefore the
re-opening phase is not. However since the opening-
closure of the cracks as well as friction dissipate en-
ergy, modelling this phase could be an improvement
of the model.

4.2 Brittleness and stiffness

The brittleness of the failure depends on two param-
eters: Mh and the exponent N . Results are provided
for different values of these parameters. The decohe-
sion parameter Ac is set to zero to simplify the anal-
ysis, i.e. there is no degradation of cohesion before
failure. Both parameters modifies the plastic defor-
mation reached at failure, as shown in Figures 13 and
14. When Mh tends to Mb, the original bounding sur-
face concept is recovered and the yield surface tends

6



towards the bounding one without reaching it, the de-
formation is infinite.
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Figure 13: Influence of the Mh parameter

When only the exponent N is modified, the plastic
deformation increases at failure. However the defor-
mation is always finite. This parameter also increases
the divergence from linearity since the plastic multi-
plier is a function of |α− αh|N . Therefore as soon as
|α− αh| < 1, the loss of stiffness is higher for higher
exponents.
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Figure 14: Influence of the N parameter

The b0 parameter directly influences the stiffness
of the elastoplastic behaviour. For the present exam-
ple, the elastic limit is overpassed for a stress equal to
20MPa. Divergence of the elastoplastic behaviour is
more obvious for lower b0, as shown in Figure 15.

4.3 Dilatancy

The parameter Ad classically rules the plastic volu-
metric behaviour. It is dilative if Ad < 0 and contrac-
tive otherwise as shown in Figure 16.

4.4 Decohesion

Parameters Mpc and Ac regulate the degradation of
the cohesion. Results of cyclic loading are provided
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Figure 15: Influence of the b0 parameter

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

ε v [
%

]

ε
1
 [%]

 

 

-1.5
-0.5
 0.5

A
d
 [-]

Figure 16: Influence of the Ad parameter

in Figures 17 and 18. Mpc is a threshold beyond
which degradation of the cohesion starts. Therefore
the lower this value, the higher the degradation caused
at each cycle. This defines the fatigue resistance of the
rock.
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Figure 17: Influence of the Mpc parameter

The Ac parameter rules the degradation rate of the
cohesion parameter. It matters only when the stress
path overcomes the degradation limit Mpc. This pa-
rameter indirectly influence the number of cycles be-
fore failure that can be afford by a rock sample.
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5 CONCLUSION

This paper presents the mathematical formulation of
a new model describing the cyclic behaviour of rock
materials. It is based on the boundary surface frame-
work developed for sands. It reproduce the main fea-
tures of the monotonic and cyclic behaviours of rock
material at low confinement,

• brittle failure of the material,

• post-peak behaviour,

• accumulation of plastic deformation upon cyclic
load,

• progressive opening of the cycles,

• degradation of the cohesion,

• fatigue resistance of the material.

A comparison with experiments exhibits that the
model well reproduces the monotonic results. How-
ever additional triaxial experiments should be neces-
sary to calibrate more accurately all the parameters.
The cyclic behaviour is qualitatively captured. How-
ever the simulation leads to excessive plastic defor-
mation.
Further developments could be interesting. The dam-
aging of elastic properties or modification of the plas-
tic modulus may improve the model. A confinement
dependency of the elastic parameter may also be in-
troduced. The modelling of the hysteresis of the cy-
cles could be of interest. However all of these modifi-
cations require more experimental results to be cal-
ibrated which reduces their applicability to actual
projects.
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