LLAMA and obscuration Local Luminous AGN with Matched Analogs

Leonard Burtscher, Ric Davies, Ming-yi Lin, Gilles Orban de Xivry, David Rosario et al. Max-Planck-Institut für extraterrestrische Physik Garching

ESO AGN workshop 27 June 2016

LLAMA and obscuration Local Luminous AGN with Matched Analogs

Leonard Burtscher, Ric Davies, Ming-yi Lin, Gilles Orban de Xivry, David Rosario et al. Max-Planck-Institut für extraterrestrische Physik Garching

ESO AGN workshop 27 June 2016

Sample and rationale A complete, hard X-ray selected local sample

All BAT-58 detected galaxies with DEC < +15 degLocal Luminous Agn with Matched Analogs log L (14-195 keV) [erg/s] 43.5 43.0 42.5 42.0 Seyfert 1 41.5 Seyfert 2 unknown/other 41.0 10-3 10-2 Davies, LB + 2015

redshift

Local Luminous with Agn

Sample and rationale A complete, hard X-ray selected local sample

LLAMA

Local Luminous with Agn Matched Analogs

Sample and rationale A complete, hard X-ray selected local sample

All BAT-58 detected galaxies with DEC < +15 deg

The torus: more than obscuration

A starburst-AGN connection?

The torus: more than obscuration

A starburst-AGN connection?

powerful AGN activity only in post-starburst nuclei?

Davies+ 2007

<section-header><text>

• SINFONI IFU cubes to analyze gas inflow / outflow

The next steps A complete, hard X-ray selected local sample

- SINFONI IFU cubes to analyze gas inflow / outflow
- X-SHOOTER spectra to robustly analyze the star formation histories

The next steps A complete, hard X-ray selected local sample

- SINFONI IFU cubes to analyze gas inflow / outflow
- X-SHOOTER spectra to robustly analyze the star formation histories

 APEX data to probe molecular inventory (+ trying to get ALMA + HST...)

The next steps A complete, hard X-ray selected local sample

First results: BLR properties and obscuration

Schnorr-Müller+ 2016 (re-submitted)

First results: BLR properties and obscuration

Schnorr-Müller+ 2016 (re-submitted)

First results: BLR properties and obscuration

Hydrogen emitting clouds are ~ at sublimation radius

Object	r _b
MCG-05-14-012	1.0
MCG-05-23-16	0.5
MCG-06-30-015	1.0
NGC1365	0.7
NGC2992	0.8
NGC3783	0.8
NGC4235	1.8
NGC4593	0.9
NGC6814	0.9

Schnorr-Müller+ 2016 (re-submitted)

A near-IR highresolution atlas of local AGNs

 Dilution of stellar light by the AGN continuum

Vol. 578 - Part I JUNE • 2015

ISSN 0004-6361 • 578 - Part I • L1-L6/A1-A68/C1 • June 2015

Spectral decomposition NGC 1386 (Sy 2)

Burtscher+ 2015

A robust way to estimate the obscuration

Burtscher+ 2015

A robust way to estimate the obscuration

- color
 temperature
 consistent with
 optical
 - appearance \rightarrow obscuration

A robust way to estimate the obscuration

- color
 temperature
 consistent with
 optical
 - appearance \rightarrow obscuration
- normalization
 consistent with
 observed radii
 of hot/warm
 dust

Burtscher+ 2016 Schnorr-Müller+ 2016 (re-submitted)

 GRAVITY; MATISSE: 2nd generation VLTI instrument offering phases (imaging), higher resolution (*L* band, and *N*) and more efficiency (4 beams)

 GRAVITY; MATISSE: 2nd generation VLTI instrument offering phases (imaging), higher resolution (*L* band, and *N*) and more efficiency (4 beams)

• E-ELT/METIS

- GRAVITY; MATISSE: 2nd generation VLTI instrument offering phases (imaging), higher resolution (L band, and N) and more efficiency (4 beams)
- E-ELT/METIS
 - resolve large-scale ,,torus" component found with MIDI: determine the kinematics of the wind launching region

- GRAVITY; MATISSE: 2nd generation VLTI instrument offering phases (imaging), higher resolution (L band, and N) and more efficiency (4 beams)
- E-ELT/METIS
 - resolve large-scale ,,torus" component found with MIDI: determine the kinematics of the wind launching region
 - resolve stellar populations very close to nearby AGNs

AGN NIR luminosity relations

Burtscher+ 2015

Leonard Burtscher: Where is the torus?

(1) inflow + starburst

e.g. Norman & Scoville 1988 Leonard Burtscher: Where is the torus?

(1) inflow + starburst

(2) supernovae + turbulence

e.g. Norman & Scoville 1988

Leonard Burtscher: Where is the torus?

(1) inflow + starburst

(2) supernovae + turbulence

(3) AGB stars and stellar winds

e.g. Norman & Scoville 1988

Physical torus models

Physical torus models

Physical torus models

