

FUNCTIONAL DIVERSITY AND MOWING REGIME OF FLOWER STRIPS AS TOOLS TO SUPPORT POLLINATORS AND TO SUPPRESS WEEDS

Roel Uyttenbroeck

Promotor: Arnaud Monty Co-promotor: Frédéric Francis 04 September 2017

Public PhD Defense Ulg - Gembloux Agro-Bio Tech

1. INTRODUCTION

Agricultural intensification

- Larger fields
- Trees/hedgerows disappeared
- Fertilizer and pesticide input
 → Biodiversity crisis

Agricultural intensification

→Ecological intensification

- Maximize yield
- Minimize impact environment and biodiversity
- Use ecosystem services

Flower strips

- Field edge with flowers
- Subsidies
- Increase insect diversity

© www.vilt.be

Annual flower strips

- Sown with annual flowers
- Ploughed every year

Perennial flower strips

- Sown with annual + perennial flowers and grasses
- Left for several years
- Managed by mowing

GRAE – Agrinature Wallonie

Perennial flower strip

Hay meadows

Log (number of articles) Pollination Animal pests Landsc. aesthetics Water protection Weeds Diseases Erosion control Public image Labor Farmers perception Fuel use Wild game Fertilizer use Bee hives Pesticide use Hay yield **Buying machinery** Subsidies Red. crop surface Crop yield

Pollination

Pollinators importance

- 60-80% of wild plants
- 70% of crops
- 35% of world crop production

Jacquemin et al., One Ecosystem (2017)

Pollinators importance

- 60-80% of wild plants
- 70% of crops
- 35% of wc **C**

Jacquemin et al., One Ecosystem (2017)

enbroe

Supporting pollinators in flower strips?

Ebeling et al., Oikos (2008)

Functional traits

Functional diversity

Low

High

646

Review

TRENDS in Ecology & Evolution Vol.16 No.11 November 2001

Vive la différence: plant functional diversity matters to ecosystem processes

Sandra Díaz and Marcelo Cabido

The links between plant diversity and ecosystem functioning remain highly controversial. There is a growing consensus, however, that functional diversity, or the value and range of species traits, rather than species numbers *per se*, strongly determines ecosystem functioning. Despite its importance, and the fact that species diversity is often an inadequate surrogate, functional diversity has been studied in relatively few cases. Approaches based on species richness on the one hand, and on functional traits and types on the other, have been extremely productive in recent years, but attempts to connect their findings have been rare. Crossfertilization between these two approaches is a promising way of gaining mechanistic insight into the links between plant diversity and ecosystem processes and contributing to practical management for the conservation of diversity and ecosystem services.

ecosystem processes and the ECOSYSTEM SERVICES (see Glossary) that humans derive from them¹. The issue of whether plant diversity influences ecosystem processes has received increasing attention in the past five years, as a consequence of the publication of several groundbreaking theoretical developments and experiments^{2–13}.

There is now general agreement that diversity (a synonym of biodiversity and biological diversity) includes both number and composition of the genotypes, species, functional types and landscape units in a given system. However, diversity is often equated to SPECIES RICHNESS, and other components of

Weeds

Weeds

- Sowing seed mixture: competition?
- Mowing regime

General objective

Focus on: perennial flower strips pollination and weeds

General objective:

Test methods of flower strips creation and management to maximize pollinator support and minimize weed infestation

- Functional traits suggested to play key role
- => increasing functional diversity as a tool to improve flower strips for pollinator support
- Q1: Can we create plant functional diversity in flower strips?

- Functional traits suggested to play key role
- => increasing functional diversity as a tool to improve flower strips for pollinator support
- Q1: Can we create plant functional diversity in flower strips?
- Q2: Is plant functional diversity the key to promote pollinators in flower strips?

- Weeds influenced by:
 - Sowing seed mixture => competition
 - Timing and frequency of mowing
- Q3: Can adapting mowing regime and forb competition be used as tools to reduce weed infestation in perennial flower strips?

- Reference habitat for flower strips?
 - Perennial flower strips: mowing, meadow species
 => Hay meadows?
- Q4: Are perennial flower strips a surrogate for hay meadows?

2. CAN WE CREATE PLANT FUNCTIONAL DIVERSITY IN FLOWER STRIPS?

Published in Agriculture and Agricultural Science Procedia (2015), 6:95-101 R. Uyttenbroeck, S. Hatt, J. Piqueray, A. Paul, B. Bodson, F. Francis & A. Monty

Creating functional diversity

Q1: Can we create plant functional diversity in flower strips?

Species
Achillea millefolium
Anthriscus sylvestris
Crepis biennis
Galium verum
Geranium pyrenaicum
Heracleum sphondylium
Hypericum perforatum
Hypochaeris radicata
Knautia arvensis
Leontodon hispidus
Leucanthemum vulgare
Lotus corniculatus
Lythrum salicaria
Malva moshata
Medicago lupulina
Origanum vulgare
Prunella vulgaris
Ranunculus acris
Silene latifolia
Trifolium pratense

 20 species used in perennial flower strips in Wallonia

How to measure functional diversity?

2

Species	Flower color		
Achillea millefolium	white	٦	
Anthriscus sylvestris	white		<u>ר</u>
Crepis biennis	yellow		2
Galium verum	yellow	J	
Geranium pyrenaicum	Violet/ purple		
Heracleum sphondylium	white		
Hypericum perforatum	yellow		
Hypochaeris radicata	yellow	٦	
Knautia arvensis	Violet/ purple		2
Leontodon hispidus	yellow		2
Leucanthemum vulgare	white	J	
Lotus corniculatus	yellow		
Lythrum salicaria	Violet/ purple		
Malva moshata	Violet/ purple		
Medicago lupulina	yellow		
Origanum vulgare	Violet/ purple		
Prunella vulgaris	Violet/ purple		
Ranunculus acris	yellow		
Silene latifolia	white		
Trifolium pratense	Violet/ purple		

Species		Flowering	UV	
	Flower color	duration	pattern	
Achillea millefolium	white	6	no	
Anthriscus sylvestris	white	2	no	
Crepis biennis	yellow	3	yes	
Galium verum	yellow	5	no	
Geranium pyrenaicum	Violet/ purple	5	yes	
Heracleum sphondylium	white	3	no	
Hypericum perforatum	yellow	3	yes	c
Hypochaeris radicata	yellow	4	yes	-
Knautia arvensis	Violet/ purple	4	no	_
Leontodon hispidus	yellow	5	yes	
Leucanthemum vulgare	white	4	no	e
Lotus corniculatus	yellow	5	no	
Lythrum salicaria	Violet/ purple	4	yes	
Malva moshata	Violet/ purple	3	yes	
Medicago lupulina	yellow	7	no	1
Origanum vulgare	Violet/ purple	3	no	5
Prunella vulgaris	Violet/ purple	3	yes	
Ranunculus acris	yellow	5	yes	
Silene latifolia	white	6	yes	
Trifolium pratense	Violet/ purple	6	no	

Several traits? =>Rao's quadratic entropy index

. . .

All possible mixtures of 7 species: 77520

Functional diversity gradient

Very low FD

- Low FD
- High FD
- Very high FD

AgricultureIsLife experimental farm

AgricultureIsLife experimental farm

Creating functional diversity

Creating functional diversity

Vegetation monitoring

Horizontal cover in quadrats

Results

What was sown:

Results

What is established in the field?

Realized functional diversity influenced by:

Species that did not germinate

Realized functional diversity influenced by:

- Species that did not germinate
- Spontaneous species

Realized functional diversity influenced by:

- Species that did not germinate
- Spontaneous species
- Species more or less abundant

Key message

• Possible to manipulate FD when sowing flower strips

3. IS PLANT FUNCTIONAL DIVERSITY THE KEY TO PROMOTE POLLINATORS IN FLOWER STRIPS?

Published article in Agriculture, Ecosystems and Environment (2017), 249: 144-155

R. Uyttenbroeck, J. Piqueray, S. Hatt, G. Mahy & A. Monty

Q2: Is plant functional diversity the key to promote pollinators in flower strips?

Functional diversity for pollinators

Pollinators

Plants

Functional diversity for pollinators

Identification

Which pollinators

R. Uyttenbroeck

Apis mellifera

Dipera sp. Andrena flavipes

	Number	
Pollinator group	Interactions s	pecies
Syrphid flies	828	25
Other flies	678	-
Honeybees	288	1
Dagger flies	168	2
Bumblebees	129	5
Solitary bees	115	18
Oedemeridae	26	-
Butterflies	8	4
Digger wasp	5	4
Sawflies	4	-
Bugs	2	-
Moth	2	2
Other wasps	2	1
Ground beetles	1	1
Social wasps	1	1
Soldier flies	1	1

Very low

Low

Functional diversity for pollinators

Very low

High

Leucanthemum vulgare

Pollinator species richness

Plant functional diversity $\uparrow \rightarrow$ pollinator species richness \uparrow ?

Pollinator species richness

Plant functional diversity \uparrow \rightarrow pollinator species richness \uparrow ?

Number of interactions

Plant functional diversity $\uparrow \rightarrow$ number of interactions \uparrow ?

Number of interactions

Plant functional diversity → number of interactions ↑?

log Number of interactions 2015

Overlap in visited plant species

How many visited plant species (=feeding niche) do pollinators have un common?

Key messages

- Increasing FD is not the key
- ↑FD → flower species functionally more different
 - \rightarrow \downarrow overlap pollinator feeding niches

4. MOWING REGIME AND FORB COMPETITION AS TOOLS TO REDUCE WEEDS IN FLOWER STRIPS

Research paper in revision for Weed Research

R. Uyttenbroeck, J. Piqueray, S. Hatt, G. Mahy & A. Monty

Q3: Can adapting mowing regime and forb competition be used as tools to reduce weed infestation in perennial flower strips?

Weeds in flower strips

Vegetation monitoring

- Horizontal cover in a
 1x1m quadrat
- 2014-2015-2016

Results

Mowing regime

mean log C. arvense cover

Weeds in flower strips

Key messages

- Adding sown forbs can reduce *C. arvense* cover
- Summer and Summer/ autumn mowing better for:
 - Reducing C. arvense cover
 - Keeping sown forb cover
 - Possibly direct and indirect effect on C. arvense

5. ARE PERENNIAL FLOWER STRIPS A SURROGATE FOR HAY MEADOWS?

Paper in preparation

Q4: Are perennial flower strips a surrogate for hay meadows?

Flowers strips and hay meadows

Hay meadows

Hay meadows

Flowers strips and hay meadows

Flower strips

Flowers strips and hay meadows

Flower strips

Key message

Perennial flower strips are not a surrogate habitat for hay meadows

6. CONCLUSIONS AND PERSPECTIVES

What you seed is what you get?

- Creating contrasting levels of FD = possible
- However:
 - Spontaneous species
 - Species not germinating
 - Species more or less abundant
 - ⇒Adapt seed proportions?
- No or negative effect on pollinators

Mowing for services and disservices

- Mowing to reduce noxious weeds:
 - Summer mowing => *C. arvense* cover
 - Summer mowing => forb cover

- Mowing and pollinators
 - Flower resources?

Flower strips, a new habitat?

Hay meadow was not a habitat with similar pollinator and plant community

- Adapt seed mixture composition to local hay meadow species?
- Consider flower strips as new complementary habitat?

Perspectives

- Key species
 - Structure networks
 - Include in mixtures
- Functional complementarity or redundancy?
 - Insurance species or diverse niches?
- Flower strips as a part of an ecological network in agroecosystems

THANK YOU FOR YOUR ATTENTION

Agriculture Is Life.be

