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Introduction

Quantitative chemical analyses are particularly well suited for characterising processes
involving individual mobility of the chemical elements. On the other hand, the basic building
blocks of most mineral and material processms_ operations are solids and a true quamuanve
analysis_ in terms. of mineral phase ratios (modal analysis) is clearly more helpful in
understandmg such processes. Among the available techmques for estimating mineral phase
ratios, image analysis is probably the most promising because it theoreucatly allows to adress
elated problems like : granulometry intergrowth, preferential orientations..

Any quantitative phase ratio estimation procedure implies the followmg steps :

a) Positionning of probes (planes lines. etc.) at random in the 3-D volume to be

estimated,
b) Classxﬁcauon of these probes with respect to the mineral phases they belong to.

Stereology

Smce Delessc (l 848) it is Lnown that the foliowing propeny holds
. A, =V
Basxcally thlS means that the volumic fraction (Vv) of a mineral is unblasedly estimated
by the mean area fraction (A,) of this mineral from a series of random planes. For practical
purposes. volumic fractions are commonly estimated from area fractions measured in sections.
Provided we are given enough random sections from a given material. no ﬁmher stereolomcal
correctlon will be necessary for estimating true phase ratios in 3-D. " '

Segmentat:on

Area fractions iri sections are estimated with an image analyser m exactly the same way
as they are with the point-counting technique. The point-counting technique relies on a skilled -
operator being able to identify mineral species from their optical characteristics for each given
point on the grid. In the same manner. image analysis requires that the computer be able to
automatically classify pixels within an image as corresponding to a given-mineral. Automatic
recognition of mineral signatures is still very limited. Although the most promising technique in
this respect is probably related to X-Ray fluorescence (EDX). it is worthwhile tryving to
develop as mwuch as possible from optical signals. The widespread availability of optical
equipments and the very affordable cost of video compatible equipments stimulates this effort.

The best sensor used for acquiring true color information in standard video format is a 3-
CCD color camera with direct RGB output (Connolly and Leung. 1995). With a standard
frame grabber. the result of digitizing an RGB signal is a set of three images (Red / Green .
Blue) with 512 x 512 pixels resolution and a pixel depth of % bits (values betrween 0 and 255
Tepresenting grey levels in each channel) (Figurel}).
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Figure 1. Image of a sulphide mincralisation from Sudbury displaying Pyirhotite (Po), Chalcopyrite (Cp), Pyrie
{Py) and Pentlandite (Pn). From tefl to right: B&W image (/3" camera); Red, Green and Blue images (1/2" 3-CCD
camera), ’

Reflectance spectra vs RGB video

Reflectance spectra have been compiled for a wide range of ore minerals (Picot and
Johan. 1977 ; Criddle and Stanley, 1993). Such spectra are acquired in normalized conditions
that are not comparable to the signal output from a video camera using a halogen bulb as light
source. Table | compares compiled reflectance values with the means and standard deviations
of RGB intensities computed from a window of 20x20 pixels positionned on each mineral. One
must keep in mind that the RGB channels of a video camera do not correspond to the same
wavelengths and have broad spectral bandwidth.

700 nm | 600 nm | 540 nm | 420 nm Red: Green | Blue
Lo X, or-{ Yo ! ag KU O
Chalcopyrite - - 42 39 33 17 168} 45| 138: 54} 76 147
Pentlandite 56 52 49 35 I87 ¢ 31 186 33 [ 1058 29
Pyrite SRV Y - 54 40 192 ' 3173 37 116 3.2
Pvrrhotite + - 41 39 |- 35 29 165: 26 1 138: 30| 04 : 23
" Table | Redlectance values under monéchromatic light (Picot & Johan,1977) uxd prey level slaﬁslics_(ngc].xp.‘

standard deviation) for cach channel,

From results in table | it appears that Pyvrrhotite and Chalcopyrite are much more
differentiated in the blue channel than in any other one. In practice, thresholding the blue image
(Figure 2) will allow a correct phase segmentation that would othenvise be unpracticable from
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the B&W image (Figure 3). Distinguishing between Pyrite and Pentlandite appears to be a
more complex snuanon _

Figure 3. Result from thresholding the Blue channel. Figure 2, Result from threshelding the B&W image.
Pyrrhitite is clearly distinguished from Chaleopyrite, Pyirhotite and Chaicopytite are not separable,

Assuming a reasonable normality for the reflectance peaks. one might threshold each
channel using a 95% confidence interval [\ - 2.0.X +2.0]. Logical AND is performed on the
three binary images of the same phase resulting from the segmentation. This operation amounts

to label as pentlandite all pixels falling within a parallelepiped in the RGB hyperspace (Figure
4). If we repeat this operation for each of the n minerals identified in the image we obtain a set

of n binary images (Figure 5).
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Figure 3. Binary images of pisels classified as

Figure <. Scarterptot of 4°400 pisels in the 3 Ty mag )
Chaleopyrite, Penttandite’ Parite and Pyrhatite.

Red Biue spave. Pixels within the thresholds (rectangle)
are labelled as pentandite,

Spectral undetermination

: Spectral undetermination results either from pixels never having been selected (V) or
from pixels having been selected more than once in the thresholding process (e.g. both in the

pitite and pentlandite images).
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Undetermmauon is a Jogical result of polishing artefacts and optical aberrations . Most
scratches. pits. fractures and microhardness fringes appear as unselected pixels (0) whereas
uneven lightning, bireflectance. compositional variations and spectral overlapping ofien induces
multlple selectzon (A+B) (Figure 6)

F:gme 6. Exemplc ‘of composite image wuh spectrai allnbuuon of plxe}s

Muluvanate classu‘icauon techmques (Goldberg & Shhen 1978) may appear more
powerful than a simple threefold univariate threshold, but the aim of the present approach is to
obtain only’ a dense subset of perfectly classified pL\els and solve undetenmnanon by
considering an additional spatial criterion. S

Spat:ai undetermination

A closer look at the composite image reveals a complex spanal relatlonshlp between
classxﬁed and unclassified puels (Figure 6). Zero-valued pL\els appear either as being holes
(pits) within a mineral grain or as fractures crossing the image. Ambiguous pixels (A + B)
appear either within a pure phase A (or phase B) zone or at the contact between B and A
grains. Finally, well classified pixels form massive clusters in the heart of pure grains but may
also appear as speckles within another phases (Figure 8).
Instead of considering these speckles as being inclusions or-exsolutions it is often more realistic
1o consider them as spectral noise and add these pixels to the unclassified pixels list. In
practice, this is realised by performing a dilation of size «d » on each one of the n binary
images. As a consequence, all pixels lying within a distance of less than d pixels to a phase A /
pnase B transition are now labelled as A+B and added to the undetermmed pL\e}s(Flgure ia- b)

Figure 7h, New undeterminayons ;hgurc. 7¢. Final result.of gcodmtc

Figure 7a. Composile image with JoRs . .,
spectrally undetermined regions, resulting trom dilation o A and 3. . propagauun over, undetcrmmcd
o ‘ . o o ' mgwns

L
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Geodesic propagation - .
Considering that the final result' ias o be ‘an image where no pixels are left unc!a551f‘ ed, a
geodesic propagation (Coster & Chermant. [985) is performed to classify ambiguous domains.
The pracrical result of this is that all unclassified pixels are assigned 4 value corres;:ondmx. to
the code of the nearest Classified pixél'(Figure 7c). Thanks 1o the’ previous dilation | process. the
geodesic propagation ‘step fills in undetermined A~B zones and acts as a ﬁJter removing nosy
pmels within well classified domains. This kind of filtering is considered as a contextual filter;
because it selectively removes isolated pixels lving within well classified regions without
affecting isolated pixels scattered in an undclenmped region of the image (Figure \)

Conclus:on .
. True color information, captured wa a 3-CCD camera conmbutes 10 mxprove mineral
se:_mentauon in image analysis. Rather than using multivariate, set.mcmauon proccdures.,the
proposed nmethod -telies on simnple univariate thresholds giving a composue mm;,e with .2
reasonable amount of unclassified pixels. A further geodesic propagation reassigns pixels 1o
mineral phascs on a spatial rather than spectral basis. Minerals showing a difference of 5%
teflectance in one .of the three bands (R/G or B) are correctly segmented and allow for a
p ise phase ratio estimation (Figure 9).

[

Figure 9 Final result ol‘ segmemauon of the R(‘ B
ch:mne!s in ﬁw.re L R .

\ Lo

undetermined region. The lower image Hlustratos how ‘ R A s B ST UL
the contextual filler uses only the latter ones as yenns of ‘ : e e .
the propagation process and removes those within the

ey phase, )

I-wu:c 3. The upper unage shov.s speckles of the btack
ph:m.- cither within the grey phase or within the
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