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a b s t r a c t

This work focuses on the stochastic version of the linear Mathieu oscillator with both forced

and parametric excitations of small intensity. In this quasi-Hamiltonian oscillator, the concept

of energy stored in the oscillator plays a central role and is studied through the first passage

time, which is the time required for the system to evolve from a given initial energy to a target

energy. This time is a random variable due to the stochastic nature of the loading. The average

first passage time has already been studied for this class of oscillator. However, the spread

has only been studied under purely parametric excitation. Extending to combinations of both

forcing and parametric excitations, this work provides a closed-form solution and a thorough

analytical study of the coefficient of variation of the first passage time of the energy in this

system. Simple asymptotic solutions are also derived in some particular ranges of parameters

corresponding to different regimes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the stochastic version of the undamped Mathieu oscillator, governed by equation

ẍ(t) + [1 + u(t)]x(t) = w(t), (1)

subject to the forced excitation w(t) and to the parametric excitation u(t), and where x(t) is the state variable as a function of

time t. As an example, a vertical motion of the support of a pendulum in the gravity field generates this kind of parametric

excitation while a horizontal motion generates a forcing excitation [1]. As another example, the deflection of a cable subjected

to an axial oscillation of one anchorage is described by a similar Mathieu equation [2]. The rotative equilibrium of tower cranes

under gusty wind can also be written in a similar format [3,4].

The current work further assumes that this stochastic oscillator is submitted to small forced and parametric excitations

which owes it to be classified as a quasi-Hamiltonian oscillator. For this class of oscillators, the concept of total internal

energy plays a central role. It finds applications in wave energy harvesting [5–8], capsizing and rolling motions of ships under

stochastic wave excitation [9,10] and several other biological applications such as protein folding [11]. Using the appropriate

non-dimensionalization and discarding the nonlinear governing components, the governing equations of a large number of

applications can be cast under the format of Equation (1) where u(t) and w(t) are stochastic processes.
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Fig. 1. Three time evolutions of the energy H of a stochastic oscillator from H0 = 10−5 to H = 10−2 with white noise excitations of intensities Su = 0.01 and Sw = 0.5 × 10−5 .

For the considered governing equation, any large value of the generalized coordinate x is encountered with probability one

in the undamped case [12]. For this reason and those that have been mentioned in Ref. [13], we investigate the time required for

the system to reach a certain displacement or amplitude, given an initial condition, or to reach a given energy barrier departing

from a lower initial total internal energy level. This is known as a first passage problem. As the system is stochastically excited,

the first passage time is a random variable. Fig. 1 presents three realizations of the energy H of the oscillator departing from a

small initial energy H0 and reaching a larger energy level H0 +ΔH. Each realization provides a different first passage time.

There are very few problems where the complete statistical distribution of the first passage time is available in closed form

[14]. For more complex problems, even such as the problem considered here, perturbation methods or numerical techniques

can be used to provide approximations of the exact solution. In particular Monte Carlo simulations, based on realizations as

shown in Fig. 1, are known to be versatile and accurate, although highly time consuming. Other approaches are based on the

solution of the (generalized) Pontryagin equation(s) [12,15–18], sometimes with the finite difference method [19,20]; alter-

native methods to determine the transient evolution of joint probability density functions include path integral approaches

[21–24], smooth particle hydrodynamics or other Lagrangian methods [25], semi-analytical methods such as the Galerkin pro-

jection scheme [26,27], the Poisson distribution based assumptions [28] or other applications of the perturbation method in

evolutionary spectral analysis [29].

In this paper, we develop an analytical solution. Analytical methods are usually not able to determine the complete distribu-

tion of the first passage time and are limited to its first few statistical moments.

In particular, the mean first passage time provides a first apprehension of the phenomenon so that many stochastic oscillators

are first studied by means of their mean first passage times [30–33]. The variance of the first passage time also reflects the range

of the possible observed first passage times in real conditions and is therefore interesting in a direct simulation. It also provides a

valuable information as to the sample distribution of the mean first passage time, as it depend on the parent distribution of this

random variable. With this respect, confidence intervals of observed mean first passage times basically depend on the spread of

this random variable.

In this paper, we further restrict the considered problem to cases where u(t) and w(t) are 𝛿-correlated processes. Under

this limitation and considering the system to be quasi-Hamiltonian, closed-form solutions exist for the distribution of the first

passage time in the undamped configuration (𝜉 = 0) and without external forcing term (w = 0) [14,34]. In this latter case, the

stochastic differential equation governing the energy is a geometric differential equation. The first passage time of the energy

level Hc, starting from a lower initial energy H0 can be solved explicitly [14] and follows an inverse Gaussian distribution with

mean
4

Su
ln
(

Hc∕H0

)
and shape-parameter

2

Su
ln
(

Hc∕H0

)2
. In other or more general cases, the distribution takes very complicated

expressions. In this paper, we derive a simple explicit solution for the second-order moment (variance) of the first passage

time and provide corresponding solutions in the existing limiting cases, i.e. under forced excitation only or under parametric

excitation only. In Section 2, the considered problem is posed. It is solved, validated and discussed in Sections 3 and 4.

2. Problem statement

The undamped, externally and parametrically forced oscillator is governed by the governing equation (1) where u(t) and

w(t) are 𝛿-correlated noises of small intensities Su and Sw, such that E[u(t)u(s)] = 𝛿(t − s)Su, E[w(t)w(s)] = 𝛿(t − s)Sw and

E[u(t)w(s)] = 𝛿(t − s)Suw.

Since the problem at hand is particularly interesting when the intensities of the excitations are small, the considered oscil-

lator actually happens to be a quasi-Hamiltonian system for which the total internal energy (also referred to as the Hamiltonian)

H(t), defined by

H = x2

2
+ ẋ2

2
, (2)

evolves on a slow time scale [15]. Indeed, the energy balance of the governing equation, obtained by time integration of the

power fluxes, yields

ẋ2

2
+ x2

2
+ ∫ (u x ẋ) dt = ∫ w ẋ dt, (3)
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which shows that the total internal energy is slowly varying, since Ḣ = wẋ − uxẋ = ord(𝜀) if {u,w} = ord(𝜀).
Formally this problem is represented in the state-space 𝐱 = (x, ẋ) by its Itô formulation for Markov times, i.e. for each t > t0,

by

d𝐱 = 𝐟 (𝐱, t)dt + 𝐛(𝐱, t)d𝐁, (4)

where 𝐱 =

[
x

ẋ

]
, 𝐟 =

[
ẋ

−x

]
, 𝐛 =

[
0 0

−x 1

]
and where 𝐁 =

[
Bu

Bw

]
is the vector of Brownian motions characterized by the power

spectrum matrix

𝐒 =

[
Su Suw

Suw Sw

]
= 𝜀𝝂 = 𝜀

[
𝜈u 𝜈uw

𝜈uw 𝜈w

]
, (5)

where 𝜀 ≪ 1 and 𝝂 is an order-one matrix.

Because the considered system is stochastic, the time required to reach the total internal energy barrier H0 + ΔH, starting

from energy H0 is a random variable. Its mean value has already been investigated in Ref. [13]. The objective of this study is

to determine the second-order statistical moment, in order to provide some information about the spread of this statistical

distribution.

3. Solution and analysis of the model

3.1. Generalized Pontryagin equations

Equation (4) is a perturbation of a conservative system which evolves along closed trajectories of constant total internal

energy H. The period of revolution of a complete orbit of the unperturbed system (𝜀 = 0, so that u = w = 0),

T = 2

x2

∫
x1

dx

ẋ
= 2

√
2H

∫
−
√

2H

1√
2H − x2

dx = 2𝜋, (6)

is independent of the considered energy level H. The solution of Equation (4) is therefore derived by changing the variables q

and p into the energy-phase variables k and 𝜃 with

ẋ = 2k cos𝜃 ; x = 2k sin𝜃 (7)

so that the Hamiltonian is now given by H = 2k2. As the energy k evolves on slower dynamics than the phase variable 𝜃, one

can assume that the energy is constant along one period of oscillation, i.e. the system is quasi-Hamiltonian. The stochastic

averaging of equation (4) over one revolution T = 2𝜋 using Itô differential rules and Wong-Zakaï correction terms [12] provides

the averaged Itô equation governing the time-evolution of the Hamiltonian [13,34].

dH = m(H)dt + 𝜎(H)dB(t), (8)

with m = H

2
Su +

1

2
Sw and 𝜎2 = H2

2
Su + HSw the drift and diffusion coefficients. This stochastic differential equation in H(t) is

actually the leading order solution of the general procedure proposed by Khasminiskii [35] to study the asymptotic behaviour of

quasi-Hamiltonian systems. Equation (8) provides an accurate approximation for the Itô equation (4) when the corresponding

first passage time is much higher than the period of the oscillator given in (6).

This problem is characterized by an entrance boundary class when Sw ≠ 0 and a repulsively natural boundary when Sw = 0,

see Ref. [34]. The boundary class is determined through the diffusion exponent 𝛼l, drift exponent 𝛽l and character value cl. Those

coefficients are given by the following limits:⎧⎪⎪⎨⎪⎪⎩
𝜎2(H) → (|H − Hl|𝛼l ), 𝛼l ≥ 0, H → Hl

m(H) → (|H − Hl|𝛽l ), 𝛽l ≥ 0, H → Hl

2m(H)(H − Hl)𝛼l−𝛽l

𝜎2(H)
→ cl, H → 0

(9)

with Dl the left boundary for the initial state corresponding to the root of 𝜎 ∶ Hl = 0. For Sw ≠ 0, one finds 𝛼l = 1, 𝛽l = 0 and

cl = 1 corresponding to an entrance class and for Sw = 0, 𝛼l = 2, 𝛽l = 1 and cl = 2 leading to a repulsively natural boundary class,

as announced before.

Let  be a closed domain in the phase plane defined by  =
{

H ∶ 0 ≤ H ≤ Hc

}
and an initial condition H0 ∈ . The n-th

statistical moment of the first passage time Un = E[tn
1
] for the trajectories of the dynamical system with drift and diffusion

coefficients m and 𝜎2 to reach the boundary 𝜕 is ruled by the generalized Pontryagin equation [36].

1

2
𝜎2(H0)

d2

dH2
0

Un + m(H0)
d

dH0

Un = −nUn−1, with U0 = 1 and n = 1, 2, 3,… (10)
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with H0 =
x2

0
+ẋ2

0

2
and the boundary conditions [34].

Un(H0) = 0, ∀H0 ∈ 𝜕 and |Un(H0)| < ∞, ∀H0∈ l. (11)

The first condition translates that the first passage time is deterministic and equal to zero for trajectories starting on the bound-

ary, 𝜕 = Hc. The second condition expresses that the time (and its statistical moments) required to reach the boundary starting

from H0 = 0 is finite. This qualitative condition can be replaced by the quantitative condition

(|m(H0)U′
n
(H0)|) ∼ (|U′

n−1
(H0)|), H0 → Hl (12)

for entrance (Sw ≠ 0) and repulsively natural (Sw = 0) boundary classes.

3.2. Average first passage time U1

The solution U1(H0;Hc) of (10) for n = 1 satisfying the boundary conditions (11) and (12), provides the average first pas-

sage time for the system departing from an initial energy H0 to a target energy Hc = H0 + ΔH. The general solution has been

developed and analyzed in Ref. [13]. It takes the closed form:

U1 = 4

Su

ln

(
HcSu + 2Sw

H0Su + 2Sw

)
= 4

Su

ln

(
1 + ΔH⋆

H⋆
0
+ 1

)
(13)

where the dimensionless groups

H⋆
0
= H0Su

2Sw

and ΔH⋆ = ΔHSu

2Sw

(14)

have been defined to simplify the notations. Expression (13) highlights the existence of three different regimes [13].

Incubation regime (I). For ΔH⋆ ≪ H⋆
0
+ 1, the logarithm may be linearized and the mean first passage time can be written

as

U
(I)
1

= 4

Su

ΔH⋆

H⋆
0
+ 1

. (15)

In this regime, the average first passage time is proportional to ΔH⋆. This is valid for U1 ≪ 4∕Su so that an incubation

time is arbitrarily defined as Uincub = 1∕2Su corresponding to the time window during which the average first passage time

scales with the energy increase ΔH⋆ . Notice that a system without a parametric excitation (Su = 0 and therefore H⋆
0
→ 0

and ΔH⋆ → 0) is not able to experience any other regime than the incubation regime since the incubation time grows

infinite.

Multiplicative regime (M). When H⋆
0
≫ 1, the mean first passage time depends on by how much the initial energy is mul-

tiplied to obtain the target energy level. In this regime, the expected first passage time does not scale with ΔH⋆ anymore. It is

expressed as

Fig. 2. Second-order moment of the first passage time as a function of the target energy Hc for different values of H0 = 5, 10,… , 40, while Su = 0.1 and Sw = 0.05; Monte

Carlo simulations (dots) and analytical solution (full line).
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U
(M)
1

= 4

Su

ln

(
1 + ΔH⋆

H⋆
0

)
= 4

Su

ln
Hc

H0

(16)

and is independent of the forcing excitation intensity Sw. In the overlap between the multiplicative and the incubation regimes

the linearized solution reads U1 = 4

Su

ΔH

H0
.

Additive regime(A). When H⋆
0
≪ 1, the first passage time tends to

U
(A)
1

= 4

Su

ln
(

1 +ΔH⋆
)

(17)

which indicates that, for large energy increases, ΔH⋆ ≳ 1, the average first passage time increases less than proportionally with

ΔH⋆ . In this latter case, no matter the smallness of the initial energy H0 in the system, provided it is much smaller than 2Sw∕Su,

it does not influence the expected first passage time. In this regime, the expected first passage time only depends on the increase

in energy ΔH⋆ , in other words on how much energy is added to the initial condition H0. In the overlap between the additive and

the incubation regimes the linearized solution reads U1 = 2

Sw
ΔH, which also corresponds to the limit case Su → 0.

Fig. 3 (a) shows the complete expression of the first passage time U1
Su

4
, as given by (13), as a function of H⋆ and ΔH⋆,

and identifies the three regimes (incubation, additive and multiplicative). The curves of same expected first passage time are

regularly spaced for values smaller than 0.1, which corresponds to the incubation regime where the time increases linearly with

the energy increase. The left part of the diagram corresponding to the additive regime presents horizontal asymptotes as the first

passage time is independent of the initial energy level. Finally, the multiplicative regime is represented in the right part where

the time depends on the relative energy increase ΔH⋆∕H⋆
0

and the curves present a unitary slope in logarithmic scales. Forced-

and parametric-only excitations respectively correspond to the bottom left and upper right corners. As already introduced, they

Fig. 3. Representation of (a) the average
U1Su

4
with identification of the three regimes, (b) the mean square

U2S2
u

32
, (c) the variance

𝜎2 S2
u

32
and (d) the coefficient of variation cv.

Dashed lines represent the asymptotic solutions in each regime.
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happen to take place in the incubation and multiplicative regimes. The additive regime can only be accessed with a combination

of forced and parametric excitations.

3.3. Mean square first passage time U2

This section develops and analyses the expression of the variance. The topology of the generalized Pontryagin equation (10)

is the same for all orders so that one can expect strong similarities between the average and higher moments. Indeed, the

homogenous part of (10) is identical while the non-homogenous part injects the previous order solution with its characteristics.

This recurrence leads to very similar features for all statistical moments. This is why the mean square and variance of the first

passage time are now studied in the light of the three previously identified regimes.

Accounting for the boundary conditions (11) and (12), it might be shown that the general solution of (10) for n = 2, with U1

given by (13), is

U2 = 32

S2
u

[

(

H0Su + 2Sw

2Sw

)
− 

(
HcSu + 2Sw

2Sw

)
+ ln

(
HcSu + 2Sw

2Sw

)
ln

(
HcSu + 2Sw

HcSu

)
− ln

(
H0Su + 2Sw

2Sw

)
ln

(
HcSu + 2Sw

H0Su

)
(18)

+ ln

(
HcSu + 2Sw

H0Su + 2Sw

)]
.

The function  stands for the real part of the polylogarithmic function and is defined as

(x) = Re
[
Polylog (2, x)

]
= −∫

ln (1 − x)
x

dx ∀x > 1. (19)

This expression for the mean square first passage time shows the relatively complex interactions between the forcing and

parametric excitations. It is valid under the hypotheses that are required to separate the slow energy and the fast phase variables.

These are equivalent to assuming a quasi-Hamiltonian system, or that the dimensionless intensities Su and Sw are small numbers,

compared to 1.

As a first validation, Fig. 2 compares this analytical solution to the mean square first passage time U2 obtained with Monte

Carlo simulations (dots). Each curve corresponds to a different initial energy H0 (H0 = 5, 10,… , 40). The numerical simulations

virtually fit and validate the analytical solution, especially in the range of large mean square first passage time, i.e. where the

average first passage time is large too, which is a required assumption for the stochastic averaging. For target energy levels

Hc which are slightly larger than the initial condition H0, the stochastic averaging is no longer accurate and a boundary layer

solution using Khasminskii’s approach needs to be developed, see e.g. Ref. [13].

As a second validation, we restrict to the case where there is no forcing excitation, i.e. Sw = 0, so that the second-order

moment is given by

lim
Sw→0

U2 = 32

S2
u

(
ln

(
1 + ΔH

H0

)
+ 1

2
ln

(
1 + ΔH

H0

)2
)
. (20)

This expression corresponds to existing results in the literature [14].

3.4. Discussion on the dispersion of the first passage time

For further investigation, and similarly to the analysis of the first-order moment U1 that led to the identification of the three

regimes (incubation, multiplicative, additive), the mean square first passage time is rewritten in terms of the reduced initial

energy and energy increase H⋆
0

and ΔH⋆ defined in (14). Equation (18) becomes:

S2
u

32
U2 =

[ (
1 + H⋆

0

)
−  (

1 + H⋆
0
+ΔH⋆

)
+ ln

(
1 + H⋆

0
+ ΔH⋆

)
ln

(
1 + H⋆

0
+ ΔH⋆

H⋆
0
+ ΔH⋆

)
− ln

(
1 + H⋆

0

)
ln

(
1 + H⋆

0
+ ΔH⋆

H⋆
0

)
(21)

+ ln

(
1 + ΔH⋆

1 + H⋆
0

)]
.

This expression is plotted in Fig. 3 (b). This formulation shows that the second-order moment of the first passage time is

expressed as the product of
32

S2
u

and an expression depending on H⋆
0

and ΔH⋆ only. This evidences the different influences of
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the parametric and forcing excitations Su and Sw in the energetic behaviour of the stochastic oscillator as those two intensities

appear as a ratio in the reduced coordinates and S2
u

also appears as a multiplicative factor, as expected from (13).

Three regimes were identified through the average first passage time. The asymptotic behaviours of the mean square first

passage time in each regime can be developed:

Incubation regime. For
ΔH⋆

H⋆
0
+1

≪ 1, the mean square is given by

S2
u

32
U
(I)
2

= ΔH⋆

H∗
0
+ 1

(
1 −

ln
(

1 + H⋆
0

)
H⋆

0

)
(22)

Additive regime. For H⋆
0
≪ 1 and ΔH⋆ ≫ 1, the second-order moment becomes

S2
u

32
U
(A)
2

= −𝜋2

6
+

ln
(
ΔH⋆

)
2ΔH⋆

(
4 +ΔH⋆ ln

(
ΔH⋆

))
+ ln

(
1 + ΔH⋆

)
. (23)

As expected, the limit depends on ΔH⋆ only, which corresponds to the horizontal asymptotes in the left part of Fig. 3 (b).

This behavior was also observed in the average first passage time. The qualification “additive” therefore remains. However the

additive regime is now restricted to the upper left corner, while the entire left part was covered by the asymptotic solution for

the average first passage time. This means that there is no overlap between the incubation and additive regimes anymore.

Multiplicative regime. For H⋆
0
≫ 1, the asymptotic behavior of (21) is

S2
u

32
U
(M)
2

= ln

(
1 + ΔH⋆

H⋆
0

)
+ 1

2
ln

(
1 + ΔH⋆

H⋆
0

)2

. (24)

This limit depends on the relative energy increase
ΔH⋆

H⋆
0

and confirms the unitary slopes observed in the right part of Fig. 3 (b).

The asymptotic behaviours in each regime are represented with dotted line in Fig. 3.

The spread in the distribution of the first passage time is difficult to assess with the raw moment. Instead, one would naturally

evaluate the spread of the distribution of the first passage time with its variance 𝜎2 = U2 − U2
1

, which is represented in Fig. 3

(c) as a function of H⋆
0

and ΔH⋆ . The variance increases with ΔH⋆. The low dependency on the initial energy H⋆
0

in the left

part of the graph reveals a regular monotonic and slowly varying energy for low energy levels. Indeed, for low energy levels, the

energy does not increase significantly for a given time (approximately the incubation time Uincub) and once a significant increase

is observed, the increasing rate is higher. This can be observed on the simulations presented in Fig. 1.

The spread can even better be evaluated with the coefficient of variation defined as

cv =

√
U2 − U2

1

U1

. (25)

Substitution of U1 and U2 into this equation provides a relatively cumbersome expression of the coefficient of variation. However

simple solutions are obtained in the two following limit cases, when the loading is either of parametric type (Sw = 0), either of

forcing type (Su = 0).

First, when there is no parametric excitation, i.e. Su = 0, the second-order moment of the first passage time is given by

lim
Su→0

U2 = 4ΔH

S2
w

(
H0 +

3

2
ΔH

)
(26)

and the mean square is a quadratic function of the energy increase ΔH. In this case, and based on the limit expression of the

mean first passage time for Su → 0 given in Ref. [37], U1 = 2ΔH

Sw
, the coefficient of variation is given by

lim
Su→0

cv =
√

1

2
+ H0

ΔH
(27)

and depends on the proportional energy increase
ΔH

H0
only. This limit behavior is valid in the bottom left corner of Fig. 3 (d) and

always provides a coefficient of variation that is larger than

√
2

2
.

Second, when there is no forcing excitation, i.e. Sw = 0, the second-order moment is given by

lim
Sw→0

U2 = 32

S2
u

(
ln

(
1 + ΔH

H0

)
+ 1

2
ln

(
1 + ΔH

H0

)2
)
, (28)

which is well known from Ref. [14]. In this case, and considering U1 = 4

Su
ln
(

1 + ΔH

H0

)
, the coefficient of variation is given by

lim
Sw→0

cv =

√
2

ln
(

1 + ΔH∕H0

) . (29)
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This limit behavior is valid in the upper right corner of Fig. 3 (d). In this second limit case, the coefficient of variation also depends

on the ratio ΔH∕H0 only and is independent of the intensity of the parametric excitation.

The representation of the coefficient of variation cv and its asymptotes in Fig. 3 (d) leads to the following observations:

• The coefficient of variation decreases with the ratio
ΔH⋆

H⋆
0

which means that the variation of the first passage time is low when

going from a low initial energy to a much larger target energy. On the opposite, a relatively small energy increase presents

a very large variation of the first passage time. This is first explained by the gentle evolution of the energy for low energy

levels and secondly by the amplitude of the mean first passage time that is much larger for high values of
ΔH⋆

H⋆
0

and therefore

decreases the coefficient of variation.

• The two limit cases Su = 0 and Sw = 0 corresponding to the bottom left and upper right corners have a simple dependence

in the ratio
ΔH

H0
= ΔH⋆

H⋆
0

and nicely match in-between. Although the exact expression obtained from (13) and (21) shows a

dependency in both H⋆
0

and ΔH⋆ separately, one observes that the dependency in
ΔH

H0
is almost valid everywhere as far as

cv >
√

2

2
, which is the limit of validity of the limit solution for Su = 0.

• The additive regime, which is now restricted to the upper left corner, presents a different behaviour than the limit case Su = 0

in the bottom left corner. Indeed, the coefficient of variation in the additive regime obtained by combination of U
(A)
1

and U
(A)
2

according to expressions (17), (23) and (25) depends on ΔH⋆ only and thus presents horizontal asymptotes in the upper left

corner. The limit between the additive regime characterized by horizontal asymptotes and the limit case Su = 0 with unitary

slopes can be considered to correspond to cv =
√

2

2
.

• The characteristic value cv = 1 corresponds in the bottom left corner to the asymptote
ΔH

H0
= 2 and in the upper right corner

to the asymptote
ΔH

H0
= e2 − 1 = 6.38.

• The transition of a system from a low energy level to a much higher energy level, corresponding to the upper left corner of

the parameter space, features the lowest coefficients of variation. From a practical standpoint, this means that small samples

are sufficient to provide good estimations of the average first passage time in the additive regime (upper left corner). In the

rest of the parameter space, larger samples are required to provide estimations of the average first passage time with small

confidence intervals.

Fig. 4 presents two slices of Fig. 3 (d) for respectively H⋆
0
= 10−2 (a) and H⋆

0
= 102 (b) so that the coefficient of variation

is represented as a function of ΔH⋆ . Dotted lines represent the asymptotic solutions (additive and multiplicative) and limit

solutions (Su = 0 and Sw = 0). In Fig. 4 (a), the limit solution for Su = 0 fits the general expression for small values of ΔH⋆ while

Fig. 4. Evolution of the coefficient of variation cv for H⋆
0
= 10−2 (a) and 102 (b) and comparison with the asymptotic and limit solutions.
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the asymptotic solution for the additive regime, obtained from (17), (23) and (25), fits the general expression for values of ΔH⋆

that are much higher than one. In-between, for values of cv that approach

√
2

2
, the general expression should be used. In Fig. 4

(b), the multiplicative regime solution obtained from (16), (24) and (25) and the limit case solution for Sw = 0 (29) both perfectly

fit the general expression. Indeed, the multiplicative regime fully covers the right part of the diagram and includes the limit case

Sw = 0. For high values of H⋆
0

, the coefficient of variation can be directly approximated with expression (29).

4. Conclusion

The stochastically excited Mathieu oscillator presented in this work is submitted to a forced and a parametric excitation

simultaneously. For small excitations intensities, the first passage time is of high interest as it answers questions like “How much

time is needed to reach a given energy level?”, or “Which energy level can we expect in a given period of time?”. To answer this

question, the complete distribution of the first passage time should be studied. As the average is well-known, attention is given

to the variability. Indeed, the first passage time of a given Mathieu oscillator can be predicted with a confidence interval that

depends on its second-order moment.

First-, second- and higher-moments of the first passage time are given by the generalized Pontryagin equation, which is

solved by stochastic averaging assuming the system is quasi-Hamiltonian. The form of this equation being very similar for all

statistical moments, the mean square first passage time is studied with the same dimensionless groups H⋆
0

and ΔH⋆, and in

the same three regimes as the average first passage time. Strong similarities are observed in the incubation and multiplicative

regimes, while the additive regime is now restricted to large values of the dimensionless energy increase ΔH⋆. As an estimator

for the variability of the first passage time, the coefficient of variation has been derived. It has been shown that a strong depen-

dency in ΔH∕H0, instead of H0 and ΔH independently, is observed with decreasing influence, which means that small relative

energy increases provide a significantly scattered first passage time while large relative energy increases present a smaller vari-

ability and can be predicted with a higher confidence. For the sake of the analysis, simple analytical solutions have also been

developed in the asymptotic and limit cases. They might be used for convenience in designing experiments and understanding

observed phenomena.

Finally, the analytical expressions obtained for the first- and second-order moments have been validated with Monte Carlo

simulations.
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