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Multilinear 0-1 optimization

Multilinear 0-1 optimization

min
∑
S∈S

aS
∏
i∈S

xi + l(x)

s. t. xi ∈ {0, 1} i = 1, . . . , n

• S: subsets of {1, . . . , n} with aS 6= 0 and |S | ≥ 2,
• l(x) linear part.
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Standard Linearization (SL)

Standard Linearization

min
∑
S∈S

aSyS + l(x)

s. t. yS ≤ xi ∀i ∈ S ,∀S ∈ S

yS ≥
∑
i∈S

xi − (|S | − 1) ∀S ∈ S

(yS =
∏

i∈S xi )

• for variables xi , yS ∈ {0, 1}, the convex hull of feasible solutions is P∗SL,

• for continous variables xi , yS ∈ [0, 1], the set of feasible solutions is PSL.

SL drawback: The continuous relaxation given by the SL is very weak!
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The 2-link inequalities

Definition
For S ,T ∈ S and yS , yT such that yS =

∏
i∈S xi , yT =

∏
i∈T xi ,

• the 2-link associated with (S ,T ) is the linear inequality

yS ≤ yT −
∑

i∈T\S xi + |T\S|

• P2links
SL is the polytope defined by the SL inequalities and the 2-links.

Interpretation

S T

yS = 1⇒ ∀i ∈ S , xi = 1

yT = 0 and yS = 1⇒ ∃j ∈ T\S , xj = 0
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Theoretical contributions

Theorem 1: A complete description for the case of two monomials
For the case of two nonlinear monomials, P∗SL = P2links

SL , i.e., the
standard linearization and the 2-links provide a complete
description of P∗SL.
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Proof idea (Theorem 1):

• Consider the extended formulation (with variables in [0, 1])

yS∩T ≤ xi , ∀i ∈ S ∩ T , (1)

yS∩T ≥
∑

i∈S∩T

xi − (|S ∩ T | − 1), (2)

yS ≤ yS∩T , (3)

yS ≤ xi , ∀i ∈ S\T , (4)

yS ≥
∑

i∈S\T

xi + yS∩T − |S\T |, (5)

yT ≤ yS∩T , (6)

yT ≤ xi , ∀i ∈ T\S , (7)

yT ≥
∑

i∈T\S

xi + yS∩T − |T\S |, (8)

• Notice that the two polytopes P0 and P1 obtained by fixing variable yS∩T
to 0 and 1, resp., are integral.

• Compute conv(P0 ∪ P1) using Balas (1974) and see that it is P2links
SL .
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Theoretical contributions

Theorem 2: Facet-defining inequalities for the case of two
monomials
For the case of two nonlinear monomials defined by S ,T with
|S ∩ T | ≥ 2, the 2-links are facet-defining for P∗SL.

Proof idea (Theorem 2): Since P∗SL is full-dimensional (dim n + 2), find n + 1
affinely independent points in the faces defined by the 2-links.

6 / 15



Problem definition The 2-link inequalities Perspectives

Computational experiments: are the 2-links helpful for the
general case?

Objectives

• compare the bounds obtained when optimizing over PSL and P2links
SL ,

• compare the computational performance of exact resolution
methods.

Software used: CPLEX 12.06.

Inequalities used

• SL: standard linearization (model),
• cplex: CPLEX automatic cuts,
• 2L: 2-links.
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Random instances: bound improvement

LP relax. gap (%) fixed degree
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Fixed degree:
inst. d n m
rf-a 3 400 800
rf-b 3 400 900
rf-c 3 600 1100
rf-d 3 600 1200
rf-e 4 400 550
rf-f 4 400 600
rf-g 4 600 750
rf-h 4 600 800
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Random instances: computation times results

Run times (in sec.) fixed degree
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rf-h SL
SL&2L

SL&cplex
SL&cplex&2L Fixed degree:

inst. d n m
rf-a 3 400 800
rf-b 3 400 900
rf-c 3 600 1100
rf-d 3 600 1200
rf-e 4 400 550
rf-f 4 400 600
rf-g 4 600 750
rf-h 4 600 800
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Instances inspired from image restoration: definition

0 0 0 0 0 0

0 0 1 1 0 1

0 1 1 1 1 0

0 1 1 0 1 0

0 0 1 1 0 0

1 0 0 0 0 0

Image restoration

0 0 0 0 0 0

0 0 1 1 0 0

0 1 1 1 1 0

0 1 1 1 1 0

0 0 1 1 0 0

0 0 0 0 0 0

Base images:

• top left rect. (tl),

• centre rect. (cr),

• cross (cx).

Perturbations:

• none (n),

• low (l),

• high (h).

Up to n = 225 variables and m = 1598 terms
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Image restoration instances: bounds results

LP relax. gap (%) 10x15 images
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Image restoration instances: bounds results

LP relax. gap (%) 15x15 images
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Image restoration instances: computation times results

Run times (in sec.) 10x15 images
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Image restoration instances: computation times results

Run times (in sec.) 15x15 images
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Perspectives

Summary

• SL + 2-links = a complete description (two nonlinear monomials).
• 2-links help computationally for the general case.

Extensions and perspectives

• Characterization of when PSL has integer vertices (joint work with C.
Buchheim, discovered independently by A. del Pia and A. Khajavirad).

• “3-link”, “4-link” inequalities... worth?
• Other reduction methods, to the quadratic case.
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When is SL a complete description?

Summary

• SL + 2-links = a complete description (two nonlinear monomials).
• 2-links help computationally for the general case.

Question:
Can we characterize when the SL alone is a complete description of the
convex hull P∗SL?

Joint work with C. Buchheim.
Characterization independently discovered by A. Del Pia and A. Khajavirad.
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SL complete description

Multilinear 0-1 optimization

min
∑
S∈S

aS
∏
i∈S

xi + l(x)

s. t. xi ∈ {0, 1} i = 1, . . . , n

Standard linearization constraints

min
∑
S∈S

aSyS + l(x)

s. t. yS ≤ xi ∀i ∈ S ,∀S ∈ S

yS ≥
∑
i∈S

xi − (|S | − 1) ∀S ∈ S

Subsets S define a hypergraph H.
We write PSL = P

(H)
SL .

Matrix of constraints MH .
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SL complete description

Theorem 3
Given a hypergraph H, the following statements are equivalent:

(a) P
(H)
SL is an integer polytope.

(b) MH is balanced.
(c) H is Berge-acyclic.

Derived from a more general result taking into account the sign pattern of
the monomials.
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SL complete description: signed case

Theorem 4
Given a hypergraph H = (V ,E ) and a sign pattern s ∈ {−1, 1}E , the
following statements are equivalent:
(a) For all f ∈ P(H) with sign pattern s, every vertex of PH

maximizing Lf is integer.
(b) MH(s) is balanced.
(c) H(s) has no negative special cycle.
(d) PH(s) is an integer polytope.

PH(s) is defined by constraints

yS ≤ xi ∀i ∈ S ,∀S ∈ S, sgn(aS) = +1

yS ≥
∑
i∈S

xi − (|S | − 1) ∀S ∈ S, sgn(aS) = −1


	Problem definition
	The 2-link inequalities
	Perspectives

