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Abstract

This paper presents an extension of the recently developed incremental-secant mean-field
homogenization (MFH) procedure in the context of elasto-plasticity to elasto-visco-plastic
composite materials while accounting for second statistical moments. In the incremental-
secant formulation, a virtual elastic unloading is performed at the composite level in order
to evaluate the residual stress and strain states in the different phases, from which a
secant MFH formulation is applied. When applying the secant MFH process, the Linear-
Comparison-Composite is built from the piece-wise heterogeneous residual strain-stress
state using naturally isotropic secant tensors defined using either first or second statistical
moment values. As a result non-proportional and non-radial loading conditions can be
considered because of the incremental-secant formulation, and accurate predictions can
be obtained as no isotropization step is required. The limitation of the incremental-
secant formulation previously developed was the requirement in case of hard inclusions
to cancel the residual stress in the matrix phase, resulting from the composite material
unloading, to avoid over-stiff predictions. It is shown in this paper that in the case of
hard inclusions by defining a proper second statistical moment estimate of the von Mises
stress, the residual stress can be kept in the different composite phases. Moreover it is
shown that the method can be extended to visco-plastic behaviors without modifying the
homogenization process as the incremental-secant formulation only requires the definition
of the secant operator of the different phase material models. Finally, it is shown that
although it is also possible to define a proper second statistical moment estimate of the
von Mises stress in the case of soft inclusions, this does not improve the accuracy as
compared to the increment-secant method with first order statistical moment estimates.
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Figure 1: Homogenization-based multi-scale method

As the use of engineered and/or heterogeneous materials is gaining popularity, struc-
tural numerical simulations ought to account for the micro-scale behavior of those ma-
terials to remain accurate. As direct numerical simulations accounting explicitly for this
material structure cannot reasonably be envisioned due to the overwhelming computa-
tional cost involved, computationally efficient and accurate multi-scale methods become
a requirement. Among the existing multi-scale methods, homogenization-based ones
are extensively studied. In such an approach, the macro-scale structure Ω defines a
boundary-value-problem (BVP) which is solved by considering homogenized material
properties extracted, at each (macro) material point X of interest, from the resolution
of a meso-scale BVP, see Fig. 1. This meso-scale BVP is defined on a meso-scale volume
ω which represents the different phases ωi of the material. In case of statistical repre-
sentativity of the meso-scale problem, the latter is referred to as Representative Volume
Element (RVE). The resolution of this meso-scale BVP links the macro-, or homogenized-
, stress tensor σ̄ and the macro-, or homogenized-, strain tensor ε̄, which correspond to
the average values of respectively the local stress tensor σ and strain tensor ε on the
RVE ω. In case of non-linear behaviors, the increment of the macro-, or homogenized-,
strain tensor ∆ε̄ is also required. Besides, the homogenized material tensor C̄ also arises
from the meso-scale BVP resolution.

Several homogenization techniques were developed, see the reviews by Kanouté et al.
(2009); Geers et al. (2010); LLorca et al. (2011); Nemat-Nasser and Hori (2013); Noels
et al. (2016). The methods can be categorized into purely numerical ones and semi-
analytical ones. Among the former ones, the Voronöı cell finite element method (VCFEM)
developed by Ghosh et al. (1995) divides the macro-scale problem into Voronöı cells con-
sidered as germination points of the heterogeneities. This method was generalized by
Michel et al. (1999); Feyel (1999); Terada et al. (2000); Miehe (2002); Kouznetsova et al.

2



(2001) by associating to each macro-scale integration point a finite element model of
the RVE, leading to the so-called computational homogenization or FE2 method. To
avoid the difficulty of meshing the RVE, the Fast-Fourier-Transforms (FFT) method, in
which the RVE is discretized as data sampled from a regular grid, was developed by
Moulinec and Suquet (1995, 1998); Michel et al. (2001). Although such numerical ho-
mogenization resolutions can handle general heterogeneous micro-structures and general
classes of non-linear models of the micro-constituent material behaviors, the computa-
tional cost can be prohibitive particularly for 3D applications. Therefore semi-analytical
homogenization methods remain attractive. Among them, one can find the Generalized
Method of Cells (GMC) discretizing the RVE by parallelepiped sub-cells and reviewed by
Aboudi (1996), the Transformation-Field Analysis (TFA), which divides the RVE into
sub-domains having at most one phase and associated to an eigen-strain tensor represen-
tative of the non-linear behavior, as pioneered by Dvorak et al. (1994), or its extension
called non-Uniform Transformation-Field Analysis (NTFA) developed by Michel and Su-
quet (2003) in order to avoid the sub-division of one phase into sub-domains. Finally
the Mean-Field Homogenization (MFH) considers as homogenized strain and stress fields
the volume average of their respective counterparts in the different composite material
phases, while the relation between the average strain tensors in the different phases is
obtained through the definition of an ad-hoc strain concentration tensor. This strain
concentration tensor is usually obtained as an extension of the single inclusion solution
of Eshelby (1957) to multiple inclusions interacting in an average way in the composite
material, usually either through the Mori and Tanaka (1973) method or through the
self-consistent scheme as developed by Kröner (1958); Hill (1965b).

Being computationally efficient, MFH methods were extensively developed to ac-
count for non-linear material behaviors. In such a case, the linear equations are applied
on a so-called linear comparison composite (LCC) (Talbot and Willis, 1985, 1987; Ponte
Castañeda, 1991, 1992; Talbot and Willis, 1992; Molinari et al., 2004). This LCC is
defined as a virtual composite material whose constituents linear behaviors behave sim-
ilarly to the linearized behaviors of the real constituents at given strain states. The
definition of the LCC in terms of the non-linear behavior that is ought to be captured is
the key ingredient of the MFH methods in order to obtain accurate predictions. In the
secant method developed by Berveiller and Zaoui (1978) for elasto-plastic (EP) materi-
als, the LCC is defined by joining the origin to the current strain-stress state. However,
in this case the linearized law is pseudo-elastic in terms of the total stress and strain ten-
sors, which limits the applicability of the method to monotonic and proportional loading
conditions. To circumvent this limitation, the incremental-tangent formulation was de-
veloped by Hill (1965a); Pettermann et al. (1999); Doghri and Ouaar (2003); Doghri and
Tinel (2005) for EP behaviors. Such an incremental-tangent MFH approach was com-
bined with (macro)-localization enhancements and phenomenological fracture models by
Ostlund et al. (2016) and was extended by Wu et al. (2012) to account for non-local
(micro) damage enhanced EP behaviors. In the incremental-tangent formulation, the
LCC is defined from a linearized relation between the stress and strain increments of
the different constituents around their current strain-stress states. In order to model
elasto-visco-plastic (EVP) behaviors, the affine method, in which the total strain field
in combination with a stress polarization tensor is considered instead of the strain in-
crements to define the LCC, was developed by Molinari et al. (1987); Masson and Zaoui
(1999); Masson et al. (2000); Molinari et al. (2004); Pierard and Doghri (2006a); Pier-
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ard et al. (2007); Mercier and Molinari (2009); Doghri et al. (2010). Although both
affine and incremental-tangent formulations can handle non-monotonic loading condi-
tions, their prediction is over-stiff unless the matrix tangent-operator is “isotropized”
during the homogenization process as shown by Doghri and Ouaar (2003); Chaboche
et al. (2005); Pierard et al. (2007). To avoid the isotropization step, Wu et al. (2013a)
and Wu et al. (2013b) –the authors– have developed an incremental-secant approach for
respectively EP and non-local-damage-enhanced EP behaviors. In this approach, the ho-
mogenized material is virtually unloaded and a secant approach is then applied from the
residual strains obtained in the different phases. On the one hand, this method does not
require an isotropization step as the LCC is naturally defined by isotropic instantaneous
stiffness tensors, and on the other hand the method handles non-monotonic and non-
proportional loading conditions. The limitation of the incremental-secant formulation
in case of hard inclusions is the requirement to cancel the residual stress in the matrix
phase, obtained after total material unloading, to avoid over-stiff predictions.

Most of the cited references for MFH methods considers the first statistical moment
values in the different phases when predicting their plastic flow. As a result the plastic
yield is not always accurately captured in some material systems such as short fibers
composite materials, as discussed by Moulinec and Suquet (2003), which could result
in inaccurate predictions. Second statistical moment values were thus accounted for
in the flow rule computation of the different phases for EP composite materials in the
works of Suquet (1995) using the so-called modified-secant approach, in the work of
Ponte Castañeda (1996); Doghri et al. (2011) using the incremental tangent method,
and in the work of Wu et al. (2015a) using the incremental-secant method. In order
to capture with more accuracy the field fluctuations, Ponte Castañeda (2002a,b) have
considered “generalized secant moduli” incorporating both first and second statistical
moment information and have applied the method to visco-plastic composite materials.

MFH methods were also extensively developed based on variational principles. Su-
quet (1995) has demonstrated that the variational homogenization form pioneered by
Ponte Castañeda (1992) is equivalent to a second-order secant-formulation, which was
renamed modified-secant approach. In order to be able to account for non-monotonic
loading, incremental variational formulations, which can also include second statistical
moment estimates, were developed by Lahellec and Suquet (2007a,b) in the context of
inelasticity, by Lahellec et al. (2011) in the context of thermo-elasticity, and by Brassart
et al. (2011, 2012); Lahellec and Suquet (2013); Boudet et al. (2016) in the context of
elasto-(visco-)plasticity. In particular the formulation developed by Lahellec and Suquet
(2013) is able to handle non-radial loading conditions. The difficulty in the variational
approach lies in the definition of the LCC, which is used to define the elastic and dis-
sipative potentials. The LCC are defined in the different phases from a polarization
strain and from linear properties, which are obtained from an optimization process. The
optimization process ensures that the potential values are as close as possible to the en-
ergy of the non-uniform stress-strain states. In the method developed by Brassart et al.
(2011, 2012), the polarization was uniform in the composite material yielding a time-step
dependency for perfectly plastic behaviors; in the method developed by Lahellec et al.
(2011); Lahellec and Suquet (2013) the polarization tensor and the linear properties are
piece-wise-heterogeneous; and in the more recent work of Idiart and Lahellec (2016) they
are point-wise-heterogeneous, improving the predictions for solids with strongly fluctu-
ating polarization fields. Finally, in the work of Boudet et al. (2016), isotropic and

4



kinematic hardening are accounted for in an accurate way by appropriate linearizations
of both the stored-energy function and the dissipative potential. For completeness, we
note that Ponte Castañeda (2012); Agoras and Ponte Castañeda (2013) have developed
the iterated variational homogenization, in which the micro-structure is iteratively and
incrementally constructed by the addition of the matrix phase to improve the estimations
for non-linear composite materials.

One advantage of the incremental-secant method developed by Wu et al. (2013a,
2015a) and Wu et al. (2013b, 2015b) for respectively EP and non-local-damage-enhanced
EP behaviors is its straightforward implementation as the homogenization directly calls
the material constitutive material boxes of an existing materials library for the different
phases. In this approach, upon the virtual unloading residual strains are obtained in the
different phases corresponding to piece-wise heterogeneous residual stress tensors, and
ensuring the time-increment objectivity of the method. Moreover because the LCC is
defined from a virtually unloaded composite material state, on the one hand the method
can handle non-proportional and non-radial loading conditions, and on the other hand
LCC material tensors are naturally isotropic avoiding the isotropization step required by
both the affine and incremental-tangent approaches. The limitation of the method for
material systems with hard inclusions lies in the requirement to cancel the residual stress
in the matrix phase (but not the residual strain neither the residual values in the inclusion
phase) before applying the secant homogenization. This need to consider the so-called
zero-incremental-secant method was observed when accounting for only first statistical
moment (Wu et al., 2013a) but also when accounting for second statistical moments with
the second statistical moment estimate of the von Mises stress proposed by Wu et al.
(2015a). In this work we use a new second statistical moment estimate of the von Mises
stress, yielding accurate results while keeping the residual stress in the matrix phase,
i.e. when using the so-called residual-incremental-secant method. Moreover, because of
the existing advantages of the method, there is an interest in extending it to account for
non-linear EVP behaviors while considering second statistical moment estimates, which
is the aim of this paper. In particular it is shown that the basis of the homogenization
process of the incremental-secant method does not require to be changed because of the
visco-plastic behaviors, and that all the modifications are limited to the constitutive
material boxes of the material library, which makes the method particularly attractive
for numerical applications.

The organization of the work is as follows. In Section 2 generalities on MFH are
given, with a particular emphasis on the definition of the LCC using first and second
statistical moment estimates. The key ideas of the incremental-secant method previ-
ously developed for EP composite materials are summarized. In Section 3, the Perzyna’s
constitutive EVP model is described, first at the micro-structural material point level,
then when performing a volume average on a given material phase while accounting for
the second statistical moment estimate of the von Mises stress. The resolution of the
volume averaged equations, still in a given material phase, is then detailed in the con-
text of an incremental-secant approach. The implementation of the incremental-secant
MFH method is then summarized in Section 4. In particular, it is shown that the MFH
scheme is not modified by the viscous term in the phase constitutive behavior. Finally,
the method predictions are compared to finite element (FE) results, to Fast-Fourier-
Transform (FFT) results, to experiments and to other homogenization predictions in
Section 5. In particular non-proportional loading conditions are considered to demon-
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strate the objectivity of the method.

2. Mean-field homogenization and incremental-secant approach

In this section, the definition of a LCC is discussed in a general way in the context of
the MFH of non-linear materials. In particular, the first and second statistical moment
estimates are defined. Then the definition of the LCC is particularized to the incremental
secant approach.

2.1. Generalities on the mean-field homogenization for two-phase composites

In a multiscale approach, each macro-point X of the structure is viewed as the center
of a RVE of domain ω at the micro-level, see Fig. 1. The Hill-Mandel condition, which
states the energy equivalence at the two scales, implies that the relation between the
macro-strain tensor ε̄ and macro-stress tensor σ̄ is equivalent to the relation between the
volume averages of the micro-strain tensor 〈ε〉ω and micro-stress tensor 〈σ〉ω over the
RVE. Considering a two-phase composite material with the respective volume fractions
v0 + vI = 1 (subscript 0 refers to the matrix and I to the inclusions), the volume average
over the RVE ω can be explicitly expressed in terms of the volume averages over the two
phases ω0 and ωI, with

ε̄ = v0〈ε〉ω0
+ vI〈ε〉ωI

and σ̄ = v0〈σ〉ω0
+ vI〈σ〉ωI

. (1)

The key-point of the MFH method is to define the relation between the strain aver-
ages in the different phases, using a strain concentration tensor Bε. For linear material
systems, this implies

ε̄I = Bε(I,Cel
0 , Cel

I ) : ε̄0 , (2)

where Cel
i is the elastic stiffness tensor in phase ωi, I represents the geometry of the

inclusion, and where we have used •̄i to represent the volume average over the phase
ωi, i.e. 〈•〉ωi

, for conciseness. Note that 〈•〉ωi
= •̄i represents the first statistical value

estimate of the field •. A popular approach to define the strain concentration tensor Bε is
to extend the single inclusion solution of Eshelby (1957) to multiple inclusions interacting
in an average way. In particular, in this paper we consider the Mori and Tanaka (1973)
method (M-T), in which the average strain in the matrix phase of the multiple inclusions
composite material corresponds to the strain at infinity of the single inclusion problem,
with

Bε(I,Cel
0 , Cel

I ) = {I + S : [(Cel
0 )−1 : Cel

I − I]}−1 , (3)

where the Eshelby tensor (Eshelby, 1957) S(I, Cel
0 ) depends on the geometry of the in-

clusion (I) and on the elastic tensor of the matrix phase Cel
0 .

For non-linear material systems, the strain concentration tensor is constructed using
a linear comparison composite (LCC), yet to be defined, which represents the linearized
behavior of the composite material phases through their virtual elastic operators, i.e.
ĈLCC

0 for the matrix phase and ĈLCC
I for the inclusions phase. Eq. (2) is thus rewritten

∆ε̄I = Bε(I, ĈLCC
0 , ĈLCC

I ) : ∆ε̄0 . (4)

Depending on the assumptions behind the definition of the LCC, the tensors ĈLCC
0 and

ĈLCC
I are constructed in different ways. However, they are constructed in such a way
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that they are uniform over each phase, hence the •̂ notation. In the secant method
developed by Berveiller and Zaoui (1978) the material is linearized as σ̄ = Ĉsec : ε̄, in
which case only monotonic loading conditions can be considered. In the incremental-
tangent formulation pioneered by Hill (1965a); Pettermann et al. (1999), the non-linear

material is linearized as dσ̄ = Ĉtan : dε̄, where Ĉtan is an EP tangent operator, allowing
to consider unloading. In the affine method, which was first proposed by Molinari et al.
(1987, 2004) for visco-plastic materials, the material is linearized using a polarization

stress τ as σ̄ = Ĉ : ε̄+ τ , where Ĉ can be different from the tangent moduli.
In order to improve the predictions, MFH was enriched by accounting for the second

statistical moment estimates 〈• ⊗ •〉ωi
of field •. In particular, the second statistical

moment estimate of the equivalent strain increment in phase ωi reads

∆ˆ̂εeq
i =

√
2

3
Idev :: 〈∆ε⊗∆ε〉ωi , (5)

and the second statistical moment estimate of the equivalent stress increment in the
phase ωi reads

∆ˆ̂σeq
i =

√
3

2
Idev :: 〈∆σ ⊗∆σ〉ωi

, (6)

where Idev is the deviatoric fourth-order tensor. In particular, the second statistical
moment estimate of the incremental strain field in the phase ωi can be computed by

〈∆ε⊗∆ε〉ωi =
1

vi
∆ε̄ :

∂ĈLCC

∂ĈLCC
i

: ∆ε̄ , (7)

as detailed by Bobeth and Diener (1987); Buryachenko (2001), where ∆ε̄ = 〈∆ε〉ω and

where ĈLCC is the effective elastic tensor of the LCC, corresponding to the given phase
virtual elastic operators ĈLCC

0 and ĈLCC
I .

2.2. Incremental-secant approach

Recently, Wu et al. (2013a, 2015a), the authors, have defined the LCC using an
incremental-secant method which is able to deal with non-proportional loading conditions
of EP materials. In such an approach each phase of the material is linearized as σ̄i = ĈS

i :
∆ε̄r

i + σ̄res
i , where σ̄res

i is obtained from a virtual unloading of the composite material,

where ∆ε̄r
i is the strain increment from the virtual unloaded state, and where ĈS

0 and ĈS
I

are the secant operators defined from a virtual unloaded state. As the operator ĈS
0 and

ĈS
I are naturally isotropic for J2-EP materials, the isotropization step required with the

incremental-tangent and incrementally affine methods (Chaboche et al., 2005; Pierard
and Doghri, 2006b; Doghri et al., 2010) is avoided.

Considering first the material level at position x ∈ ω, i.e. without homogenizing the
material, in an incremental process of a non-linear material, we consider that the total
strain tensor εn, the stress tensor σn, and the internal variables are known at time tn,
the beginning of a time interval [tn, tn+1]. During that step, the increment of the stress
tensor is computed for a given strain increment ∆εn+1, see Fig. 2. The material state
at time tn+1 thus reads

εn+1 (x) = εn (x) + ∆εn+1 (x) and

σn+1 (x) = σn (x) + ∆σn+1 (x) ∀x ∈ ωi . (8)
7
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Figure 2: Schematics of the incremental-secant formulation in each phase, from Wu et al. (2013a). The
incremental-secant operator is defined from the residual strain and stress.

In the incremental-secant framework, a virtual elastic unloading step from the stress
state σσσn is applied at time tn, which defines a residual strain tensor εεεres

n , see Fig. 2. Eqs.
(8) are then rewritten as

εn+1 (x) = εres
n (x) + ∆εr

n+1 (x) , and

σn+1 (x) = σres
n (x) + ∆σr

n+1 (x) ∀x ∈ ωi . (9)

Now considering the homogenized material, in the incremental-secant MFH frame-
work, the LCC is defined so that the composite material is subjected to a homogenized
strain increment ∆ε̄εεr

n+1, satisfying

∆σ̄r
n+1 = ĈS : ∆ε̄r

n+1 , (10)

which corresponds for each phase ωi to

∆σ̄r
i n+1 = ĈS

i : ∆ε̄r
i n+1 . (11)

Correspondingly, relation (4) now reads

∆ε̄r
I = Bε(I, ĈS

0 , ĈS
I ) : ∆ε̄r

0 . (12)

Finally, the phase volume averaged stress and strain states follow from (9), with

ε̄i n+1 = ε̄res
i n + ∆ε̄r

i n+1 , and

σ̄i n+1 = σ̄res
i n + ∆σ̄σσr

i n+1 . (13)

The incremental secant approach has been developed to predict the macro-behaviors
of composite materials with EP phases by considering the first statistical moment esti-
mates by Wu et al. (2013a). Moreover the case of damage-enhanced EP matrix was also
considered in Wu et al. (2013b, 2015b). Finally the method has been extended to account
for the second statistical moment estimates in EP phases by Wu et al. (2015a). The pur-
pose of this paper is to extend the method to be able to account for elasto-visco-plastic
material phases.
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3. J2-plasticity formulation of elasto-visco-plastic materials with second sta-
tistical moment estimates

In this section we first consider the local, i.e. at the micro-material point level,
J2-EVP equations based on a Perzyna’s constitutive model. The volume averaged con-
stitutive equations, in a given material phase ωi, are then described when accounting for
the second statistical moment estimate of the von Mises stress. The predictor-corrector
and return mapping schemes associated to these volume averaged constitutive equa-
tions are then detailed. Finally, the incremental-secant operators corresponding to the
incremental-secant formalism described in Section 2.2 are then evaluated from the volume
averaged constitutive equations.

3.1. J2-elasto-visco-plasticity with Perzyna’s formulation

In this section, we recall the basic formulations of the Perzyna’s visco-plastic model
for homogeneous materials. The total strain tensor ε is decomposed into an elastic part
and a visco-plastic part,

ε = εel + εvp, and σ = Cel : (ε− εvp) , (14)

where σ is the Cauchy stress tensor and Cel is the elastic (Hooke’s) material tensor.
The visco-plastic strain tensor is computed from a potential φ (σeq, p) with

ε̇vp =

{
∂φ
∂σ = 3

2
σdev

σeq
∂φ
∂σeq if f > 0

0 if f ≤ 0
, (15)

and

γ̇ =

{
∂φ
∂σeq = gv(σeq, p) > 0 if f > 0

0 if f ≤ 0
, (16)

where σeq is the von Mises equivalent stress, σdev = Idev : σ is the deviatoric part of the
stress tensor,γ̇ is the visco-plastic multiplier rate, and gv is a visco-plastic function. In
these two equations, we have use f the yielding function

f = σeq − σY −R(p) , (17)

where σY is the initial yielding stress, R(p) is an isotropic hardening stress, and p is the
accumulated plastic strain. Because the potential function φ is based on the von Mises
stress, combining Eqs. (15) and (18) leads to

γ̇ = ṗ = (
2

3
ε̇vp : ε̇vp)

1
2 . (18)

In the time interval [tn, tn+1], using equation (18), the discretized form of equation
(16) is obtained through a fully implicit backward Euler time integration, which reads

∆p = gv(σeq, p)∆t , (19)

where ∆t = tn+1 − tn.
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3.2. Elasto-visco-plastic description of volume averaged material

In this section, the Perzyna’s visco-plastic description is reformulated in each phase
ωi based on a second statistical moment estimate of the stress field. Since we consider
only one phase which is noted as ωi, here •̄ is used to indicate 〈•(x)〉ωi

for simplicity
and without introducing any ambiguity.

A volume average on the phase ωi is performed on Eq. (14), resulting into

ε̄ = ε̄el + ε̄vp, and σ̄ = Cel : (ε̄− ε̄vp) . (20)

To evaluate the yielding function (17), the second statistical moment estimate of the
von Mises stress, i.e.

ˆ̂σeq =

√
3

2
Idev :: 〈σ(x)⊗ σ(x)〉ωi

, (21)

is considered, instead of a direct volume average on phase ωi, leading to

f = ˆ̂σeq −R(p̂)− σY , (22)

where p̂ is an accumulated equivalent visco-plastic strain in the sense of average, since
it is computed based on ˆ̂σeq. However, it is neither the first statistical moment nor the
second statistical moment estimate of p (x) ,∀x ∈ ωi. Therefore, the local EVP Eqs.
(15)-(19) cannot be used directly to describe the response of the volume averaged phase.
In order to formulate a comparable visco-plastic model for the volume averaged material,
we assume that the visco-plastic multiplier rate, ˙̂γ, of the volume averaged phase reads{

˙̂γ = gv(ˆ̂σeq, p̂) > 0 if f > 0
˙̂γ = 0 if f ≤ 0

, and ˙̂p = ˙̂γ , (23)

where the visco-plastic function gv is evaluated through ˆ̂σeq and p̂.
Considering the time increment ∆t in a time interval [tn, tn+1], we directly have

p̂ = p̂n + ∆p̂, with ∆p̂ = gv(ˆ̂σeq, p̂)∆t , (24)

which results from the fully implicit backward Euler time integration.
In order to evaluate the volume averaged visco-plastic strain, we assume

˙̄εvp = ˙̂γ
ˆ̂
N , (25)

where
ˆ̂
N will be defined later and is such that

ˆ̂
N 6= ∂f

∂σ̄ = ∂ ˆ̂σeq

∂σ̄eq N̄ with σ̄eq =
√

3
2 σ̄

dev : σ̄dev

the equivalent von Mises stress of σ̄, and N̄ = ∂σ̄eq

∂σ̄ = 3
2
σ̄dev

σ̄eq . This means that

˙̂γ = ˙̂p 6=
√

2
3

˙̄εvp : ˙̄εvp. Finally, the volume average σ̄ of the stress tensor is evaluated

from the accumulated plastic strain p̂ following

σ̄ = Cel : (ε̄− p̂ ˆ̂
N) . (26)
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Figure 3: Schematics of the predictor-corrector incremental-secant formulation in each phase.

3.3. Predictor-corrector equation at volume averaged material level

Following the idea of incremental-secant process described in Section 2.2, at the be-
ginning of the time interval [tn, tn+1], a virtual elastic unloading is performed on the
composite material, which corresponds to unloading the matrix and inclusions phases to
their residual states at time tn. Therefore, during that time interval [tn, tn+1] the elastic
predictor in each phase ωi is evaluated from the residual state as

σ̄trial
n+1 = Cel : (ε̄n+1 − ε̄vp

n ) = σ̄n + Cel : ∆ε̄n+1 = σ̄res
n + Cel : ∆ε̄r

n+1 . (27)

Following Fig. 3, we also define

∆σ̄rtrial
n+1 = σ̄trial

n+1 − σ̄res
n = Cel : ∆ε̄r

n+1 . (28)

The yielding function (22) is then assessed as follows:

• If the trial stress satisfies the yielding condition

f trial
n+1 = (ˆ̂σeq)trial

n+1 − σY −R(p̂n) ≤ 0 , (29)

the loading occurs in the elastic regime, and the elastic predictor is indeed the
solution, which leads to

σ̄n+1 = σ̄trial
n+1 , ε̄vp

n+1 = ε̄vp
n and p̂n+1 = p̂n . (30)

• If f trial
n+1 > 0, the stress states are illustrated in Fig. 3, and since visco-plasticity has

developed during the time interval, the trial solution should be corrected to satisfy

∆p̂ = gv(ˆ̂σeq, p̂)∆t , (31)

where ∆t = tn+1 − tn. The visco-plastic stress update is written as

σ̄n+1 = σ̄trial
n+1 − Cel : ∆ε̄vp , with ∆ε̄vp = ∆p̂

ˆ̂
Nn+1 , (32)
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where, in the incremental secant formulation, the plastic flow direction
ˆ̂
Nn+1 is

approximated by

ˆ̂
Nn+1 =

3

2

Idev : (σ̄n+1 − σ̄res
n )

̂̂
(σ̄n+1 − σ̄res

n )eq

=
3

2

Idev : ∆σ̄r
n+1

∆ˆ̂σr
eq

n+1

, (33)

with ∆σ̄r
n+1 defined by Eq. (13) and with following Eq. (21)

∆ˆ̂σreq

n+1 =

√
3

2
Idev :: 〈∆σr

n+1 ⊗∆σr
n+1〉ωi

. (34)

When considering Eq. (33), it appears that the plastic correction is directed along
∆σ̄r

n+1 and not along σ̄n+1, which is a first order approximation in ∆ε̄vp as dis-
cussed by Wu et al. (2013a) and Wu et al. (2015a). However, if we neglect the
residual stress in the considered phase (σ̄res

n = 0), Eq. (33) can be rewritten as

ˆ̂
Nn+1 =

3

2

σ̄dev
n+1

ˆ̂σr
eq

n+1

, (35)

in which case the plastic correction is directed along σ̄n+1.

The resolution of the system of Eqs. (31-34) follows the return mapping algorithm

described in the next paragraph, in which the incremental secant operator ĈS is
directly obtained as an isotropic tensor because of the approximation (33).

3.4. Return mapping algorithm

At the trial state, which corresponds to a purely elastic process, the incremental-
secant formulation allows Eq. (33) to be rewritten as

ˆ̂
N trial
n+1 =

3

2

(
Cel : ∆ε̄r

n+1

)dev

3µel
√

2
3 Idev :: 〈∆εr

n+1 ⊗∆εr
n+1〉ωi

=
3

2

(
∆σ̄rtrial

n+1

)dev

∆ˆ̂σr
trial

n+1

eq , (36)

where µel is the elastic shear modulus of phase ωi. During this linear elastic process,
〈∆εr

n+1 ⊗∆εr
n+1〉ωi

in Eq. (36) is computed by using Eq. (7) and reads

〈∆εr
n+1 ⊗∆εr

n+1〉ωi
=

1

vi
〈∆εr

n+1〉ω :
∂Ĉel(Cel

0 ,Cel
I )

∂Cel
i

: 〈∆εr
n+1〉ω , (37)

with the composite’s effective elastic tensor

Ĉel(Cel
0 ,Cel

I ) =
[
vICel

I : Bε + v0Cel
0

]
: [vIBε + v0I]−1

. (38)

Since Cel is isotropic we have Cel :
(

∆p̂
ˆ̂
Nn+1

)
= 2µel ˆ̂

Nn+1∆p̂, and Eq. (32) is rewritten

(σ̄n+1 − σ̄res
n )

dev
=
(
σ̄trial
n+1 − σ̄res

n

)dev − 2µel ˆ̂
Nn+1∆p̂ . (39)
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Using the definitions (36) and (39), one has[
∆ˆ̂σreq

n+1 + 3µel∆p̂
]

ˆ̂
Nn+1 = ∆ˆ̂σrtrial

n+1

eq ˆ̂
N trial
n+1 . (40)

Enforcing that both normal tensors in Eq. (40) have the same norm, i.e.
ˆ̂
Nn+1 :

ˆ̂
Nn+1 =

ˆ̂
N trial
n+1 :

ˆ̂
N trial
n+1 , this relation results in

∆ˆ̂σreq

n+1 + 3µel∆p̂ = ∆ˆ̂σrtrial

n+1

eq

, and (41)

ˆ̂
Nn+1 =

ˆ̂
N trial
n+1 . (42)

Since in the incremental-secant process the trial state is computed from a virtual
unloaded/residual state, we adopt a last assumption which is

ˆ̂σeq
n+1 ' ∆ˆ̂σr eq

n+1 , (43)

which gives good predictions especially when the norm of the residual stress, which
follows the unloading σ̄res

n is much smaller in comparison to the norm of the previous
stress σ̄n, see Fig. 2.1 However, this assumption has an obvious drawback. From
some material systems, after using a virtual elastic unloading, the residual stress in the
elasto-viscoplastic phases can remain a high level, i.e. the norm of the residual tensor is
important. In this case, the assumption (43) is not accurate anymore and leads to poor
predictions.

For the volume averaged material, the visco-plastic correction consists in solving the
system of Eqs. (31) and (41) , which can be restated as

Fp = ∆p̂− gv(ˆ̂σeq
n+1, p̂n+1)∆t = 0 ,

Fσ = ˆ̂σeq
n+1 + 3µel∆p̂− ∆ˆ̂σrtrial

n+1

eq

= 0 . (45)

These two equations can be solved iteratively with a Newton-Raphson method, which is
expressed at iteration as

0− Fp =
∂Fp
∂p̂

δp̂+
∂Fp

∂ ˆ̂σeq
δ ˆ̂σeq , (46)

0− Fσ =
∂Fσ
∂p̂

δp̂+
∂Fσ

∂ ˆ̂σeq
δ ˆ̂σeq , (47)

or, using Eq. (45), as

0 = Fp +

(
1− ∂gv

∂p̂
∆t

)
δp̂− ∂gv

∂ ˆ̂σeq
∆tδ ˆ̂σeq (48)

0 = Fσ + 3µelδp̂+ δ ˆ̂σeq . (49)

1Another approximation was proposed in (Wu et al., 2015a) for elasto-plasticity, i.e.(
ˆ̂σtrial
n+1

eq
)2

'
(

ˆ̂σeq
n

)2
−

(
∆ˆ̂σunload

n+1
eq
)2
− 3σ̄n : Idev : ∆σ̄unload

n +(
∆ˆ̂σrtrial

n+1

eq)2
+ 3σ̄res

n : Idev : ∆σ̄rtrial
n+1 , (44)

where ∆σ̄rtrial
n+1 has been defined in Eq. 28. For complex loading history, the simple approximation (43)

shows better consistency.
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Substituting the expression of δ ˆ̂σeq from equation (49) into equation (48) leads to

δp̂ = − 1

hv

(
Fp

(∂gv/∂ ˆ̂σeq)∆t
+ Fσ

)
, (50)

with

hv =
1

(∂gv/∂ ˆ̂σeq)∆t
− (∂gv/∂p̂)

(∂gv/∂ ˆ̂σeq)
+ 3µel . (51)

We need to emphasize the following two points:

• According to the Mori-Tanaka scheme, the stress and strain in the inclusions phase
ωI remain uniform. Therefore, the second statistical moment estimate of the von
Mises stress in the inclusions is equal to its first statistical moment estimate and
reads

ˆ̂σeq
I = σ̄eq

I =

√
3

2
σ̄dev

I : σ̄dev
I . (52)

Assumption (43) is thus not required in the inclusions phases. For computational
efficiency we use the incremental-secant method with first statistical moment esti-
mates in the inclusions phase since it yields the same predictions.

• In the matrix phase ω0, if we replace the second statistical moment estimate of
the von Mises stress, ˆ̂σeq

0 , everywhere in this section by its first statistical moment
estimate, σ̄eq

0 , we straightforwardly retrieve the incremental-secant formulation of
the volume averaged material based on the first statistical moment estimate.

3.5. Incremental-secant operator

The secant operators ĈS of the averaged phase material, defined in Eq. (11), can now
be evaluated.

In the case of the absence of visco-plastic flow, i.e. if f trial
n+1 ≤ 0, the incremental

secant operator is directly obtained as ĈS = Cel.

In the case of plastic flow, i.e. if f trial
n+1 > 0, according to the approximation of

ˆ̂
Nn+1,

Eq. (33), the incremental secant operator ĈS
n+1 satisfies,

∆σ̄r
n+1 = ĈS

n+1 : ∆ε̄r
n+1 = Cel : ∆ε̄r

n+1 − 2µel∆p̂
ˆ̂
Nn+1 , (53)

which becomes after using Eqs. (36) and (42),

ĈS
n+1 : ∆ε̄r

n+1 =

Cel − 3µel∆p̂
Idev : Cel

∆ˆ̂σr
trial

n+1

eq

 : ∆ε̄r
n+1 . (54)

For J2-EVP, since Cel is isotropic, the incremental-secant operator ĈS is also isotropic.
Moreover, as Cel = 3κelIvol + 2µelIdev for phase ωi, this operator can be evaluated as

ĈS = 3κelIvol + 2µ̂SIdev , (55)
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with

µ̂S = µel − 3µel2∆p̂

∆ˆ̂σr
trial

n+1

eq , (56)

where κel and µel are the elastic bulk and shear moduli of phase ωi, respectively. From
Eq. (55) we can see that the incremental secant operator reduces to the elastic tensor
when the phase is loaded elastically (∆p̂ = 0).

The incremental-secant operator ĈS of the phase thus depends on the volume average
on the phase of the strain increments ∆ε̄r but also on the volume average on the com-
posite material strain increment 〈∆εr

n+1〉ω, because of the evaluation of Eq. (37). Two

algorithmic operators are thus required:
∂ĈS

n+1

∂ε̄rn+1
and

∂ĈS
n+1

∂〈∆εrn+1〉ω
, which were evaluated by

Wu et al. (2015a) and are reported in Appendix A.1.

4. Mean-Field Homogenization based on the incremental-secant approach

In the previous Section, we have described the resolution of the J2-EVP constitutive
equations, which were volume averaged on the phase ωi of the composite material. The
resolution of these equations, for each phase ωi, is thus implemented as a constitutive box,
in which the stress σ̄r

i n+1 and secant operator ĈS
i n+1 are evaluated from ∆ε̄r

i n+1, from
the residual stress-strain state (σ̄res

i n , ε̄
res
i n ) reached upon the composite material virtual

unloading, from the phase internal variables ηi, such as p̂, but also from the composite
material strain increment ∆ε̄r

n+1 in order to evaluate Eq. (37).
The set of Eqs. (11-13) is thus summarized by

σ̄i n+1 = Fi
(
∆ε̄r

i n+1, ∆ε̄r
n+1; ηi n, ε̄

res
i n , σ̄

res
i n

)
, (57)

and

ĈS
i n+1 = Gi

(
∆ε̄r

i n+1, ∆ε̄r
n+1; ηi n, ε̄

res
i n , σ̄

res
i n

)
. (58)

Finally, two algorithmic operators are also obtained from the constitutive box:

Ĉalgo
i n+1 =

∂σ̄i n+1

∂ε̄r
i n+1

= ĈS
i n+1 + ∆ε̄r

i n+1 :
∂ĈS

i n+1

∂ε̄r
i n+1

, and

Ĉalgo
ic n+1 =

∂σ̄i n+1

∂ε̄r
n+1

= ∆ε̄r
i n+1 :

∂ĈS
i n+1

∂ε̄r
n+1

. (59)

The incremental-secant MFH process now strictly follows the method developed for
EP materials by (Wu et al., 2013a, 2015a) and is summarized as follows for the time
interval [tn tn+1]:

1. A virtual unloading is applied at the composite material level so that σ̄res
n = 0,

using the composite material elastic tensor (38). The residual strain-stress states
are then evaluated as

• At the composite material level, beside σ̄res
n = 0, the residual strain reads

ε̄res
n = ε̄n −∆ε̄unload

n = ε̄n − Ĉel−1
: σ̄n+1 . (60)
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• Using the virtual unloading increment obtained in Eq. (60), the residual state
in the phase ωi is obtained by using the MFH equations (1-3), yielding for the
inclusions phase ωI

ε̄res
In = ε̄In − Bε : [vIBε + v0I]−1 : ∆ε̄unload

n , (61)

σ̄res
In = σ̄In − Cel

I : Bε : [vIBε + v0I]−1 : ∆ε̄unload
n , (62)

and for the matrix phase ω0

ε̄res
0n = ε̄0n − [vIBε + v0I]−1 : ∆ε̄unload

n , (63)

σ̄res
0n = σ̄0n − Cel

0 : [vIBε + v0I]−1 : ∆ε̄unload
n . (64)

2. The composite material secant strain increment is thus computed from Eq. (10),
with

∆ε̄r
n+1 = ε̄n + ∆ε̄n+1 − ε̄res

n . (65)

3. The incremental-secant MFH equations (11-13) are rewritten

∆ε̄r
n+1 = v0∆ε̄0

r
n+1 + vI∆ε̄I

r
n+1 , (66)

σ̄n+1 = v0 σ̄0 n+1 + vI σ̄I n+1 = v0 ∆σ̄r
0 n+1 + vI ∆σ̄r

I n+1 , (67)

∆ε̄r
I n+1 = Bε

(
I, ĈS

0 , ĈS
I

)
: ∆ε̄r

0 n+1 . (68)

and are solved iteratively by calling the constitutive box (57-58). The M-T iterative
process has been detailed by Wu et al. (2015a) and is summarized as follows

• The strain increment in the inclusions phase is initialized by ∆ε̄r
n+1 → ∆ε̄r

In+1.

• The constitutive box, Eqs. (57-58), is called by each phase ωi.

• A residual function was built from Eq. (62) by Wu et al. (2013a) as

F = ĈS
0 n+1 :

[
∆ε̄r

I n+1 −
1

v0
S−1 : (∆ε̄r

I n+1 −∆ε̄r
n+1)

]
−

ĈS
I n+1 : ∆ε̄r

I n+1 , (69)

with the Jacobian computed at constant ∆ε̄r
n+1

J =
∂F

∂ε̄I
+
∂F

∂ε̄0
:
∂ε̄0

∂ε̄I

∣∣∣∣
∆ε̄rn+1

=
∂F

∂ε̄I
− vI

v0

∂F

∂ε̄0
, (70)

detailed in Appendix A.2. The volume averaged strain increment in the
inclusions phase ωi is then updated as

∆ε̄r
In+1 ← ∆ε̄r

In+1 − J−1 : F , (71)

until convergence is reached.
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4. After convergence, the composite material algorithmic operator is constructed from
Eq. (67), yielding

Ĉalgo
n+1 = vI

(
Ĉalgo

In+1 :
∂ε̄I

∂ε̄
+ Ĉalgo

Icn+1

)
+ v0

(
Ĉalgo

0n+1 :
∂ε̄0

∂ε̄
+ Ĉalgo

0cn+1

)
. (72)

The phase consistent material operators were defined in Eq. (59), and the last two
terms ∂ε̄I

∂ε̄ and ∂ε̄I
∂ε̄ are obtained by recalling that since F = 0, the variation of the

strain increment in each phase due to a variation δ∆ε̄ is obtained by constraining
δF = ∂F

∂ε̄I
: δ∆ε̄r

I + ∂F
∂ε̄0

: δ∆ε̄r
0 + ∂F

∂ε̄ : δ∆ε̄r = 0. Using Eq. (66), one thus has

∂ε̄I

∂ε̄
= −J−1 :

∂F

∂ε̄
, and (73)

∂ε̄0

∂ε̄
=

1

v0

(
I− vI

∂ε̄I

∂ε̄

)
. (74)

The expression of the missing term ∂F
∂ε̄ is detailed in Appendix A.2.

Clearly, the particularities related to the EVP behaviors are inherent to the consti-
tutive box (57-58), while the incremental-secant MFH resolution remains independent of
the visco-plastic behavior.

5. Applications

The predictions accuracy of the incremental-secant MFH process is assessed in this
section. In particular we consider the formulation using the second statistical moment
estimate of the von Mises stress based on Eq. (43). These predictions are compared to a
version in which only the first statistical moment estimate is considered. This is readily
achieved by replacing in both phases the second statistical moment estimate of the von
Mises stress, ˆ̂σeq

i , everywhere in the formalism by its first statistical moment estimate,
σ̄eq
i . However, for that latter case to remain accurate in the case of hard inclusions, the

residual stress in the matrix phase σ̄res
0n has to be canceled after the composite virtual

unloading. In the inclusions phase, the residual stress is always considered. This point
has been discussed by Wu et al. (2013a) for EP composite materials. When the residual
stress in the matrix phase is canceled we denote the secant operator by C0

0 , and if this not
the case, i.e. if the residual stress in the matrix is kept, the secant operator is denoted
by Cr

0.
Several material systems such as spherical inclusions or short fibers embedded in a

matrix are considered. The tests involved different triaxiality conditions, with mono-
tonic and non-radial loading conditions. The results are compared to finite element (FE)
results, to Fast-Fourier-Transform (FFT) results, to experiments, and to other homoge-
nization predictions.

5.1. Elastic short fiber-reinforced elasto-plastic matrix
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(a) RVE for 0o and 90o-uniaxial loading (b) Mesh for 0o and 90o-uniaxial
loading

(c) RVE for 15o-uniaxial loading (d) RVE for 30o-uniaxial loading

Figure 4: RVEs for the short fiber-reinforced EP matrix under different loading conditions. (a) RVE
geometry for uniaxial loading along the short fiber direction (0o) and transverse (90o) to the short fiber
direction, and (b) corresponding FE mesh. (c) RVE geometry fo uniaxial loading directed at 15o to the
short fiber direction. (d) RVE geometry for uniaxial loading directed at 30o to the short fiber direction.

First, the method accuracy is discussed in the case of an elasto-plastic matrix re-
inforced by short fibers. The matrix is modeled using a J2-EP model with the linear-
exponential hardening law described by

R = h1p+ h2(1− exp(−np)) , (75)

where h1 and h2 are the hardening coefficients, and where n is the hardening exponent.
The material properties of the two phases read:

• Matrix: Elastic Young’s modulus Eel
0 = 3 GPa; Poisson ratio ν0 = 0.35; yield

stress σY0
= 20 MPa; first hardening coefficient h10

= 1 MPa; second hardening
coefficient h20

= 15 MPa; hardening exponent n0 = 150.

• Inclusions: Elastic Young’s modulus Eel
I = 72 GPa; Poisson ratio νI = 0.2; volume

fraction vI = 15.87%; and aspect ratio of αI = 20.

Different monotonic loading conditions corresponding to different triaxiality states
are first considered:

Loading #1: Uniaxial loading in a direction oriented at 0o, 15o, 30o, and 90o to the short fiber
direction;

Loading #2: In-plane biaxial loading ε̄11 = ε̄22 with σ̄33 = 0 and with the direction 1 along the
fiber direction.
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(a) 0o and 90o-uniaxial loading conditions
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(b) 15o-uniaxial loading condition
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(c) 30o-uniaxial loading condition
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Figure 5: Short fiber-reinforced EP matrix under different loading conditions The method predictions
are compared with FE results and the incremental tangent method. (a) Uniaxial loading along the short
fiber direction (0o) and transverse (90o) to the short fiber direction. (b) Uniaxial loading directed at 15o

to the short fiber direction. (c) Uniaxial loading directed at 30o to the short fiber direction. (d) Biaxial
loading. Direction 1 is along the fiber direction.

The reference results are obtained using the FE method on the RVE geometries
illustrated in Fig. 4. Each RVE includes 50 complete fibers, which are divided when
they intersect a RVE face, yielding 79, 105, and 115 inclusions bodies for respectively
the RVE with the fibers oriented at 0o and 90o with respect to the loading direction, see
Fig. 4(a), the RVE with the fibers oriented at 15o with respect to the loading direction,
see Fig. 4(c), and the RVE with the fibers oriented at 30o with respect to the loading
direction, see Fig. 4(d). For illustration purpose, a 411,180-node FE mesh is illustrated
in Fig. 4(b) for the RVE with the fibers oriented at 0o and 90o with respect to the
loading direction.

Figure 5 compares the predictions obtained using the incremental-secant approach
with first statistical moment estimates and with second statistical moment estimates,
to the results obtained with the incremental-tangent approach with second statistical
moment estimates, and to full-field finite element (FE) predictions. When considering
the incremental-secant MFH, in both cases of first statistical moment estimates and of
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second statistical moment estimates, we successively consider the residual stress in the
matrix phase (Cr

0 secant operator) and neglect it (C0
0 secant operator). On the one

hand, when considering the first statistical moment estimates, keeping the residual stress
in the matrix phase leads to unacceptable solutions. On the other hand, when consid-
ering the second statistical moment estimates, the solutions obtained with or without
considering the residual stress in the matrix phase are of comparable accuracy. It can
also be seen in Fig. 5 that when comparing the different homogenization methods with
second statistical moment estimates that the incremental-secant method improves the
predictions as compared to the incremental-tangent approach when considering uniaxial
loading conditions, see Figs. 5(a)-5(c), in particular when the loading direction is close
to the fiber direction. Moreover, when considering the biaxial loading condition, see
Fig. 5(d), the incremental-secant approach captures the decrease of the stress in the
transverse direction, accordingly to the finite element predictions.

5.2. Elastic short fiber-reinforced elasto-visco-plastic matrix

5.2.1. Polymer with a Perzyna’s visco-plastic model reinforced with short glass fibers
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Figure 6: Short glass fiber-reinforced polyamide under uniaxial loading with a matrix material following
the Perzyna’s visco-plastic model. The method predictions for different strain rates using (a) first
statistical moment estimates and (b) second statistical moment estimates are compared with the FE
results and with the prediction of the variational updates formulation provided by Brassart et al. (2012).

The aligned short glass fibers are elastic and the polyamide matrix is modeled using
a J2-EVP model with the linear-exponential hardening law described by Eq. (75), and
the visco-plastic Perzyna’s model, which reads

gv(σ
eq, p) = κ

(
f

σY +R(p)

)m
, (76)

where κ [1/s] is the visco-plastic modulus and m is the visco-plastic exponent. The
material properties of the two phases read:
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• Matrix: Elastic Young’s modulus Eel
0 = 2.1 GPa; Poisson ratio ν0 = 0.3; yield

stress σY0 = 29 MPa; first hardening coefficient h10 = 139 MPa; second hardening
coefficient h20

= 32.7 MPa; hardening exponent n0 = 319.4; visco-plastic modulus
κ0 = 2.5 s−1; and visco-plastic exponent m0 = 5.

• Inclusions: Elastic Young’s modulus Eel
I = 72 GPa; Poisson ratio νI = 0.22; volume

fraction vI = 15.7%; and aspect ratio of αI = 15.

Uniaxial tension is applied along the short fiber direction, which makes the test
challenging. The short glass fiber-reinforced polyamide was studied using the FE method
and a variational approach by Brassart et al. (2012).

Figure 6 compares the predictions of the incremental-secant approach with the FE
results and with the predictions of the variational approach provided by Brassart et al.
(2012). One more time, when considering the incremental-secant MFH with first statisti-
cal moment estimates and second statistical moment estimates, the residual stress in the
matrix phase is successively considered (Cr

0 secant operator) and neglected (C0
0 secant

operator). On the one hand, the results obtained using the incremental-secant approach
with first statistical moment estimates, see Fig. 6(a), are clearly over-estimating the com-
posite material response since the yielding point is not well captured. In particular when
the residual stress in the matrix is kept, the hardening phase does not exhibit the right
slope. On the other hand, when considering the second statistical moment estimates, see
Fig. 6(b), the solutions obtained with or without considering the residual stress in the
matrix phase are in better agreement with the FE results, in particular when considering
the residual. For both the variational approach and the incremental-secant approach with
second statistical moment estimates, the yield point is not captured with much accuracy
since the composite material involves short fibers, and the predicted composite harden-
ing law has a lower slope than for the FE solution. Because the variational approach
developed by Brassart et al. (2012) assumes a uniform polarization in the composite ma-
terial, the slope of the composite hardening response is further from the FE predictions
than the developed method which considers different residual strain and stress in the
different phases. In the remaining of this paper we will thus only consider two cases:
(i) the incremental-secant approach with first statistical moment estimates combined to
the C0

0 secant operator, and (ii) the incremental-secant approach with second statistical
moment estimates combined to the Cr

0 secant operator.

5.2.2. Polymer with Prandtl’s visco-plastic model reinforced with short glass fibers

The aligned short glass fibers are elastic and the polymer matrix is modeled using a
J2-EVP model with a linear-exponential hardening law (75), and with a Prandtl’s model

gv =
σY

η

(
sinh

(
f

β

))m
, (77)

where η is the visco-plastic coefficient, where β has the unit of a stress, and where m is
the visco-plastic exponent. The material properties of the two phases read:
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Figure 7: Short glass fiber-reinforced polymer under uniaxial loading with a matrix material following
the Prandtl’s visco-plastic model.

• Matrix: Elastic Young’s modulus Eel
0 = 1066.5 MPa; Poisson ratio ν0 = 0.4; yield

stress σY0 = 2 MPa; first hardening coefficient h10 = 1.193 MPa; second hard-
ening coefficient h20 = 9.317 MPa; hardening exponent n0 = 107.57; visco-plastic
coefficient η0 = 7.728 MPa ·s; β = 10 MPa; and visco-plastic exponent m0 = 2.303.

• Inclusions: Elastic Young’s modulus Eel
I = 7.2× 104 MPa; Poisson ratio νI = 0.22;

volume fraction vI = 7.1%; and aspect ratio of αI = 20.

The composite material is loaded along the fibers direction at different strain rates,
and the results are presented in Fig. 7. It can be seen that accounting for the second
statistical moment estimates strongly affects the predictions.

5.2.3. E-glass fiber reinforced Nylon
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Figure 8: E-Glass fiber reinforced Nylon response. The method predictions are compared with the
prediction of the M-T additive tangent interaction law. (a) Creep test. (b) Relaxation test.
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The considered material system is E-Glass fiber reinforced Nylon. The E-glass fibers
are assumed to follow an elastic behavior. The Nylon matrix is modeled using a J2-EVP
model with the linear-exponential hardening law described by Eq. (75) and the visco-
plastic Perzyna’s model described by Eq. (76). The mechanical properties of the two
phases are:

• Matrix: Elastic Young’s modulus Eel
0 = 1.2 GPa; Poisson ratio ν0 = 0.4; yield

stress σY0
= 1.5 MPa; first hardening coefficient h10

= 240 MPa; second hardening
coefficient h20

= 4 MPa; hardening exponent n0 = 300; visco-plastic modulus
κ0 =

σY0

η , with η = 8.0× 104 MPa · s; and visco-plastic exponent m0 = 3.

• Inclusions: Elastic Young’s modulus Eel
I = 72 GPa; Poisson ratio νI = 0.22; volume

fraction vI = 17.49%; and aspect ratio of αI = 6.

The composite is loaded along the fiber longitudinal direction, and creep and relax-
ation tests are carried out, successively:

Creep: The composite is loaded to a given peak stress σpeak = 30.0 MPa in 1.0 second.
The creep process is simulated afterwards under this constant peak stress.

Relaxation: The composite is loaded to reach a peak strain of 0.03 in 1.0 s. The relaxation
process is simulated afterwards under this constant peak strain.

Figure 8 compares the predictions of the incremental-secant approach with the results
obtained using the additive tangent Mori-Tanaka (M-T) interaction law, see the review by
Mercier et al. (2012). Both the incremental secant approach and the additive interaction
law method solve the nonlinear MFH in an incremental way. On the one hand the
additive interaction law splits the increment of strain into elastic and anelastic parts,
and carries out the homogenization on the elastic and anelastic strain increments, using
repectively the elastic moduli and the tangent moduli of the phase. On the other hand,
the incremental secant process takes into account the increment of the anelastic strain and
the total elastic strain altogether during the homogenization through the evaluation of the
incremental secant moduli. Both methods give a good prediction of the composite macro
response. However, since the tangent moduli of the additive interaction law are computed
based on the average strain in the phase, which corresponds to a first statistical moment
estimates of the strain field, it is expected to provide a stiffer prediction than when
considering second statistical moment estimates as in the incremental secant approach.
It can be seen in Fig. 8 that the predictions using the second statistical moment estimates
are in good agreement with the IL, for both the creep, see Fig. 8(a), and relaxation, see
Fig. 8(b), tests, although the IL predicts slightly stiffer results, as expected.

5.3. Composites with two elasto-visco-plastic phases

Both phases of the composite material exhibit an EVP behavior. The hardening
function of each phase follows a power-law which is expressed by

R(p) = kpn , (78)

where k is the hardening modulus and n the hardening exponent. The overstress due to
the rate-dependency is described by the Perzyna’s visco-plastic model (76).
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5.3.1. Study of the loading condition effects

The material parameters of the considered composite material are

• Matrix: Elastic Young’s modulus Eel
0 = 70 GPa; Poisson ratio ν0 = 0.33; yield

stress σY0 = 70 MPa; hardening coefficient k0 = 4 GPa; hardening exponent n0 =
0.4; visco-plastic modulus κ0 = 3× 10−4 s−1; and visco-plastic exponent m0 = 1.5.

• Inclusions: Elastic Young’s modulus Eel
I = 400 GPa; Poisson ratio νI = 0.286;

yield stress σYI = 400 MPa; hardening coefficient kI = 8 GPa; hardening exponent
nI = 0.4; visco-plastic modulus κI = 2 × 10−4 s−1; and visco-plastic exponent
mI = 1.5.

The spherical EVP particles have a volume fraction vI of either 15% or 30%. Various
loading conditions are considered. We study the influence of strain rate, triaxiality, and
monotonic vs. cyclic loading conditions. For the different loading cases, the results
obtained using the incremental-secant approach with first statistical moment estimates
and with second statistical moment estimates are compared to the finite element (FE)
simulations provided by Pierard et al. (2007); Doghri et al. (2010).

Different monotonic loading conditions corresponding to different triaxiality states
are first considered:

Loading #1: Uniaxial loading at different strain rates.

Loading #2: In-plane shearing at different shear strain rates ˙̄ε12.

Loading #3: In-plane bi-axial loading at different strain rates ˙̄ε11 = ˙̄ε22.

Figure 9 shows that the predictions using the incremental-secant approach with sec-
ond statistical moment estimates perfectly match the FE results, while the results ob-
tained when considering the first statistical moment slightly underestimate the composite
response.

A uniaxial cyclic loading is then performed at two different strain rates, ˙̄ε11 =
±10−3 s−1 and ˙̄ε11 = ±10−6 s−1 with the composite material with an inclusions vol-
ume fraction vI = 30%. Figure 10(a) compares the composite response with the FE
predictions. Both incremental secant MFH approaches with first and second statistical
moment estimates are in good agreement with the FE results Pierard et al. (2007); Doghri
et al. (2010). The effect of the time increment ∆t on the predicted composite material
response is studied in Fig. 10(b) for the incremental secant MFH approach with second
statistical moment estimates. The figure shows that the solution has already converged
when considering 80 time steps to study the cyclic loading. The von Mises stress evolu-
tion in the two phases are compared to the FE predictions Pierard et al. (2007); Doghri
et al. (2010) in 10(c), where it can be seen that the incremental-secant approach under-
estimates slightly the FE predictions. Finally, the equivalent plastic strains reached at
the end of the uniaxial tension-compression cycle in the different phases are illustrated in
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(c) vI = 30%, shear loading
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(d) vI = 30%, biaxial loading

Figure 9: Composite material with two EVP phases under monotonic loading conditions. The method
predictions for different strain rates are compared with the FE results provided by Doghri et al. (2010).
(a) Uniaxial loading with an inclusions volume fraction vI = 15%. (b) Uniaxial loading with an inclusions
volume fraction vI = 30%. (b) Shear loading with an inclusions volume fraction vI = 30%. (d) Biaxial
loading with an inclusions volume fraction vI = 30%.

Fig. 10(d). The cumulative distributions were extracted from the FE results in Pierard
(2006). The incremental-secant MFH approaches predict equivalent plastic strains which
fall below the median values of their respective distributions. When using the second
statistical moment estimates, the predicted equivalent plastic strain is larger than when
considering the first statistical moment estimates only, in particular in the matrix phase.

5.3.2. Study of the phases response

The material parameters of the considered composite material are

• Matrix: Elastic Young’s modulus Eel
0 = 100 GPa; Poisson ratio ν0 = 0.3; yield

stress σY0 = 100 MPa; hardening coefficient k0 = 5 GPa; hardening exponent
n0 = 1; visco-plastic modulus κ0 = 3× 10−4 s−1; and visco-plastic exponent m0 =
10..

• Inclusions: Elastic Young’s modulus Eel
I = 500 GPa; Poisson ratio νI = 0.3; yield
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Figure 10: Composite material with two EVP phases under uniaxial cyclic loading with an inclusions
volume fraction of vI = 30%. The method predictions for different strain rates are compared with the FE
results provided by Pierard (2006); Pierard et al. (2007); Doghri et al. (2010). (a) Composite response.
(b) Effect of the time increment ∆t on the composite response with the Cr

0 incremental-secant approach
with second statistical moment estimates. (c) Phases von Mises stress evolution histories. (d) Equivalent
plastic strain distribution at the end of the tension-compression cycle.

stress σYI
= 500 MPa; hardening coefficient kI = 5 GPa; hardening exponent nI =

1.; visco-plastic modulus κI = 3× 10−4 s−1; and visco-plastic exponent mI = 10.

The spherical EVP particles have a volume fraction vI of either 10% or 25% and a uniaxial
cyclic loading is performed with a strain rate of ˙̄ε11 = ±10−3 s−1. The results obtained
using the incremental-secant approach with first statistical moment estimates and with
second statistical moment estimates are compared to the finite element (FE) simulation
results and to the predictions of the additive tangent Mori-Tanaka (M-T) interaction
law, both provided by Czarnota et al. (2015).

Besides the composite response, the phases responses are also analyzed in Fig. 11.
It can be seen in Figs. 11(a) and 11(b) that the predictions using the incremental-
secant approach with second statistical moment estimates are in good agreement with
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(d) vI = 25%, phases stress vs. composite strain
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(f) vI = 25%, phases stress vs. phases strain

Figure 11: Composite material with two EVP phases under monotonic loading conditions. The method
predictions are compared with the FE results and the predictions of the additive tangent Mori-Tanaka
(M-T) interaction law, both provided by Czarnota et al. (2015). (a, b) Homogenized material response;
(c-d) Phases responses in terms of the composite material strain; (e-f) Phases responses in terms of
the phases averaged strain. Left column corresponds to inclusions volume fraction vI = 10%, and right
column to inclusions volume fraction vI = 25%.
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the FE results and are of comparable accuracy with the additive tangent interaction law,
while the results obtained when considering the first statistical moment exhibit a slight
discrepancy. A similar conclusion can be drawn when comparing the phases response
in terms of the composite homogenized strain in Figs. 11(c) and 11(d). Finally the
phases averaged stress evolutions in terms of their averaged strain are illustrated in Figs.
11(e) and 11(f) in which it can be seen that the incremental-secant approach with second
statistical moment estimates improves the prediction of the strain contrast as compared
with the other methods, although for the higher inclusions volume fraction the agreement
with the FE results is not as good.

5.4. Experimental validation: spherical SiC particle reinforced aluminum matrix

The experimental data reported by Li and Weng (1998) for the study of a spherical
SiC particle reinforced aluminum matrix are exploited in this section in order to validate
the method.

The SiC spherical particles are assumed to follow an elastic behavior. The aluminum
matrix is modeled using a J2-EVP model with an exponential isotropic hardening func-
tion which reads

R(p) = k[1− exp(−np)] , (79)

and with a power-law visco-plastic function

gv(σ
eq, p) = κ

(
σeq

σY +R(p)

)m
. (80)

The material properties of the two phases have been identified by Doghri et al. (2010)
and read:

• Matrix: Elastic Young’s modulus Eel
0 = 70 GPa; Poisson ratio ν0 = 0.33; yield

stress σY0 = 60 MPa; hardening coefficient k0 = 40 MPa; hardening exponent
n0 = 54.9; visco-plastic modulus κ0 = 4.4 × 10−6 s−1; and visco-plastic exponent
m0 = 4.61.

• Inclusions: Elastic Young’s modulus Eel
I = 490 GPa; Poisson ratio νI = 0.17; and

volume fraction vI = 10%.

Uniaxial tension loading were applied by Li and Weng (1998) on both the unrein-
forced matrix and on the composite material at a strain rate of ±10−3 s−1, and the
results are reported in Fig. 12. The matrix response obtained with the reported ma-
terial parameters is also reported, justifying the considered values. Finally, this figure
also shows that the predictions obtained with the incremental-secant approach when
considering the second statistical moment estimates are in perfect agreement with the
experimental results, although the results obtained when considering the first statistical
moment slightly overestimate the composite response.
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Figure 12: Spherical SiC particle reinforced aluminum matrix under uniaxial loading with an inclusions
volume fraction of vI = 10%. The method predictions for a given strain rate are compared with the
experimental results provided by Li and Weng (1998).

5.5. Inelastic solid with spherical elastic inclusions

In this part, a visco-plastic material has neither yielding stress nor plastic hardening
effect and its non-linear “visco-plastic” law is obtained from a dissipation potential, which
takes the form of the power-law:

φ(ṗ) =
σYε̇0

1 +m

(
ṗ

ε̇0

)1+m

, (81)

where ε̇0, σY, and m are material constants. From Eq. (81), the von Mises stress follows

σeq =
∂φ(ṗ)

∂ṗ
= σY

(
ṗ

ε̇0

)m
, (82)

and the visco-plastic law of the matrix reads

ṗ = gv(σ
eq, p) = ε̇0

(
σeq

σY

) 1
m

. (83)

For this kind of material behavior for which the yield stress is zero, only hard inclu-
sions are considered. The case of soft inclusions is discussed in Appendix B.

5.5.1. Monotonic loading

Spherical isotropic linear elastic inclusions are embedded in a non-linear “visco-
plastic” matrix. The matrix follows the visco-plastic law (83), and the properties of
the material system first studied by Lahellec and Suquet (2007a) for m = 0.2 and then
extended by Czarnota et al. (2015) to other values of m, with

• Matrix: Elastic Young’s modulus Eel
0 = 70 GPa; Poisson ratio ν0 = 0.3; ε̇00

=
10−2 s−1; σY0

= 480 MPa; and m0 ∈ [0.01 1].

• Inclusions: Elastic Young’s modulus Eel
I = 400 GPa; Poisson ratio νI = 0.2; and

volume fraction vI = 25%.
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Figure 13: Inelastic solid with spherical elastic inclusions under monotonic loading. The method predic-
tions for different values of m0 are compared with the prediction of the M-T additive tangent interaction
law and with the FE results, both provided by Czarnota et al. (2015).

An uniaxial tension is performed at a strain rate of 10−2 s−1. The results obtained
by the developed method are compared in Fig. 13 with the finite element results from
the work of Czarnota et al. (2015) and to the M-T additive tangent interaction law pre-
dictions reported Mercier et al. (2012). For values of m0 higher than 0.5, see Fig. 13(a),
the different homogenization methods under-predict the saturation stage. Following the
discussion by Czarnota et al. (2015), these cases are really difficult to model due to the
large contrast in phases behavior, including with finite element methods for which an
axisymmetric unit cell and an RVE with 30 inclusions yield different predictions. The
accuracy of the homogenization methods is better for values of m0 lower than 0.5, see
Fig. 13(b). For these latter cases, the incremental-secant approach with first statistical
moment estimates predict results similar to the M-T additive tangent interaction law and
both methods slightly overestimate the FE results in the pre-saturation stage. The re-
sults obtained using the incremental-secant approach with the second statistical moment
estimates underestimate the FE results.

5.5.2. Non-proportional loading

The considered composite material is an EVP matrix reinforced by elastic inclusions
with isotropic dispersion as described by Idiart and Lahellec (2016). Both phases are
isotropic and incompressible, which means that the two bulk moduli κ0 →∞ and κI →
∞.

The matrix follows the visco-plastic law (83), and the properties of the material
system reported by Idiart and Lahellec (2016) are

• Matrix: Elastic shear modulus µel
0 = 103 · σY0

; ε̇00
= 10−3 s−1; and m0 = 0.2.

• Inclusions: Elastic shear modulus µel
I = Rµel

0 with R = 5; and volume fraction
vI = 30%.
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Figure 14: Composite response of the anelastic solid with spherical elastic inclusions for the case R = 5.
The method predictions are compared with the FFT results and the variational method predictions
obtained using ”effective polarization (EffP)” estimates provided by Idiart and Lahellec (2016). (a-b)
Axisymmetric shear loading cycles at two different strain rates. (c-d) Axisymmetric shear loading ramp.
(e-f) Rotating deformation.

The material is initially free of any internal stress, and then, subjected to a strain
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function in the form of

ε̄(t) = ε̄ss(t)(e1 ⊗ e3 + e3 ⊗ e1) + ε̄as(t)

(
e1 ⊗ e1 −

1

2
e2 ⊗ e2 −

1

2
e3 ⊗ e3

)
, (84)

where {ei} defines the orthonormal basis. Three loading cases are studied, respectively,

Loading #1 Radial deformation consisting of a triangular axisymmetric shear, see Fig. 14(a):

ε̄ss(t) = 0 and ε̄as(t) = ṙ

(
t− 2T0b

t

2T0
+

1

2
c
)

(−1)b
t

2T0
+ 1

2 c , (85)

where b·c denotes the floor function. Two strain rates are considered: ṙ = 5 ×
10−5 s−1, with T0 = 100 s, t ∈ [0, 400] s; and ṙ = 5 × 10−3 s−1, with T0 = 1 s,
t ∈ [0, 4] s.

Loading #2: Radial deformation consisting of an axisymmetric loading ramp up to a constant
value, see Fig. 14(c):

ε̄ss(t) = 0 and ε̄as(t) =

{
ṙt 0 ≤ t ≤ T0

ṙT0 T0 < t
, (86)

where ṙ = 5× 10−4 s−1, and T0 = 40 s.

Loading #3: Rotating deformation, see Fig. 14(e):

ε̄ss(t) =

√
3

4
r[1− cos(ωt)] and ε̄as(t) = rsin(ωt) , (87)

where r = 10−3 and ω = π/20 rad/s.

The results obtained using the incremental-secant approach with first statistical mo-
ment estimates and with second statistical moment estimates are reported in Fig. 14
for R = 5. The method predictions are compared with the results obtained with the
FFT method and the variational method using ”effective polarization (EffP)” estimates
provided by Idiart and Lahellec (2016). It can be seen that while the incremental-secant
method slightly overestimates the results when using the first statistical moment esti-
mates, and is of comparable accuracy with the variational method when considering the
second statistical moment estimates.

6. Conclusions

In this paper, the incremental-secant MFH method previously developed for rate-
independent EP and non-local-damage-enhanced EP behaviors is extended to rate-dependent
EVP material behaviors. In the incremental-secant formulation, a virtual elastic unload-
ing is performed at the composite level in order to evaluate the residual stress and strain
states in the different phases. The LCC is then defined from these states to apply a
secant MFH formulation.

In particular, we have used a new second statistical moment estimate of the von
Mises stress, yielding accurate results while keeping the residual stress in the matrix phase

32



reached upon the virtual unloading, while the method which only considers first statistical
moment estimates requires this residual stress to be canceled to predict accurate results.

Moreover, it was shown that the basis of the incremental-secant method does not
require to be changed to account for the visco-plastic behaviors, and that all the modifi-
cations are limited to the constitutive material boxes of the material library. As a result
the increment-secant MFH for EVP materials inherits from its intrinsic advantages which
are (i) the ability to handle non-radial loading conditions, (ii) the isotropic nature of the
LCC instantaneous stiffness tensor, which renders obsolete the isotropisation step of some
other MFH methods, and (iii) a straightforward implementation as the homogenization
method directly calls the material constitutive material boxes of an existing materials
library.

Finally, in order to assess the accuracy of the method, its predictions were compared
to finite element (FE) results, to Fast-Fourier-Transform (FFT) results, to experiments,
and to other homogenization predictions for monotonic, cyclic, and non-radial loading
conditions at different strain rates, and also for different loading conditions corresponding
to different triaxiality states. It was shown that even in the challenging case of short glass
fiber reinforced polymer matrix, the incremental-secant method with second statistical
moment estimates predicts good to excellent results with respect to full-field FE and
FFT results.

However, the issue of the residual stress in the matrix remains to be analyzed carefully.
On the one hand, when considering the incremental-secant MFH with first statistical
moment estimates, the choice of the incremental-secant moduli in the matrix phase, C0

0

or Cr
0 is governed by the relative positions of the stress and residual stress tensors with

respect to the stress space origin (zero-stress state): (i) The origin lies between the stress
and residual stress tensors (for a uniaxial tension this corresponds to a positive stress
and a negative residual stress), which is typically the case for elastic inclusions and for
composite materials made of two elasto-(visco)plastic phases for which the inclusions
phase is stiffer than the matrix phase during the plastic flow. In that case, predictions
are unacceptable unless the residual stress is removed in the matrix phase. (ii) Both
stress and residual stress tensors lie on the same side with respect to the origin (for
a uniaxial tension this corresponds to a positive stress and a positive residual stress),
which is the case for composite materials made of two elasto-(visco)plastic phases for
which the inclusion phase is softer than the matrix phase during the plastic flow. In that
case, the residual stress should be kept in the matrix phase. This behavior was discussed
in the case of elasto-plastic composites by Wu et al. (2013b). On the other hand, we
have proposed a proper second statistical moment estimate of the von Mises stress which
prevents removing the residual stress in the matrix phase to predict accurate results.
However, this proper second statistical moment estimate of the von Mises stress also
depends on the relative positions of the stress and residual stress tensors with respect to
the stress space origin. (i) In the case of elastic inclusions and for composite materials
made of two elasto-(visco)plastic phases for which the inclusions phase is stiffer than
the matrix phase during the plastic flow, the estimate (43) in which only the equivalent
stress increment is considered yields accurate prediction. However, for perfectly plastic
matrix behavior the use of second statistical moments could lead to an artificial softening
as discussed by Wu et al. (2015a) (ii) In the case of composite materials made of two
elasto-(visco)plastic phases for which the inclusion phase is softer than the matrix phase
during the visco-plastic flow, using the estimate (43) predicts a composite response too
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stiff, and the accuracy can be improved by using the second statistical estimate of the von
Mises stress (B.2) in which the residual stress in accounted for. Note that for the case of
such composite with more compliant inclusions, since the Mori-Tanaka method implies
a uniform stress distribution in the inclusions phase, the use of an incremental-secant
MFH with first statistical moment estimates is justified.
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Appendix A. Derivatives

Appendix A.1. Derivatives of the incremental-secant operators

The derivatives of ĈS
i n+1 with respect to ε̄r

i n+1 and with respect to ε̄r
n+1 were obtained

by Wu et al. (2015a) as

∂ĈS
i n+1

∂ε̄r
i n+1

= − 2µel
i

∆ˆ̂εr
i

eq

n+1

Idev ⊗ ∂∆p̂i
∂ε̄r

i

, (A.1)

with ∆ˆ̂εr
i

eq

n+1 =
√

2
3 Idev :: 〈∆εr

n+1 ⊗∆εr
n+1〉ωi computed from 3µel

i ∆ˆ̂εr
i

eq

n+1 = ∆ˆ̂σrtrial

n+1

eq

,

and as

∂ĈS
i n+1

∂ε̄r
n+1

= 2µel
i Idev ⊗

 ∆p̂i

3vi

(
∆ˆ̂εr

i

eq

n+1

)3

∂Ĉel

∂µel
i

: ∆ε̄r
n+1 −

1

∆ˆ̂εr
i

eq

n+1

∂∆p̂i
∂ε̄r

 ,

(A.2)

where Ĉel is given by (38).
Finally the derivatives ∂∆p̂i

∂ε̄ri
and ∂∆p̂i

∂ε̄r are computed from the return mapping algo-

rithm.

Appendix A.2. Jacobian evaluation

The Jacobian of the residual function (69) is obtained as

J =
∂F

∂ε̄I
+
∂F

∂ε̄0
:
∂ε̄0

∂ε̄I

∣∣∣∣
∆ε̄rn+1

=
∂F

∂ε̄I
− vI

v0

∂F

∂ε̄0

= ĈS
0 :
[
I− S−1

]
− ĈS

I −
∂ĈS

I

∂εI
: ∆ε̄r

I −

vI

v0

∂ĈS
0

∂ε̄0
:

[
∆ε̄r

I − S−1 :
(∆ε̄r

I −∆ε̄r)

v0

]
− vI

v0
ĈS

0 : S−1 −

vI

v2
0

ĈS
0 ⊗ (∆ε̄r

I −∆ε̄r) ::
(
S−1 ⊗ S−1

)
::
∂S
∂ε̄0

. (A.3)
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Moreover one has

∂F

∂ε̄
=

[
∆ε̄r

In+1 −
1

v0
S−1 : (∆ε̄r

In+1 −∆ε̄r
n+1)

]
:
∂ĈS

0n+1

∂ε̄
+

1

v0
ĈS

0n+1 ⊗
(
∆ε̄r

In+1 −∆ε̄r
n+1

)
::
(
S−1 ⊗ S−1

)
::
∂S
∂ε̄

+

1

v0
ĈS

0n+1 : S−1 −∆ε̄r
In+1 :

∂ĈS
In+1

∂ε̄
. (A.4)

In these equations
∂ĈS

i

∂ε̄i
are given in Appendix A.1, and where ∂S

∂ε̄0
is given in Appendix

Appendix A.3.

Appendix A.3. Derivatives of the Eshelby tensor

As the Eshelby tensor depends on the Poisson ratio of the matrix phase, one can
evaluate

∂S
∂∆ε̄r

0

=
∂S
∂ν
⊗
(
∂ν

∂µ

∂µ̂S
0

∂∆ε̄r
0

)
, (A.5)

∂S
∂∆ε̄r

=
∂S
∂ν
⊗ ∂ν

∂µ

∂µ̂0

∂∆ε̄r
, (A.6)

where ∂µ̂0

∂∆ε̄r0
and ∂µ̂0

∂∆ε̄r are obtained from Eq. (56) using the derivatives reported in

Appendix A.1.

Appendix B. Soft inclusions

The von Mises stress can be written in terms of the residual increment as

σeq
n+1

2
= (∆σr)

eq2
+ (σres

n )
eq2

+ 3 (∆σr)
dev

: (σres
n )

dev
. (B.1)

From equation (B.1) we can see that, if the residual stress is non negligible, the
approximation (43) can lead to a inaccurate prediction in the matrix phase of the LCC.
In particular:

• In the case of negligible residual stress, i.e. if 3
∣∣∣〈(∆σr)

dev
: (σres

n )dev
〉∣∣∣� (

∆ˆ̂σr eq
)2

,

the evaluation of ( ˆ̂σtrial)eq using Eq. (43) corresponds to an accurate approxima-
tion.

• In the case in which 3
∣∣∣〈(∆σr)

dev
: (σres

n )dev
〉∣∣∣ ∼ (∆ˆ̂σr eq

)2

and in which〈
(∆σr)

dev
: (σres

n )dev
〉
< 0, the evaluation of ( ˆ̂σtrial)eq using Eq. (43) corresponds

to an overestimation and induces a softer LCC response. However, because of the
use of the approximation (33), the effect of the overestimatation of ( ˆ̂σtrial)eq is
weakened, leading to a correct overall response of the composite material.
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Figure B.15: Schematics of the incremental-secant formulations in the matrix phase in the context of a
soft-inclusions material system

• In the other case, i.e. if 3
∣∣∣〈(∆σr)

dev
: (σres

n )dev
〉∣∣∣ ∼ (∆ˆ̂σr eq

)2

and〈
(∆σr)

dev
: (σres

n )dev
〉
> 0, which is usually the case for soft inclusions, as illus-

trated in Fig. B.15, the evaluation of ˆ̂σtrial eq
using the approximation Eq. (43)

corresponds to an the underestimated, resulting in a stiffer response of the LCC.
Contrarily to the previous case, this effect is strengthened because of the approxi-
mation (33), which could lead to inaccurate predictions.

Therefore, in order to take into account the residual stress in matrix in the estimate of
the von Mises stress, we use the approximation(

ˆ̂σtrial
n+1

eq
)2

≈
(

∆ˆ̂σrtrial eq
)2

+ ((σ̄res
n )eq)

2
+ 3 (∆σ̄r)

dev
: (σ̄res

n )dev . (B.2)

Because this approximation is a mix of first and second statistical moment estimates, it
is not always accurate enough for the composites with soft inclusion.

The soft inclusion reinforced matrix material system studied by Czarnota et al. (2015)
is considered here to illustrate the effect of the different assumptions of the von Mises
stress estimates in the second statistical moment approach. The spherical inclusions and
the matrix phase follow the elasticviscoplastic described by the power-law (83). And the
material parameters for the analysis are

• Matrix: Elastic Young’s modulus Eel
0 = 100 GPa; Poisson ratio ν0 = 0.45; yield

stress σY0
= 1.0 GPa; visco-plastic reference strain rate ε̇00

= 1.0 s−1; and visco-
plastic exponent m0 = 0.1.

• Inclusion: Elastic Young’s modulus Eel
I = 100 GPa; Poisson ratio νI = 0.45; yield

stress σYI
= 0.2 GPa; visco-plastic reference strain rate ε̇0I

= 1.0 s−1; visco-plastic
exponent mI = 0.1; volume fraction vI = 25%.
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Figure B.16: Inelastic solid with soft spherical elasto-viscoplastic inclusions under cyclic loading. The
method predictions using the original estimate (43) and the modified estimate (B.2) are compared with
the prediction of the additive tangent Mori-Tanaka (M-T) interaction law and the full-field FE results
provided by Czarnota et al. (2015).

A uniaxial tension-compression cycle is applied on the composite with a strain ampli-
tude of ±0.1 and at a strain rate ε̇ = 0.5 s−1. The incremental-secant MFH predictions
using first statistical moment estimates, considering the residual stress in the matrix and
the secant operator Cr

0 since the inclusions are soft, and the incremental-secant MFH
predictions with two different assumptions for the second statistical moment estimate of
the von Mises stress, i.e. Eq. (43) and Eq. (B.2), are successively considered for this test.
The incremental-secant MFH predictions are compared in Fig. B.16 with the direct finite
element simulation results and the predictions of additive tangent Mori-Tanaka (M-T) in-
teraction law, both provided by Czarnota et al. (2015). When considering the composite
material response in Fig. 16(a), the results obtained with the modified second statistical
moment estimate (B.2) correspond to the results obtained with the first statistical mo-
ment estimates since the two phases have the same Young’s modulus. They are also in
agreement with the FE results and the additive tangent Mori-Tanaka (M-T) interaction
law predictions. However, when comparing the phases responses in Fig. 16(b), it appears
that while the stress levels are predicted in an accurate way when considering the mod-
ified second statistical moment estimate (B.2) or the first statistical moment estimates,
the strain contrast is underestimated with the incremental-secant MFH predictions.
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Ponte Castañeda, P., 2002a. Second-order homogenization estimates for nonlinear composites incor-
porating field fluctuations: I - theory. Journal of the Mechanics and Physics of Solids 50, 737 –
757.
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