
A new approach for time-lapse data weighting in electrical resistivity
tomography

Nolwenn Lesparre1, Fred Nguyen1, Andreas Kemna2, Tanguy Robert3, Thomas Hermans4,
Moubarak Daoudi5, and Adrian Flores-Orozco6

ABSTRACT

Applications of time-lapse inversion of electrical resistivity
tomography allow monitoring variations in the subsurface that
play a key role in a variety of contexts. The inversion of time-
lapse data provides successive images of the subsurface proper-
ties showing the medium evolution. Image quality is highly
dependent on the data weighting determined from the data error
estimates. However, the quantification of errors in the inversion
of time-lapse data has not yet been addressed. We have devel-
oped a methodology for the quantification of time-lapse data
error based on the analysis of the discrepancy between normal

and reciprocal readings acquired at different times. We applied
the method to field monitoring data sets collected during the in-
jection of heated water in a shallow aquifer. We tested different
error models to indicate that the use of an appropriate time-lapse
data error estimate yielded significant improvements in terms of
imaging. An adapted inversion weighting for time-lapse data im-
plies that the procedure does not allow an over-fitting of the data,
so the presence of artifacts in the resulting images is greatly re-
duced. Our results determined that a proper estimate of time-lapse
data error is mandatory for weighting optimally the inversion to
obtain images that best reflect the evolution of medium properties
over time.

INTRODUCTION

Time-lapse electrical resistivity tomography (ERT) has become a
widely used method to characterize hydrogeologic processes. The
method has been used to study water and snowmelt infiltration in soil
and in the vadose zone (e.g., Daily et al., 1992; LaBrecque et al.,
2002; French and Binley, 2004; Oberdörster et al., 2010; Slater et al.,
2010; Travelletti et al., 2012), groundwater flow (e.g., Coscia et al.,
2011; Doetsch et al., 2012), solute transport (e.g., Kemna et al., 2002;
Koestel et al., 2008; Ogilvy et al., 2009; Robert et al., 2012; Rucker
2014), changes in the thermal state of permafrost-affected rocks (e.g.,
Krautblatter et al., 2010), heat conduction and transport (e.g., Her-
mans et al., 2015), and many others.

It is well-known that ERT suffers from loss of resolution with in-
creasing distance to the electrodes (e.g., Nguyen et al., 2009; Perri
et al., 2012), which can be analyzed using sensitivity and uncertainty
analyses (see, e.g., Hermans et al., 2012b; Robert et al., 2012). Fur-
thermore, variations in the data error during monitoring (e.g., varia-
tions in the galvanic contact of the electrodes) may also lead to
electrical images of variable quality in time, potentially misleading
their quantitative interpretation (Deceuster et al., 2013). Therefore,
several approaches have been suggested to improve the reliability
of the time-lapse images by including a temporal regularization
(e.g., Kim et al., 2009; Hayley et al., 2011; Karaoulis et al., 2011;
Loke et al., 2014). Such regularization constrains the inversion to a
reduced range of acceptable models, increasing the correlation of in-
verted parameter values with hydrogeologic parameters of interest
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(Loke et al., 2014). However, to date, no study has focused on the
impact of the time-lapse data error description in the inversion,
although it has been recognized for being of critical importance
(e.g., Miller et al., 2008; Flores-Orozco et al., 2012). The objective
of this paper is to develop a methodology for estimating the time-
lapse data error applied for the data weighting in the inversion.
The comparison of normal and reciprocal measurements is com-

monly used to quantify the data error in static imagery (e.g., LaBrec-
que et al., 1996; Slater et al., 2000; Koestel et al., 2008; Oberdörster
et al., 2010; Flores-Orozco et al., 2012). The reciprocal measurements
correspond to a swap of the electrodes used for current injection and
voltage measurements during the “normal” acquisition. Here, we as-
sume that the reciprocal theorem applies on the resistance differences
and we analyze normal-reciprocal data-difference discrepancies to
estimate appropriately the weighting of time-lapse ERT data in the
inversion. We investigate the impact of the data error weighting on
the reconstructed images. Our results demonstrate that a specific data
error estimation method is required for time-lapse inversions to obtain
reliable images in ERT monitoring.

ERROR IN TIME-LAPSE ERT

The error in ERT measurements can be considered as being com-
posed of a random component and a systematic component correlated
over time. At a time t0, data d0 can be estimated from the model
parameters m0 by the computation of the nonlinear function fðm0Þ:

d0 ¼ fðm0Þ þ ϵS þ ϵ0: (1)

In the inversion, log 10-transformed resistances are used as data d
and log 10-transformed resistivity (of lumped finite-element cells)
as parameters m to account for the typically large range of resistivity
values for earth materials. The functions ϵS and ϵ0 stand for the sys-
tematic and random error at t0, respectively (LaBrecque and Yang,
2001). Random error cannot be predicted because it arises primarily
from fluctuations in the contact between the electrodes with the
ground/air, and in the injected current and its pathways (e.g., Binley
et al., 1995; LaBrecque et al., 1996; Slater et al., 2000). Systematic
error might be associated with problems during data acquisition such
as poor galvanic contact, malfunction of the measuring device, mis-
placed, or misconnected electrodes; but it also might be due to
numerical errors. In the case of monitoring, further sources of error
are related to changes in the position of the electrodes and their con-
tact with the ground for measurements collected at different times due
to the medium saturation variations, for instance, also associated with
variations in the injected current and signal strength (e.g., Supper
et al., 2014).
For time-lapse imaging, LaBrecque and Yang (2001) demon-

strate that the data-differences inversion method allows reducing
the effect of systematic error present in the data, which cancels out
by subtraction. ERT measurements typically present a better repeat-
ability compared with the data value accuracy, expressly when elec-
trodes are set up at the beginning of the experiment and remain in
place during monitoring (LaBrecque and Yang, 2001). In the case in
which the correlated error dominates, it is particularly worth per-
forming data-differences inversions seeking changes in the medium
from the initial state. At time ti, the data differences from the initial
state are written

di − d0 ¼ fðmiÞ − fðm0Þ þ ϵi − ϵ0; (2)

where di and mi represent, respectively, the measured data and the
model parameters at time ti. Because the uncorrelated error ϵi at
time ti is independent of ϵ0, the error variance of the data differences
corresponds to the quadratic addition of the respective variance of ϵ0
and ϵi. Therefore, data-difference inversions are of no interest for
systems presenting uncorrelated source of error with a higher am-
plitude than the systematic error.
The difference inversion algorithm works in two steps: First, a

background model m0 is reconstructed from data acquired at the
initial state t0. The error affecting the background image is due to
the propagation of the random and the systematic error component.
Usually the data error is deduced by comparing normal and reciprocal
measurements (LaBrecque et al., 1996; Slater et al., 2000; Koestel
et al., 2008). During a second step, the parameter changes mi −m0

are sought by inverting the data differences di − d0. The difficulty of
this approach is to estimate appropriately the uncorrelated error level
because the fractions of the random and systematic error are rarely
known (LaBrecque et al., 1996). Furthermore, classical data error es-
timation procedures using reciprocal measurements are not adapted
to the time-lapse measurement scheme. For instance, data with large
geometric factors are characterized by low signal-to-noise ratio and
often associated with larger weights because the classical error model
applied for background inversion presents an increase of the error
level with increasing resistances (Slater et al., 2000). Hence, the dif-
ference inversion with classic error estimation procedure typically
leads a reduced influence of such measurements, or a severe smooth-
ing in the concerned sensitive regions. To improve the difference in-
version scheme, an adequate fitting to the data differences and their
associated error needs to be performed for weighting adequately the
data in the inversion. To our knowledge, there exists no study dealing
with the quantification of error associated with differences of time-
lapse data. Currently, the standard procedure corresponds to the static
error assessment described below (Slater et al., 2000; Koestel et al.,
2008). However, the static error model does not take into account
that data differences are actually fitted in the inversion, as performed
here, to remove the correlated error affecting the data. Hermans et al.
(2016) stress the importance of defining a specific measurement error
for time-lapse acquisitions from time-lapse resistance changes obser-
vations. However, their study is based on synthetic data only and they
use a prediction-focused approach, so no inversions are carried out.
Here, we adopt the common understanding that the normal-recip-

rocal discrepancy can be considered as a practical measure of data
error (e.g., LaBrecque et al., 1996; Slater et al., 2000; Flores-Orozco
et al., 2012). A linear error model for the resistance has been pro-
posed to describe the static data error ϵB ¼ ϵS þ ϵ0 used for the
background image reconstruction (LaBrecque et al., 1996). That re-
sistance error model is given by (Slater et al., 2000)

ϵB ¼ aþ bR: (3)

Following the description from Slater et al. (2000), in our study, we
define the parameters a and b, such that the error model defined in
equation 3 encompasses all data points in a log ΔR versus log R̄
plot (Figure 1). The valueΔR corresponds to the difference between
resistances measured in a normal and a reciprocal configuration,
whereas R̄ represents the mean value of normal and reciprocal re-
sistances. Considering that the error model determined in such a
way is mainly defined by the larger normal-reciprocal misfits, its
choice implies a conservative fit of the data to prevent the creation
of artifacts.
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MATERIALS AND METHODS

Time-lapse error modeling

Here, we propose to extend the analysis of misfit between normal
and reciprocal for data differences, i.e., the data given by the differ-
ence between normal background measurements and those collected
at ti and their corresponding reciprocals. As for the static case, we
examined how the normal and reciprocal measurements variations
with time could be used for quantifying the error. In equation 2,
di and d0 are expressed in log 10 resistances, so the time-lapse error
should correspond as well to a difference of log10 resistances. Be-
cause we perform a data-difference inversion, we need to characterize
how the normal and reciprocal measurements evolve with time from
the initial acquisition. The comparison of the time-lapse measurement
variations j log RN;i − log RR;ij versus the initial state variations
j log RN;0 − log RR;0j is not adapted for estimating the time-lapse er-
ror as illustrated by the wide dispersal of the data on the scatterplot in

Figure 2a. Instead, the scatterplot showing the reciprocal resistances
differences Δ log RR, i.e., the quantity that is inverted in the data dif-
ference inversion, as a function of the normal resistances differences
Δ log RN shows a better 1:1 consistency (Figure 2b). The value
Δ log RN corresponds to the normal (N) difference between t0 and
ti, and Δ log RR represents the reciprocal (R) difference, such that

Δ log RN ¼ log RN;i − log RN;0;

Δ log RR ¼ log RR;i − log RR;0: (4)

Contrasted behaviors are observed on the Δ log RR versus Δ log RN

scatterplot related to the different phases of the experimental setup
as described below. Nevertheless, the observed correlation between
Δ log RN and Δ log RR shows that the error quantification for
time-lapse inversion can be deduced from their comparison. Indeed,
the plot of the time-lapse normal-reciprocal misfit, i.e., the difference
betweenΔ log RN andΔ log RR, reveals a clear increase in the time-
lapse data error with decreasing resistance values (Figure 3). Thus, we
suggest that the data-differences error ϵTL;i ¼ ϵ0 þ ϵi, i.e., the normal-
reciprocal discrepancy, can be modeled as
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Figure 1. Data error characterization for the background inversion.
(a) Scatterplot of normal and reciprocal resistances for the data col-
lected before the experiment for the background image reconstruction
and at different times during heating at 24, 72, and 144 h after in-
jection of heated water. (b) Static error analysis for the corresponding
heating phases.

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10

a)

b)

−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 2. Data error characterization for the time-lapse inversion.
(a) Scatterplot of normal and reciprocal resistance differences for
data collected during heating as a function of normal and reciprocal
resistance differences corresponding to data collected for the back-
ground image reconstruction. (b) Scatterplot of reciprocal resistan-
ces differences between data collected during heating and data
collected for the background image as a function of normal resis-
tances differences between data collected during heating and data
collected for the background image.
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jΔ log RN − Δ log RRj ¼
a
R
þ b: (5)

We propose here to fit the parameters a and b in equation 5 in three
different strategies:

1) As an envelope fit, such that the error model encompasses all data
points in a jΔ log RN − Δ log RRj versus log R̄i plot, implying
a conservative fit of the data similar to the above-mentioned ap-
proach of Slater et al. (2000). This is achieved by computing the
mean values and standard deviation that jΔ log RN − Δ log RRj
takes in bins (one bin per decade of resistance values) and fitting
equation 5 in the least-squares sense to the means plus two stan-
dard deviations (encompassing 97% of the data).

2) A least-squares fit to the whole data set.
3) A resistance independent error model (a ¼ 0 in equation 5).

The results of the inversions using the three types of time-lapse
error models are compared, and the reliability of the different ob-
tained images is discussed later.

Inversion algorithm

The inversion is performed with CRTomo (Kemna, 2000) that
uses a Gauss-Newton scheme to iteratively minimize the objective
function ΨðmÞ:

ΨðmÞ ¼ Ψdðd;mÞ þ λΨmðmÞ; (6)

whereΨdðd;mÞ is a measure of the data misfit, the model functional
ΨmðmÞ defines desired model constraints, and λ is the so-called
regularization parameter. We refer to Kemna (2000) for a complete
description of the inversion algorithm.
The data misfit Ψdðd;mÞ expresses differently for the reconstruc-

tion of the background or the time-lapse images. For the static case,
we assume that each resistance measurement dj is contaminated by an
error ϵB;j, so that the measure of the error-weighted data misfit for N
data points is defined as

Ψdðd;mÞ ¼
XN
j¼1

jdj − fjðmÞj2
jϵB;jj2

: (7)

For the time-lapse inversion, the measure of the data misfit Ψdðd;mÞ
is defined using a double difference as stated in equation 2. The first
difference compares the background data d0 and the monitoring data
di, whereas the second one evaluates the discrepancy inferred from
the forward model estimations computed with the background state
model fðm0Þ and the monitored model fðmiÞ:

Ψdðd;mÞ ¼
XN
j¼1

jðdi;j − d0;jÞ − ðfjðmiÞ − fjðm0ÞÞj2
jϵTL;jj2

; (8)

with ϵTL;j, the data-differences error estimated as described in equa-
tion 5. Such a definition of the data misfit Ψdðd;mÞ has been dem-
onstrated to improve imaging results for the inversion of time-lapse
ERT data sets (e.g., LaBrecque and Yang, 2001; Kemna et al., 2002).
The model functional ΨmðmÞ allows the spatiotemporal regulari-

zation of the inversion

Ψm ¼ kWmðm −m0Þk2: (9)

To focus solely on the data weighting impact, the regularization term
contains no explicit temporal constraint (i.e., no additional parameter
as in Kim et al., 2009; Karaoulis et al., 2011; Loke et al., 2014). For
the background reconstruction m0 ¼ 0, whereas for the time-lapse
inversion, m0 corresponds to the background model (e.g., Twomey,
1963) inducing therefore an implicit temporal constraint.
During the inversion, a univariate line search is performed at each

Gauss-Newton iteration step to find the optimum value of the regu-
larization parameter λ that balances the respective weights of the
data reduction Ψdðd;mÞ and the model smoothing ΨmðmÞ. The line
search seeks the λ value that minimizes the residuals σ that yields
the desired target misfit: σ ¼ j1 − ξj. We used here a ξ value of
10−2. For the background inversion residuals σ0, we write

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

jdj − fjðmÞj2
jϵB;jj2

vuut ; (10)

whereas the time-lapse inversions residuals σTL read as

σTL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

jðdi;j − d0;jÞ − ðfjðmiÞ − fjðm0ÞÞj2
jϵTL;jj2

vuut : (11)

Such a definition of the inversion stopping criteria avoids over-fitting
the data and thus the presence of artifacts in the resulting images. The
explicit formulation of a final misfit threshold that constrains the dy-
namic adjustment of λ is explicitly defined in Occam’s inversion
method (Constable et al., 1987; Aster et al., 2013). Therefore, the
data error estimation is of particular importance because it affects
not only the data misfit weighting but also the satisfactory level of
misfit at which the inversion is stopped.
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Figure 3. Time-lapse reciprocal error ϵTL against measured mean
resistance, the resistance dependent error models corresponding
to the least-squares fit, the envelope fit of the parameters a and b
in equation 5 are shown, as well as the constant error model.
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Experimental set up

ERT measurements were collected during a
heated water injection in sands at shallow depth
(5 m). Detailed descriptions of the study area are
given in Vandenbohede et al. (2011) and Her-
mans et al. (2012b). The description of the ex-
periment itself can be found in Hermans et al.
(2012a). The site is located on the campus De
Sterre of Ghent University, Belgium (Figure 4).
The schematic cross section of the site is pre-
sented in Figure 4 and shows sands from 0 to
−4.4 m and a sandy clay layer below. The water
table is nearly flat at the site at −2 m, with a hy-
draulic gradient of 0.005 toward the south–south-
west, as derived from measurements in three
wells (W01, W02, and W03). The temperature
measured in the aquifer during the ERT monitor-
ing was 10.5°C (Hermans et al., 2012b).
Injection of tap water and heated water was performed on the site,

and surface ERT measurements were collected before, and during
the injection to monitor the flow and transport of heat (associated
with the heated water) in the subsurface. Tap water was injected
initially over 15 days to avoid mixing cold groundwater and heated
tap water. Then, heated tap water (49°C) was injected for 144 h (six
days, starting on 18 January 2011) at a rate of 80 l/h and at a depth
of 4 m. The ERT monitoring line was centered on the injection well
with 48 electrodes spaced by 60 cm (28.2 m long profile). The ca-
bles and the electrodes were left in place during the heating phase. A
dipole-dipole configuration was used with a dipole length of a ¼ 3

and a separation between current and potential dipoles n ≤ 13, lead-
ing to 579 measurement points. Data were collected as normal and
reciprocal pairs by setting accordingly measuring protocols with an
ABEM SAS1000 system using a constant injection current of
200 mA. The duration of a whole data set acquisition was of 3 h
including normal and reciprocal measurements.

RESULTS

Data analysis

The pseudosection for the background is shown in Figure 5a. The
pseudosection shows higher apparent resistivity values closer to the
surface and a monotonic decrease at larger depths. For data collected
at different times, we present the pseudosections of percentage
changes of the apparent resistivity values. The percentage change
was computed for each quadrupole as the change in apparent resis-
tivity at each time-lapse ti with respect to the background readings.
Pseudosections of percentage changes show large variations and no
obvious systematic error. Note that two effects play a role here. The
first one is the injection of the heated water, which produced localized
changes around the borehole marked by a decrease of the apparent
resistivity. The second one is related to a saturation decrease in the
vadose zone. Before the background data acquisition, heavy rains
occurred and water infiltrated the unsaturated zone. The shallow part
of the medium was more saturated for that background acquisition
than for the subsequent ones because the water could circulate easily
through the shallow sandy medium toward the saturated zone. The
process of saturation decrease induces an increase of the apparent

ERT

W01
Injection well

a) b)

Figure 4. Experimental set up for the Ghent site. (a) Location of the study area as well as
the position of the ERT profile and well W01. (b) Schematic geologic cross section
obtained after drilling and installing well W01.

Figure 5. (a) Apparent resistivity pseudosection for the background
data at Ghent and (b) time-lapse pseudosections given in terms of
percentage change in apparent resistivity (%) during heating.
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resistivity and yields changes in the entire pseudosection given the
integrative nature of the measurements.
Considering the expected low velocity of the diffusive process

(Vandenbohede et al., 2011), we could collect reciprocal measure-
ments for each time frame of the cooling phase. For the background
error model, the estimated parameters’ values of equation 3 are a ¼
1.8 mΩ and b ¼ 0.7 (Figure 1b). The amplitude of the constant
parameter a ¼ 1.8 mΩ of the linear error model allows wrapping
the data error estimated for low resistance values away from the 1:1
line on the scatterplot (Figure 1). In case the acquisition of the full
reciprocal is not possible due to rapid changes in the subsurface, we

suggest to use a subset of reciprocals representative of the whole
data sets (e.g., Hermans et al., 2012b).
For the time-lapse noise characterization, the Δ log RR versus

Δ log RN scatterplots present different behaviours depending on
the acquisition time (Figure 2b). Data corresponding to the first ac-
quisition during the heat-plume injection (t ¼ 24 h) present low
variations from the background acquisition. The time-lapse data
are closer to the initial state because less volume has been injected
compared with the following acquisitions. Therefore, the difference
values from the t0 acquisition are lower and present a dispersed dis-
tribution. The data variations from the initial state corresponding to
the t ¼ 72 h acquisition present a more focused distribution, likely
due to the development of the heat plume in the medium. For the
acquisition at t ¼ 144 h, data differences present a higher range of
variability and an alignment with the 1:1 line. For that time, data are
affected by superficial processes and by the influence of the heat-
plume development. The trend of the time-lapse reciprocal misfit
has been fitted using equation 5 with different models shown in
Figure 3. Thus, an envelope curve for which the parameters’ values
are estimated to be a ¼ 0.001 and b ¼ 0.09 allows wrapping the
whole data sets. For the least-squares fit, a ¼ 7 × 10−6 and b ¼ 0.1.
In addition, a constant error model independent of the measured
resistance was also selected with b ¼ 3. The least-squares and
the envelope models present a similar value for the parameter b that
corresponds to the minimal error for high resistance values. By the
contrary, the parameter a presents consequent variations larger than
two orders of magnitude when comparing the least-squares and the
envelope models.

Imaging

The electrical resistivity image for data collected before the in-
jection of heated water is presented in Figure 6. To better solve for
the horizontal layering observed in the sedimentological/hydrologic
units (Hermans et al., 2012b), the horizontal/vertical anisotropy ra-
tio in the smoothness constraint inversion was set to 1000∶1 at −2
and −4.5 m depth, considering horizontal limits observed in bore-
hole sediments. It means that the smoothing effect of the inversions
is 1000 lower vertically than horizontally, permitting the reduction
of the vertical smoothing effects at the limit between layers (Cate-
rina et al., 2014). Imaging results, computed with such constraint,
show agreement with the sedimentological/hydrologic layering be-
cause it can be observed in Figure 4.
The first approach used for the inversion of time-lapse data sets

was to define the error as a constant error b ¼ 3, independent of the
measured resistance values (Figure 7). The images show a conduc-
tive plume in the center, over-smoothed and hardly visible. We also
see an increase of resistivity in the upper part of the medium that
corresponds to the saturation decrease effect. We note that the re-
gions of resistivity increase are blurred and seemed to penetrate
deeper than the water table located at −2 m, where no saturation
variations are expected.
The inversions performed using a resistance-dependent error

model with a least-squares fit as defined in equation 5 (Figure 3)
are shown in Figure 8, whereas the ones performed with an envelope
fit are shown in Figure 9. The images shown in Figure 8 reveal sev-
eral artifacts, which impede the interpretation of the results. Clearly,
the inversions tend to over-fit the data. Note that for these inversions,
the target data misfit is never reached. The use of the bins median

Figure 6. ERT background image for Ghent obtained using error
model parameters (equation 3) a ¼ 1.8 × 10−3 Ω and b ¼ 0.7.

Figure 7. ERT time-lapse images in terms of percentage change in
resistivity at Ghent using the data-differences inversion including
smoothing model changes with resistance-independent error model
(equation 5) with parameters a ¼ 0 and b ¼ 3. From top to bottom:
images obtained after 24, 72, and 144 h during the injection phase.
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(Koestel et al., 2008) instead of a least-squares estimate provides sim-
ilar results in terms of imaging (not shown here).
The inversions shown in Figure 9 reveal the heat injection plume

as well as the changes in the unsaturated layer. After 72 h, the mini-
mum anomaly corresponding to the heat plume ranges from −10% to
−20% with a continuous increase of the spatial extension of the heat
plume at a depth of approximately −5 m. The heat plume reaches its
maximum extension after 144 h, associated with a resistivity decrease
of values up to −35%. In addition, regions affected by an increase of
resistivity related to the decrease of the saturation in the vadose zone
are limited to the shallow region, above the water table. The envelope
error model thus produces images that also better reflect shallow phe-
nomena. Hence, the results shown in Figure 9 help to demonstrate the
relevance of an adequate error parameterization for the quantitative
imaging of time-lapse ERT data sets.
The inversion results of time-lapse ERT are influenced by the

weighting of the data misfit. A characterization of the error model
performed from the analysis of the normal and reciprocal data var-
iations adapted to time-lapse experiments is important for the objec-
tiveness of the interpretation. Moreover, the estimation of the error
perturbing the data in time lapse from the reciprocal data highlights
the significance of performing such measurements despite the in-
creasing time of acquisition. Further regularization schemes, such as
those presented in Kim et al. (2009) or Karaoulis et al. (2011), may
help to refine the interpretation. However, the choice of regularization
method requires a priori information on the spatiotemporal evolution
of the medium properties that are not always available. Hence, one
challenge in the 4D methodology is that independent inversions are

first run to estimate the value of the constraints that are subsequently
used. This step is decisive to distinguish if the resistivity variations
present a sharp or a smooth pattern because they require different
regularization constraints (Loke et al., 2014). Therefore, the error
level estimates at this very first step have a critical influence on the
4D constraint, whatever the inversion algorithm.

CONCLUSION

We performed a detailed analysis of time-lapse ERT measure-
ments using reciprocal readings. In our study, we found a depend-
ence of the time-lapse error on the magnitude of the measured
resistance (or the measured voltage at a constant current). Based on
our analysis, we proposed a methodology for the error model es-
timation to describe the data error present in the data differences
between the baseline and time-lapse measurements. We performed
inversions of time-lapse data using different error model parameter-
izations, using an envelope fit, a least-squares fit, and a constant
error model. We found that significant improvements are obtained
by inverting data differences based on a resistance-dependent error
model using the envelope approach. The reduction of acquisition
time is decisive when monitoring rapid changes of the medium
properties, and one may consider using a limited number of recip-
rocal acquisitions.
We therefore conclude that the analysis of the normal-reciprocal

misfit for time-lapse differences is a suitable tool for the evaluation
of time-lapse data quality and to quantify data error. The character-
istics of the measuring protocol may have a strong influence in the

Figure 8. ERT time-lapse images in terms of percentage change in
resistivity at Ghent using the data-differences inversion including
smoothing model changes with resistance-dependent error model
(equation 5). Parameters are estimated with a least-square-fit:
a ¼ 7 × 10−6 and b ¼ 0.1 (Figure 3). From top to bottom: images
obtained after 24, 72, and 144 h during the injection phase.

Figure 9. ERT time-lapse images in terms of percentage change in
resistivity at Ghent using the data-differences inversion including
smoothing model changes with resistance-dependent error model
(equation 7). Parameters correspond to a fit that encompasses the
whole error data sets: a ¼ 10−3 and b ¼ 0.09 (Figure 3). From
top to bottom: images obtained after 24, 72, and 144 h during
the injection phase.
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error parameterization, but the suggested error model is dependent
on the values measured, like previous models for static measure-
ments. Moreover, the error model estimate could be applied for
measurements with high dynamics in the measured resistances or
for configurations with a low dynamic in the measured values
(where the error model tends to a constant value). Our results sug-
gest that further improvements in the regularization approach, i.e.,
inclusion of a prior model, spatiotemporal constraints, etc., may
also provide better results when the data error is adequately quan-
tified. Indeed, the data need to be weighted, no matter the inversion
procedure. Therefore, the findings in our study are relevant for all
applications of ERT monitoring, independent of the inversion al-
gorithm.
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