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Abstract— Background: Elevated blood glucose (BG) 

concentrations (Hyperglycaemia) are a common 

complication in critically ill patients. Insulin therapy is 

commonly used to treat hyperglycaemia, but metabolic 

variability often results in poor BG control and low BG 

(hypoglycaemia). Objective: This paper presents a model-

based virtual trial method for glycaemic control protocol 

design, and evaluates its generalisability across different 

populations. Methods: Model-based insulin sensitivity (SI) 

was used to create virtual patients from clinical data from 

three different ICUs in New Zealand, Hungary, and 

Belgium. Glycaemic results from simulation of virtual 

patients under their original protocol (self-simulation) and 

protocols from other units (cross-simulation) were 

compared.  Results: Differences were found between the 

three cohorts in median SI and inter-patient variability in 

SI. However, hour-to-hour intra-patient variability in SI 

was found to be consistent between cohorts. Self and cross-

simulation results were found to have overall similarity and 

consistency, though results may differ in the first 24-48 

hours due to different cohort starting BG and underlying 

SI. Conclusions and significance: Virtual patients and the 

virtual trial method were found to be generalisable across 

different ICUs. This virtual trial method is useful for in 

silico protocol design and testing, given an understanding of 

the underlying assumptions and limitations of this method.  
Index Terms—Glycaemic control, virtual trials, insulin 

sensitivity 

I. INTRODUCTION 

ritically ill patients often experience sustained stress 

induced hyperglycaemia (high blood sugar) and high 

glycaemic variability due to their critical condition [1-4]. 

Hypoglycaemia (low blood sugar), hyperglycaemia and high 
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glycaemic variability have each been independently linked to 

increased morbidity and mortality in intensive care units (ICU) 

[5-11]. Glycaemic control has demonstrated the ability to 

improve blood glucose (BG) outcomes, and reduce morbidity 

and mortality [12-15], based on the control of glycaemic levels 

[10, 16-20]. However, several studies have failed to repeat these 

positive results [21-23], often with significantly increased 

hypoglycaemia [11]. The main issue is that ICU patients are 

highly variable in their response to insulin, particularly in the 

first 48 hours of stay [24-26], which can make managing 

glycaemia difficult as patient condition evolves [27]. 

In this regard, model-based glycaemic control methods have 

recently shown good safety and performance [28-33]. Their 

main advantage is the use of a computer model to identify 

patient-specific insulin sensitivity (SI), which quantitatively 

describes patient response to insulin. In this way model-based 

protocols can better account for inter- and intra- patient 

variability when dosing insulin, in ways that many non-model-

based protocols simply cannot. However, given a validated 

model, these protocols are only as good as the ability to design 

the protocol for safe, effective glycaemic control. 

Assessing glycaemic control protocols in silico using 

clinically validated models and virtual trial methods enables the 

ability to design new protocols or assess and improve existing 

protocols, to optimize safety and quality of glycaemic control. 

Virtual trials utilise SI to simulate per-patient BG response to 

protocolised insulin treatments, and thus allow the assessment 

of hypo- and hyper- glycaemic risks and glycaemic variability. 

In silico design is also much faster and more efficient than 

controlled clinical testing on patients, with far less patient risk. 

Thus, a protocol can be optimized safely and rapidly before 

validation clinical pilot tests on patients. Importantly, this 

approach usually requires local clinical data to create virtual 

patients, characterised by time-varying insulin sensitivity, on 
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which to test these protocols [34-36]. Without this data, it is not 

possible to be sure if a protocol will, even with good 

compliance, translate successfully to another ICU. 

The objective of this paper is to assess the potential of 

independent (non-local) cohorts to generate virtual patients and 

simulate outcomes of glycaemic control protocols. This will be 

done in two parts: 

1) Analysis of model-based insulin sensitivity (SI) and its 

variability in three different ICU cohorts. 

2) Use of SI to create virtual patients for simulation, both 

with the original protocol (Self-Simulation) and protocols 

from other cohorts (Cross-Simulation), where results are 

compared to the clinical data for that protocol and cohort. 

The first examines underlying metabolic 

similarities/differences between the cohorts, and the second 

assesses the impact of these similarities and differences in 

assessing glycaemic control outcomes in virtual patient 

simulation. Hence, these two objectives test the 

interchangeability of virtual patients for virtual trial testing 

across units, cohorts and protocols, where the greater the 

generality, the easier it is to test and design new solutions using 

virtual patients.  

II. PATIENT DATA, COHORTS, AND PROTOCOLS 

Retrospective clinical data from three independent cohorts of 

20 critically ill patients were used for this study from 3 mixed-

medical ICU’s in Belgium, Hungary, and New Zealand. 

Patients were selected from clinical data records in each ICU 

based on similar BG data density required to create the 

equivalent, good quality virtual patients [37]. This criterion 

ensures more consistent measurement of true similarity or 

differences of metabolic differences between cohorts [38, 39]. 

Diagnosed diabetic patients were excluded. Other selection 

criteria for patients were: (1) glycaemic control for at least 60 

hours; (2) insulin administration at the beginning of glycaemic 

control; (3) at least 10 BG measurements during control, every 

4 hours (on average, but preferably more frequent), to allow 

good virtual patients to be created. Clinical data only covers 

time when insulin was being administered regularly, and insulin 

weaning protocols differed between units. Typically insulin 

therapy is completed well before ICU discharge. Clinical data 

was limited to a maximum of 120 hours (5 days) per patient, to 

prevent data from the more variable first 24 hours being 

swamped by more stable long glycaemic control episodes. This 

also prevented a few longer stay patients from dominating the 

outcome statistics. The total hours per cohort in Table 1 are 

approximately the 2000-2500 hours required to quantify 

metabolic level and variability in [38].  

All three cohorts are treated differently, and they are not 

intentionally clinically matched by APACHE code, diagnosis 

or other metrics (this data was not available for the Belgian 

cohort), although age is similar. Stage one of the analysis will 

assess metabolic similarity of these three cohorts. Thus, these 

three cohorts will provide a robust test of the hypothesis of 

interchangeability across different mixed-medical ICU’s and 

countries. Cohort details are shown in Table 1, and from here 

forward, the cohorts are denoted: Hungary (HU), New Zealand 

(NZ) and Belgium (BE). Although insulin delivery rates are 

similar between cohorts, nutritional dextrose delivery is very 

different (Table 1, Figure 1). Between the NZ and HU cohorts, 

APACHE II scores are very different. This data was not 

available for the BE cohort. 

A. Belgium (BE) 

The first cohort is from the Centre Hospitalier Universitaire 

TABLE I 

COHORT DETAILS. DATA ARE SHOWN AS MEDIAN[IQR] WHERE APPROPRIATE. 

Parameters New Zealand (NZ) Hungarian (HU) Belgian (BE) 

Num patients 20 20 20 

Total hours 1915 2000 2222 

Age (years) 65.0 [54.8-68.5] 66.5 [53.8- 70.0] 66.0 [51.8-71.8] 

Gender (M/F) 14/6 14/6 9/11 

APACHE II Score [IQR] 24 [ 19 – 28] * 33 [29 – 37]** N/A 

ICU LoS [IQR] (days) 20.0 [7.2 - 35.7]* 14.0 [8.2 - 19.8]** N/A 

Time on Protocol (h) 139.2 [82.8-216.8] 111.0 [77.1-192.1] 196.9 [114.9-291.0] 

Starting BG [mmol/L] 10.8 [9.0 – 13.9] 8.2 [6.9 – 9.6] 8.5 [7.3 – 9.9] 

Diabetic None None None 

Insulin dose (U/hr) 3.0 [1.5 - 4.5] 3.0 [1.5 - 5.0] 3.0 [2.0 - 5.5] 

Glucose Intake (g/hr) 6.1 [4.0 - 6.7] 8.2 [6.0 - 10.6] 9.7 [8.3 - 11.3] 

Model based SI: (L/mU/min x 10-4)    

Median SI [IQR] 3.2 [2.4 – 4.4] 4.8 [3.5 – 6.7] 2.0 [0.8 – 4.2] 

Median hour-to-hour ΔSI [IQR] 0.04 [-0.3 – +0.4] 0.05 [-0.4 – +0.4] 0.01 [-0.2 – +0.2] 

Median absolute hour-to-hour ΔSI [IQR] 0.3 [0.1 – 0.7] 0.4 [0.2 – 0.8] 0.2 [0.1 – 0.4] 

Median [IQR] Per-patient Median SI  3.2 [2.8 – 3.7] 5.1 [3.8 – 5.7] 3.9 [3.1 – 4.9] 

Model % fitting error [IQR] -0.6 [-2.2 – 0.8] 0.1 [-1.3 – 1.5] 0.0 [-1.1 – 1.0 ] 

*This data was available for 17/20 patients. **This data was available for 15/20 patients. N/A – this data was not available for the BE cohort. 
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of Liège (CHU) ICU, Belgium. In this cohort, the standard of 

care glycaemic control protocol was a sliding scale that dosed 

insulin based on the patient’s BG level and the previous insulin 

dose [40]. The protocol applied at CHU of Liège targets the 5.6-

8.3 mmol/L (100-150 mg/dL) band, and is characterized by an 

insulin infusion-only approach with a 1- or 4- hour time interval 

between BG measurements. Insulin rate is adjusted depending 

on current and previous BG level and current insulin infusion 

rate. However, it is limited by an inability to reduce insulin 

infusions until BG is within the target range. Enteral and 

parenteral nutrition is decided by clinicians and ICU practice 

with glucose boluses specified for BG < 2.2 mmol/L. BG 

measurements are made hourly until BG values are stable in the 

band, and then 4-hourly. Full details are given in [40]. 

B. New Zealand (NZ) 

The second cohort is from the Christchurch Hospital ICU, 

New Zealand, which uses the stochastic model-based STAR 

glycaemic control protocol [32, 33, 41]. The STAR protocols 

adjust both insulin and nutrition levels [32, 41] and measures 

hourly when outside the 4.4-8.0 mmol/L (80-144 mg/dL) band, 

and up to 3-hourly within the band based on nursing choice of 

intervention interval. The goal is to control BG with a 5% risk 

of BG < 4.4 mmol/L (80 mg/dL) for each intervention and to 

otherwise maximize nutrition given towards a target of 25 

kcal/kg/day, as per ACCP and ESPEN guidelines [42, 43]. 

Insulin is typically delivered as boluses every hour via an 

infusion pump.  

STAR utilizes stochastic forecasting of likely BG outcomes 

based on models of metabolic variability observed across a 

representative clinical data set. Hour-to-hour metabolic 

variability is characterized by a model-based insulin sensitivity 

(SI) parameter, and models of variability in SI allow subsequent 

forecasting of likely BG outcomes for the next 1, 2, and 3 hours 

[38]. These models can be used to dose insulin based on risk of 

glycaemic outcomes, and in particular limiting the risk of 

BG<4.4 mmol/L to 5% or less [32, 41]. The stochastic SI 

forecasting model used by this protocol is based on a 

retrospective reference population [38]. Insulin is automatically 

stopped by the STAR protocol when high insulin sensitivity 

indicates exogenous insulin is no longer required. Complete 

details on the STAR control framework can be found elsewhere 

[32, 41]. 

C. Hungary (HU) 

The third cohort is from Kálmán Pándy Hospital ICU, 

Hungary, which also uses STAR, although differently within 

the same framework. In the Hungarian cohort a STAR-

framework (STARHu) delivers insulin as an intravenous 

infusion and uses a significantly higher carbohydrate nutrition 

formula than the New Zealand ICU. Patients are transitioned 

from early aggressive parenteral nutrition to enteral nutrition as 

their stay progresses. Hence, it has a similar 5% risk of BG<4.4 

mmol/L, but delivers insulin and nutrition very differently. The 

stochastic model of SI used was the same as that used in NZ. 

Insulin is automatically stopped by the STAR protocol when 

high insulin sensitivity indicates exogenous insulin is no longer 

required. 

III. PHYSIOLOGICAL MODEL AND VIRTUAL PATIENTS 

The model used to create virtual patients is the clinically 

validated intensive care insulin, nutrition and glucose (ICING) 

model [44-46]:  

�̇�(𝑡) = −𝑝𝐺𝐺(𝑡) − 𝑆𝐼(𝑡)𝐺(𝑡)
𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)

+
𝑃(𝑡) + 𝐸𝐺𝑃 − 𝐶𝑁𝑆

𝑉𝐺
 

(1) 

 
Fig. 1.  First 24 hours of clinical data for a) NZ cohort, b) HU cohort, and c) BE cohort. Red cashed lines show the 5 th and 95th percentiles of BG over time, and the 
orange dashed line denotes the formal definition for hypoglycemic threshold (2.2 mmol/L). Average insulin dose and total dextrose (parenteral and enteral) intake 

is shown in 6 hour blocks.  
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�̇�(𝑡) = 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
 (2) 

𝐼(̇𝑡) = −𝑛𝐾𝐼(𝑡) − 𝑛𝐿

𝐼(𝑡)

1 + 𝛼𝐼𝐼(𝑡)
− 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡))

+
𝑢𝑒𝑥(𝑡)

𝑉𝐼
+ (1 − 𝑥𝐿)

𝑢𝑒𝑛(𝐺)

𝑉𝐼
 

(3) 

𝑃(𝑡) = min(𝑑2𝑃2, 𝑃𝑚𝑎𝑥) + 𝑃𝑃𝑁(𝑡) (4) 

�̇�1(𝑡) = −𝑑1𝑃1 + 𝑃𝐸𝑁(𝑡) (5) 

�̇�2(𝑡) = −min (𝑑2𝑃2, 𝑃𝑚𝑎𝑥) + 𝑑1𝑃1 (6) 

𝑢𝑒𝑛(𝐺) = min (max (𝑢𝑚𝑖𝑛 , 𝑘1𝐺(𝑡) + 𝑘2), 𝑢𝑚𝑎𝑥) (7) 

The key variables and model parameters are described in 

Table 2. With the exception of model-based insulin sensitivity, 

SI(t) (SI), all parameters are fixed and have been previously 

identified from other studies and data cohorts [44, 46, 47], with 

details in an online appendix to this paper.  

This model-based insulin sensitivity, SI(t) (SI), is identified 

hourly, using the integral based fitting method [48]. SI is 

representative of ‘whole body’ underlying metabolic condition, 

and captures patient-specific deviation from model population 

parameters. Previous work has shown it to be relatively 

independent of both insulin and nutrition inputs [35]. It can thus 

be used to calculate the likely BG response to treatments other 

than those given clinically. This process is called a virtual trial, 

and has been used to design protocols for use in clinical 

situations [35, 49]. 

To generate virtual patients, clinical data, comprising BG 

measurements and insulin and nutrition inputs, is used with 

model Equations (1)-(7) to identify a model-based SI(t) profile 

for each patient using integral-based methods [48, 50]. These 

profiles can be used to simulate the response to a new or 

modified set of insulin and/or nutrition inputs, generating a new 

G(t) (BG) profile. This virtual patient and virtual trial process 

is illustrated in Figure 2. 

IV. ANALYSES 

A. Comparison of SI 

Model-identified SI values are presented to assess the 

metabolic similarity of the cohorts. Cumulative distributions 

are used to assess cohort SI and cohort-wide variability, where 

offset between curves shows difference in median SI, and the 

slope denotes the tightness of the distribution. At a given 

cumulative fraction, F, the results show the median, inter-

quartile range, and 90th percentile range in SI for the per-patient 

(100xF)th percentile SI values. This is a measure of inter-patient 

variability within each cohort. 

Hour-to-hour SI variability is also assessed, using hour-to-

hour stochastic models [38, 39], which are plotted with the x 

axis showing SI at time n and the y axis showing SI at time n + 

1. These stochastic hour-to-hour variability plots give a 

measure of intra-patient metabolic variability [38, 39], which 

TABLE II 
KEY VARIABLES OF THE ICING METABOLIC GLUCOSE MODEL 

 UNITS DESCRIPTION 

Physiological states 

G(t) mmol/l Blood glucose concentration 

I(t) mU/l Plasma insulin concentration 

Q(t) mU/l Interstitial insulin concentration 

𝑃1(𝑡) mmol Glucose in stomach 

𝑃2(𝑡) mmol Glucose in gut 

External inputs 

𝑃𝑃𝑁(𝑡) mmol/min Parenteral glucose intake 

𝑃𝐸𝑁(𝑡) mmol/min Enteral glucose appearance 

𝑢𝑒𝑥(𝑡) mmol/min Exogenous Insulin administration 

Model parameters 

SI(t) l/mU/min Insulin sensitivity 

𝛼𝐺  1/65 l/mU 
Saturation of insulin-mediated glucose 

uptake 

𝑉G 13.3 L Glucose distribution volume 

𝐸𝐺𝑃 1.16 mmol/min 
Endogenous glucose production 

(hepatic) 

𝐶𝑁𝑆 0.3 mmol/min 
Glucose uptake by central nervous 

system 

𝑑1 -ln(0.5)/20 min-1 
Rate parameter: gastric emptying of 

stomach to gut 

𝑑2 -ln(0.5)/100 min-1 
Rate parameter: glucose absorption for 

gut to bloodstream 

𝑃𝑚𝑎𝑥 6.11 mmol/min 
Maximum glucose absorption rate from 

gut 

𝑥𝐿 0.67 
Fractional first pass hepatics insulin 

clearance from portal vein 

𝑛𝐿 0.1578 min-1 
Rate parameter: general hepatic insulin 

clearance 

𝛼𝐼 1.7x10-3 l/mU Saturation of hepatics insulin clearance 

𝑛𝐾  0.0542 min-1 
Rate parameter: kidney clearance of 

insulin 

𝑛𝐶  0.0075 min-1 
Rate parameter: cellular degradation of 

internalised insulin 

𝑛𝐼 0.0075 min-1 
Rate parameter: diffusion of insulin 

between plasma and interstitium 

𝑢𝑒𝑛  mU/min Pancreatic insulin secretion 

𝑘1 
14.9 

mU·l/mmol/min 
Insulin secretion model parameter 

𝑘2 -49.9 mU/min Insulin secretion model parameter 

𝑢𝑚𝑖𝑛 16.7 mU/min Minimum insulin secretion 

𝑢𝑚𝑎𝑥 266.7 mU/min Maximum insulin secretion 

𝑉I 4.0 L Insulin distribution volume 

 

 

 
Fig. 2.  Virtual trial scheme for self- and cross simulation for the three cohorts 

and protocols. The full simulation scheme is shown for the NZ cohort only, but 
generalises to the BE and HU cohorts. Self-simulation is used to indicate ability 

to replicate clinical data. Cross simulation results indicate generalisability of 

virtual trial methods. 
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can be a leading cause of poor control and hypoglycaemia [27].  

If metabolic level and/or variability are similar between cohorts 

then the SI levels and/or stochastic models will be similar or 

identical. Consistency between ICUs in SI behaviour would 

imply that a perfectly matched cohort or data from a specific 

ICU is not necessary to obtain valid virtual trial results for 

another ICU, and a small, 20-patient virtual cohort could 

generalize and capture the metabolic behaviour of a similar 

mixed-medical ICU. 

B. Virtual Trial Simulation 

To examine the relationship between virtual patients and 

glycaemic control outcomes virtual trials are used. Glycaemic 

outcomes are a function of SI and its variability, as well as the 

insulin-nutrition protocol used. If virtual patients are 

generalisable, glycaemic virtual trial control outcome results 

will be consistent for all three cohorts (HU, NZ, BE) on that 

protocol. The results are presented as cumulative distribution 

functions (CDFs) of BG values.  This virtual trial simulation 

structure is shown in Figure 3.  

Testing a virtual patient cohort on the same protocol that 

yielded the data used to create the virtual patient (self-

simulation) should return exactly the clinical BG data used to 

generate it, with differences due to model error (also observable 

as fitting error) and/or lack of compliance in following the 

protocol clinically. Thus, self-simulation captures the model 

error and any un-modelled non-compliance to the clinical 

protocol.  

Cross-simulation is a technique for assessing how results of 

an analysis will generalize to a separate, independent virtual 

patient cohort. In this case, this step consists in applying a 

clinical protocol to a series of virtual patients created from a 

cohort on which the protocol was never clinically tested. If 

patients are matched in terms of metabolic dynamics and if the 

virtual trial method is correct, then the in silico results and 

clinical data would theoretically match or be very similar, 

showing the generalisability or robustness of the approach. 

Differences would be due to underlying metabolic differences, 

and the interaction of model-based SI with the protocol. 

Each of the three protocols, where STAR in Hungary and 

New Zealand are denoted STAR-Hu and STAR-NZ 

respectively, was simulated on virtual patients from all other 

cohorts (HU, NZ, BE). In all cases, the virtual trial simulation 

was only allowed to modulate insulin, as the BE glycaemic 

 
Fig. 3.  Virtual patient generation and virtual trial methodology. Virtual patients 
are comprised of the insulin sensitivity (SI) traces fitted from clinical data. 

Different glycaemic control protocols can be tested in silico to assess likely 

blood glucose outcomes in individual patients and across a cohort. 
 

  

 
Fig. 4.  Per patient median insulin sensitivity (SI) CDFs, for each cohort: a) NZ cohort; b) HU cohort; c) BE cohort; and d) the median per-patient SI CDFs 

overlaid for comparison. All values identified from data and the ICING model of Equations (1)-(7). In a) – c) the 5th – 95th and 25th – 75th percentile ranges are 
shown. F(x) is the cumulative fraction of data less than or equal to the corresponding SI, as per standard CDF definition. 
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control protocol did not explicitly modify or determine 

nutritional intake. In simulation nutrition was set at what was 

clinically given. 

V. RESULTS  

A. Metabolic Similarity: Inter-Cohort Insulin Sensitivity and 

Variability 

To examine underlying metabolic similarities and 

differences between the BE, HU, and NZ cohorts, model-based 

SI is examined. Whole cohort and per-patient median SI is 

given in Table 1, along with the median hour-to-hour change in 

SI, and the median absolute hour-to-hour change in SI. The 

median hour-to-hour change in SI is ~0 for each cohort, while 

the median absolute hour-to-hour change, reflecting both 

increase and decrease in SI, in SI is approximately 5 – 10% of 

the median SI value. 

Figure 4 shows the range of per-patient CDFs SI for each 

cohort with the median SI overlaid. Median SI is different 

within each cohort, indicating different degrees of underlying 

metabolic response to glucose and insulin treatments.  

Steeper CDFs indicate lower cohort wide variability as a 

greater proportion of time is spent around a particular SI range. 

The consistent slope of the CDFs in Figure 4d shows each 

cohort is similar in the tightness of the middle ~60% of the data. 

However, in Figure 4c the NZ cohort has slightly lower inter-

patient variability compared to the others, as seen in the lower 

spread of the 25th – 75th and 5th – 95th percentile SI CDFs. In 

contrast, the HU cohort has the widest set of per-patient SI 

CDFs and thus the greatest inter-patient variability. Overall, the 

magnitude of the model-based SI, and thus the metabolic ability 

to remove glucose from the blood, is different for each cohort, 

as seen when comparing medians and offset from other CDFs. 

SI is different within each cohort, and while cohort wide 

variability is similar, the degree of inter-patient variability 

differs between cohorts.  

Figure 5 shows the hour-to-hour change in insulin sensitivity 

 
Fig. 5.  Stochastic insulin sensitivity models for hour “n” (x-axis) and hour “n+1” (y-axis) showing the data (dots) and the 5th-95th percentile range (light), IQR 

(dark) and median (dashed) probability bounds for stochastic models for the three cohorts, where: a) NZ cohort; b) HU cohort; c) BE cohort; and d) All three 
cohorts overlaid with the median, 5th, and 95th percentile lines shown. All data were found using the ICING model of Equations (1)-(7) to identify hourly SI values. 

 

TABLE III 

NEW ZEALAND PROTOCOL: CROSS SIMULATION RESULTS, CLINICAL DATA SHADED. RESULTS ARE FOR THE FULL (MAX 120 HRS) PATIENT EPISODE 

New Zealand (NZ) protocol NZ – Clinical data 
Cross validation on 

HU cohort 

Cross validation on 

BE cohort 

BG measures / day 13.1 12.9 14.2 

Mean time between measurements (hr) 1.8 [1.0 - 2.8] 2.0 [1.0 - 3.0] 1.0 [1.0 - 2.0] 

Median BG [IQR] (mmol/L) 6.7 [6.0 – 7.3] 6.7 [6.2 – 7.4] 6.9  [6.3 – 7.6] 

Time in 4.4-8.0 mmol/L band (%) 85.4 83.1 81.6 

Median [IQR] exogenous insulin bolus  (U/hr) 3.0 [1.5 - 4.5] 2.5 [1.5 - 4.0] 4.0 [2.0 - 6.0] 

Per-Patient Median BG (mmol/L) 6.6 [6.4 - 6.8] 6.7 [6.5 - 6.9] 6.9 [6.6 - 7.1] 
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across each of the cohorts, The median, IQR, and 5th – 95th 

percentile range indicate the potential variability of SIn+1 for any 

given SIn value. While data scarcity above an SI of greater than 

~10 -3 L/mU/min results in wide and variable bounds, what is 

interesting is that below this threshold each of the cohorts 

display similar behaviour, as shown in Figure 5d. Thus, while 

median SI may vary between cohorts, hour-to-hour variability 

across the common SI range is consistent.  

Figures 4 and 5 thus suggest that patient cohorts may differ 

in the SI range in which they spend most of their time, and have 

different inter-patient metabolic variability. However, 

underlying intra-patient metabolic variability is much more 

consistent. The hour-to-hour intra-patient variation between 

cohorts is very similar despite differences between protocols 

and clinical implementation, different metabolic SI levels in 

Figure 4, and despite not matching the cohorts for diagnostic 

code or other factors. Consequently, hour-to-hour changes in SI 

are independent from protocol, and are instead patient-specific, 

TABLE IV 

HUNGARIAN PROTOCOL: CROSS SIMULATION RESULTS, CLINICAL DATA SHADED. RESULTS ARE FOR THE FULL (MAX 120 HRS) PATIENT EPISODE 

Hungarian (HU) protocol 
Cross validation on 

NZ cohort 
HU – Clinical data 

Cross validation on BE 

cohort 

BG measures / day 13.0 12.8 14.7 

Mean time between measurements (hrs) 2.0 [1.0 - 3.0] 1.7 [1.0 - 2.9] 2.0 [1.0 - 2.0] 

Median BG [IQR] (mmol/L) 6.9 [6.3 - 7.6] 6.6 [5.9 - 7.4] 6.9 [6.4 - 7.6] 

Time in 4.4-8.0 mmol/L band (%) 81.5 81.0 81.4 

Median [IQR]exogenous insulin rate  (U/hr) 3.0 [1.5 - 4.5] 3.0 [1.5 - 5.0] 4.5 [2.5 - 8.0] 

Per-Patient Median BG (mmol/L) 6.8 [6.6 - 7.1] 6.5 [6.3 - 6.9] 6.9 [6.6 - 7.2] 

 

TABLE V 
BELGIAN PROTOCOL: CROSS SIMULATION RESULTS, CLINICAL DATA SHADED. RESULTS ARE FOR THE FULL (MAX 120 HRS) PATIENT EPISODE 

Belgian (BE) protocol 
Cross validation on  

New Zealand cohort 

Cross validation on 

HU cohort 
BE – Clinical data 

BG measures / day 9.5 9.4 9.9 

Mean time between measurements (hrs) 4.0 [1.0 - 4.0] 4.0 [1.0 - 4.0] 1.0 [1.0 - 4.0] 

Median BG [IQR] (mmol/L) 7.6 [6.5 - 8.5] 7.3 [6.4 - 8.2] 7.4 [6.3 - 8.5] 

Time in 4.4-8.0 mmol/L band (%) 58.2 69.1 62.9 

Median [IQR]exogenous insulin rate  (U/hr) 2.0 [0.5 - 3.5] 3.0 [1.5 - 3.5] 3.0 [2.0 - 5.5] 

Per-Patient Median BG (mmol/L) 7.3 [7.0 - 7.9] 7.1 [6.7 - 7.5] 7.3 [6.9 - 7.9] 

 

 

 
Fig. 6.  Results of self- and cross- simulation: blood glucose (BG) CDFs for the clinical data and all 3 virtual cohort simulations (HU, NZ, BE). Shaded green region 

represents the glycaemic target band for that protocol for reference. Panel a) is the NZ protocol (see Table 3); b) is the HU protocol (see Table 4); and c) is the BE 

protocol (see Table 3); and d) compares all clinical data for completeness. F(x) is the cumulative fraction of data less than or equal to the corresponding BG, as per 
standard CDF definition. 
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but similar across different cohorts. An important result is that, 

despite differences in the median cohort SI, stochastic 

forecasting models, such as those pictured in Figures 5a – c, are 

likely interchangeable and generalisable, potentially indicating 

a consistent physiological response.  

B. Protocol simulation using Virtual Trials  

Virtual trial results show the interaction of the model and 

model-based insulin sensitivity with glycaemic control 

protocols. Figure 6 and Tables 3 - 5 show the self- and cross-

simulation results for each of the cohorts and protocols. Self-

simulation results show good matching in the STAR-NZ and 

STAR-Hu cohorts. Overall, self-validation results show that the 

ICING model can capture key BG dynamics, and reproduce 

clinical results in the case of protocolised insulin and nutrition 

treatments.  

 In the case of the BE cohort shown in Figure 6c, differences 

between the clinical and self-simulation results are attributed to 

clinical non-compliance, where 20-30% of interventions were 

modified slightly from protocol [40], combined with a lack of 

protocolisation around feed changes. The outcome is slightly 

higher clinical BG value than in the self- or cross- simulation 

results of Figure 6c.  

Cross-simulation results show the interaction of SI and SI 

variability with a protocol on which the virtual patients were 

not treated. Cross-simulation result comparisons for all three 

protocols are similar, with median and IQR values falling 

within expected measurement error (< 5%). This results shows 

that the virtual trial model and methods are able to yield median 

(cohort and per-patient) and variability in predicted cohort BG 

outcomes that are very similar to the clinical data in all cases. 

If only the first 24 hours of simulation are considered, cross 

simulation results show good matching above the ~25th 

percentile of BG outcomes for the STAR-HU and STAR-NZ 

protocols (Figures 7a and 7b), with similar modest deviation as 

in Figure 6 for the BE protocol (Figure 6c). Figure 8 shows that 

although by 24 hours cohort results begin to match well, during 

the first 20 hours BG outcomes are very cohort specific due to 

the interactions and differences in cohort starting BG and SI 

level. These starting differences between cohorts are most 

clearly seen in the ability for the protocols to reach lower 

extremes of glycaemic behaviour, where the results below the 

25th percentile in Figure 8 a) and b) tend to spread more. 

VI. DISCUSSION 

Previous work has validated the virtual trial method in 

matched [35] cohorts, and extended the analysis to a New 

Zealand mixed-medical ICU cohort and a Belgian 

cardiovascular ICU cohort [37]. This work extends a virtual 

trial method to three unmatched medical ICU cohorts from 

three different countries and clinical practices, and examines 

the generalisability of virtual patient cohorts and the strengths 

and limitations of the virtual trial method. If virtual patient 

cohorts, created from clinical data, were interchangeable 

between ICUs, then it would be possible to significantly extend 

the use of virtual patients. This outcome would reduce the need 

for high quality clinical data and provide a common foundation 

glycaemic control design tool, similar to those used in Type 1 

Diabetes research [51].  

We hypothesised that virtual trials for protocol performance 

determination can be carried out on interchangeable, 

generalised cohorts. The results presented here show good 

matching between cross-simulated virtual trial simulations 

 
Fig. 7.  Results of self- and cross- simulation for the first 24 hours only: blood glucose (BG) CDFs for the clinical data and all 3 virtual cohort simulations (HU, 

NZ, BE). Shaded green region represents the glycaemic target band for that protocol for reference. Panel a) is the NZ protocol (see Table 3); b) is the HU 

protocol (see Table 4); and c) is the BE protocol (see Table 3); and d) compares all clinical data for completeness. F(x) is the cumulative fraction of data less than 
or equal to the corresponding BG, as per standard CDF definition. 
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across a range of protocols and cohorts, as indicated by the 

overlap of the CDF’s in Figure 6. These results suggest that 

overall performance of a glycaemic control protocol can be 

tested using virtual trials and a generalised cohort, without the 

need for local data collection. 

A significant result of this work was the similarity across 

cohorts in terms of SI variability, despite differences in median 

cohort SI distributions. This result is similar to previous results 

in two different cohorts, using protocols that differ from those 

presented here, where SI variability was similar despite the fact 

that median SI was different between the cohorts [37]. This 

median SI and inter-patient variability likely differs between 

units based on the severity and type of illness or injury, and a 

potentially wide range of other cohort and demographic factors. 

In contrast, the similarity in SI variability strongly suggests that 

this hourly variability, driven by counter-regulatory and stress 

response physiology, may be more general than other factors in 

determining patient-specific metabolic behavior.  

An added potential outcome of this study is that if a (larger) 

virtual patient cohort, sufficiently representative of intra-patient 

SI variability, could be created from multiple cooperating 

centres, there would not be a future need to build cohort specific 

forecasting models from retrospective data. The generality seen 

in Figure 5 indicates that this outcome could well be possible, 

although further work should look at specific sub-cohorts such 

as trauma or sepsis patients. Equally, arbitrary generalised 

virtual patients can be created based on clinically observed 

variability. While generalized population models go against the 

trend to make models more and more patient specific, these 

results show a good balance of exploiting generalisability to 

minimize clinical workload and data collection, while 

maintaining high safety and performance.  

A. Limitations on Virtual Trial Generalisability 

While this analysis suggests a good degree of generalisability 

in virtual trial cohorts, it is limited to 3 clinical cohorts. Further, 

this generalisability of virtual patient cohorts is subject to 

limitations and exclusion criteria based on protocol type and 

underlying assumptions.   

All three cohorts were observed to have similar insulin 

sensitivity variability, but different cohort median SI. It is this 

similarity across intra-patient 

insulin sensitivity variability 

that determines the similarity in 

long term cohort results. Thus, 

for any cohort matched in intra-

patient insulin sensitivity 

variability, similarity in 5 day 

virtual trial results is expected. 

This result reflects previous 

work using two clinically 

matched cohorts from a single 

intensive care unit, with very 

different insulin-nutrition 

treatments and glycaemic 

targets, but who were matched 

in underlying SI and SI 

variability [35]. Cohorts not 

matched in SI variability are 

likely to yield different 

glycaemic control results in 

virtual trials.  

Virtual trial results are not expected to be similar if protocols 

have limits on the maximum insulin dose much lower than the 

insulin dose at which insulin saturation effects ([52]) are 

observed. The protocol being tested must be flexible enough to 

allow a range of insulin doses, depending on underlying patient 

SI, whether it is being directly measured or not. For example, 

an insulin resistant patient will require higher insulin doses to 

achieve a target BG outcome than a more insulin sensitive 

patient. A strict sliding scale where insulin dose is directly 

proportional to BG will not likely have this flexibility, and 

highly resistant or highly fed patients will likely remain high in 

BG if insulin dose is very limited. On the other hand, sliding 

scale protocols where the change in insulin dose is proportional 

to BG, such as the BE protocol in this paper or the protocols in 

the original validation paper [35], allow insulin doses to 

increase in patients with low SI.  

A limitation of this method is that virtual trials are not 

expected to give similar results in patients where the starting 

BG and the time taken to reduce BG to the protocol median BG 

and/or target range are very different between cohorts, 

especially over the first 24-48 hours. These early outcomes are 

heavily influenced by patient and cohort SI and nutritional 

delivery. While in these results the 24 hour BG outcome results 

were also very similar, the 12 hour results are very different 

(Figure 8) as the time taken for each cohort to be lowered into 

the target range differs based on starting BG and cohort median 

insulin sensitivity. The shorter the time to lower BG into the 

target range relative to the length of each virtual patient, the 

closer virtual trial BG outcomes will be in cohorts with different 

median SI or feed rates.  

In addition, over the first 24 hours the greatest variability in 

low blood glucose outcomes was observed between cohorts. 

This outcome suggests that when designing and testing 

protocols for use in a different cohort, virtual trials with 

interchanged cohorts may not fully or accurately reflect safety 

and performance over the first 12-24 hours, which can be 

important to outcome [53]. In addition, in terms of clinical 

compliance and equipoise over the adoption or use of a new 

protocol, these first hours can be crucial to overall protocol 

 
Fig. 8.  First 72 hours of cumulative median BG data for the two most different protocols: a) STAR-NZ, and b) the BE 

titration protocol. 
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performance and uptake. For this reason, it may be wise to 

simulate potential BG outcomes in a cohort of ‘difficult’ 

patients as well as a generalised cohort, to determine a worst 

case protocol design outcome for protocol results over the first 

24 hours. 

Finally, generalised virtual trial methods are not able to give 

estimations of total insulin or nutrition delivery, as this delivery 

is cohort specific and will depend on underlying condition and 

SI, and clinical preferences in nutrition type and range. While 

protocol performance is generally of more concern than its 

consumables, clinical preference and goals for total feed 

delivery may be an obstacle for protocol implementation where 

a glycaemic control protocol modulates both glucose and 

insulin. Results around total insulin and nutrition delivery from 

generalised virtual trials should be treated with caution where 

the underlying SI from the targeted cohort is unknown. 

B. Study Limitations and Future Work 

This study utilized the ICING model. This model, as with all 

models, has underlying assumptions and has regions for BG and 

insulin-nutrition interventions in which it is most accurate. In 

this case, many model parameters are fixed as they are not 

currently identifiable using available bedside data. As a result, 

the SI parameter reflects both peripheral insulin sensitivity and 

patient-specific deviation from population-based model 

parameters, all of which could be time-varying. It thus lumps 

changes in patient response into the SI value. However, the fact 

that SI has been validated in its effective clinical use for 

glycaemic control, and can be used in virtual trials to accurately 

simulate clinical outcomes [35, 41], suggests that the model 

overall captures key dynamics and dynamic shapes. This model 

thus balances the need for practical bedside identifiability [54] 

and use with model accuracy to underlying physiology [54, 55] 

A primary limitation of this study is the use of only 3 cohorts, 

and only 2 glycaemic control frameworks, from intensive care 

units that are primarily western in ethnic groups and clinical 

practice. The HU cohort had much higher APACHE II score 

than the NZ cohort, indicating differences in illness severity, 

but this score was not available for the BE cohort. These cohorts 

were drawn from different countries and clinical practices, and 

had different underlying SI. In future, these results should be 

tested on patient data cohorts from potential different ethic 

cohorts, such as those from Asian or Asia-Pacific intensive care 

units. Should SI variability prove to be similar across a wider 

range of ethnic origins, this work would provide a strong case 

for generalisable virtual trials to give a reasonable overview of 

likely BG outcomes. 

The use of unmatched cohorts was chosen by design to test 

the generalisability of the virtual patient methods tested and to 

help find the underlying reasons for successful validation. 

However, clinically matched cohorts would provide a stronger 

validation result as in [35], even if limited in application since 

local patient data would be required to create a local virtual 

cohort based on the evidence of results using matched cohorts. 

In this case, the cohorts are similar in age and do not have 

diagnosed diabetes patients, but are otherwise general.  

Two of the protocols used in this analysis, STAR-NZ and 

STAR-HU, were similar in design dynamic, if not in clinical 

use and delivery. These similarities and differences give an 

indication of how very different clinical implementation 

conditions and nutritional delivery can impact virtual trial 

results. In this case, STAR-NZ and STAR-HU are able to give 

similar clinical results despite differences in insulin delivery 

and nutrition rate. 

It is very difficult to completely or perfectly validate these 

results or any in silico virtual trial. An ideal real clinical trial 

would treat a patient, and then take them back in time to treat 

them differently, all else the same. In theory these results could 

be fully validated implementing all protocols clinically in each 

unit, preferably with strict compliance and matched cohorts. 

This outcome could only be achieved prospectively at some 

cost, and was not possible here. However, the results presented 

strongly suggest that relatively small 20 patient virtual trial 

cohorts can capture a majority of cohort outcomes, and that 

larger cohorts might do as well or better.  

VII. CONCLUSIONS 

Virtual patients were generated from clinical data from three 

different intensive care units using a glucose-insulin 

pharmacokinetic model. These virtual patients were used in 

virtual trials to test the generalisability of virtual patients and 

virtual trial methods across different ICUs. It was found that 

although cohort median insulin sensitivity was different 

between ICUs, hour-to-hour variability in this insulin 

sensitivity was similar. As a result, different virtual patient 

cohorts were able to closely replicate glycaemic control 

outcomes in virtual trials across different protocols. These 

results provide evidence for the generalisability of virtual 

patient cohorts and the virtual patient method to assess likely 

long-term glycaemic control outcomes during protocol design 

and testing. While generalisable, this virtual patient method has 

several important limitations, in that it may not accurately 

reflect cohort behaviour in the first 24 hours in some cohorts, 

and protocols tested must be sufficiently flexible to adapt to 

more resistant or highly fed patients. Overall, this paper 

presents results supporting a generalised virtual trial method, 

and discusses the strengths and limitations of this method.  
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