MS3: Abstract 131573 - CFRAC2017 Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

Julien Leclerc, Ling Wu, Van-Dung Nguyen, Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Julien.Leclerc@ulg.ac.be

Ack.: The research has been funded by the Walloon Region under the agreement no.7581-MRIPF in the context of the 16th MECATECH call.

Introduction

- Goal:
 - To capture the whole ductile failure process:
 - Diffuse damage stage
 - followed by
 - Crack initiation and propagation

[http://radome.ec-nantes.fr/]

State of art: two main approaches – 1. Continuous approaches (1)

- Material properties degradation modelled by internal variables (= damage):
 - Lemaître-Chaboche model,
 - Gurson model,
 - Porosity evolution

- Continuous Damage Model (CDM) implementation:
 - Local form
 - Strongly mesh-dependent
 - Non-local form needed [Peerlings et al. 1998]

Non-local model

- Principles
 - variable $\xi \twoheadrightarrow$ non-local / "averaged" counterpart $\tilde{\xi}$
- Formulation
 - Integral form [Bažant 1988]

$$\tilde{\xi}(\boldsymbol{x}) = \frac{1}{V} \int_{V} W(\boldsymbol{x} - \boldsymbol{y}) \xi(\boldsymbol{y}) dV$$

- » not practical for complex geometries
- Differential form [Peerlings et al. 2001]
 - Explicit formulation / gradient-enhanced formulation: $\tilde{\xi}(x) = f(\xi, \nabla \xi, \nabla^2 \xi, ...)$
 - » does not remove mesh-dependency
 - Implicit formulation: $\tilde{\xi}(\boldsymbol{x}) = f\left(\xi, \nabla \tilde{\xi}, \nabla^2 \tilde{\xi}, ...\right)$

 $\tilde{\xi}\left(\boldsymbol{x}\right) - l_{\rm c}^2 \Delta \tilde{\xi}\left(\boldsymbol{x}\right) = \xi\left(\boldsymbol{x}\right)$

- » removes mesh-dependency but one added unknown field
- » NB: equivalent to integral form with Green's functions as W(x y)

State of art: two main approaches - Comparison (1)

Continuous: Continuous Damage Model (CDM) in a non-local form	Discontinuous:
 + Capture the diffuse damage stage + Capture stress triaxiality and Lode variable effects 	
 Numerical problems with highly damaged elements 	
 Cannot represent cracks without remeshing / element deletion (loss of accuracy, mesh modification) Crack initiation observed for lower damage values 	

State of art: two main approaches – 2. Discontinuous approaches

- Similar to fracture mechanics
- One of the most used methods:
 - Cohesive Zone Model (CZM) modelling the crack tip behaviour inserted via:
 - Interface elements between two volume elements
 - Element enrichment (EFEM) [Armero et al. 2009]
 - Mesh enrichment (XFEM) [Moes et al. 2002]
 - ...
- Consistent and efficient hybrid framework for brittle fragmentation: [Radovitzky et al. 2011]
 - Extrinsic cohesive interface elements
 - Discontinuous Galerkin (DG) framework (enable inter-elements discontinuities)

State of art: two main approaches - Comparison (2)

Continuous: Continuous Damage Model (CDM) in a non-local form	Discontinuous: Extrinsic Cohesive Zone Model + Discontinuous Galerkin elements (CZM/DG)
 + Capture the diffuse damage stage + Capture stress triaxiality and Lode variable effects 	+ Multiple crack initiation and propagation naturally managed
 Numerical problems with highly damaged elements Cannot represent cracks 	 Cannot capture diffusing damage No triaxiality effect Currently valid for brittle / small scale
without remeshing / element deletion (loss of accuracy, mesh modification)	yielding elasto-plastic materials
damage values	

- Goal:
 - To capture the whole ductile failure process
- Main idea:
 - Combination of 2 complementary methods in a single finite element framework:
 - continuous (damage model)
 - + transition to
 - discontinuous (cohesive zone model with triaxiality effects)

- Goal:
 - To capture the whole ductile failure process
- Main idea:
 - Combination of 2 complementary methods in a single finite element framework:
 - continuous (damage model)
 - + transition to
 - discontinuous (cohesive zone model with triaxiality effects)
- Problems:
 - How to combine both methods?
 - Energetic consistency?
 - Cohesive traction-separation law under complex 3D loadings?
 - Triaxiality-dependency of ductile behaviour?

- Solution: Cohesive SURFACE model → Cohesive BAND model to incorporate triaxiality effects:
 - Principles
 - Replacing the traction-separation law of a cohesive zone (CZM) by the behaviour of a uniform band of given thickness $h_{\rm b}$ [Remmers 2013]
 - Methodology
 - 1. Compute a "band" deformation gradient ${\bf F}_{\rm b}$ computation

$$\mathbf{F}_{\mathrm{b}} = \mathbf{F} + rac{\llbracket \boldsymbol{u}
rbrace imes \boldsymbol{N}}{h_{\mathrm{b}}} + rac{1}{2} \boldsymbol{
abla}_{T} \llbracket \boldsymbol{u}
rbrace$$

- 2. Compute with underlying material behaviour a band stress tensor $\sigma_{\rm b}$
- 3. Recover traction forces $t(\llbracket u \rrbracket, F) = \sigma_b n$

- Solution: Cohesive SURFACE model → Cohesive BAND model to incorporate triaxiality effects:
 - Principles
 - Replacing the traction-separation law of a cohesive zone (CZM) by the behaviour of a uniform band of given thickness $h_{\rm b}$ [Remmers 2013]
 - Methodology
 - 1. Compute a "band" deformation gradient ${\bf F}_{\rm b}$ computation

$$\mathbf{F}_{\mathrm{b}} = \mathbf{F} + \frac{\llbracket \boldsymbol{u} \rrbracket \times \boldsymbol{N}}{h_{\mathrm{b}}} + \frac{1}{2} \boldsymbol{\nabla}_{T} \llbracket \boldsymbol{u} \rrbracket$$

- 2. Compute with underlying material behaviour a band stress tensor $\sigma_{\rm b}$
- 3. Recover traction forces $t(\llbracket u \rrbracket, F) = \sigma_b \cdot n$
- At crack insertion, framework only dependent on $h_{\rm b}$ (band thickness)
 - $h_{\rm b} \neq$ new material parameter
 - A priori determined with underlying non-local CDM to ensure energy consistency

11

- Isotropic linear elasticity with implicit non-local damage:
 - In small strains and displacements
 - Damage variable *D* from 0 (undamaged) to 1 (broken):

 $\boldsymbol{\sigma} = (1 - D)\boldsymbol{\mathcal{H}}:\boldsymbol{\epsilon}$

• **Damage power-law** in terms of a memory variable κ :

$$D(\kappa) = \begin{cases} 0\\ 1 - \left(\frac{\kappa_i}{\kappa_c}\right)^{\beta} \left(\frac{\kappa_c - \kappa}{\kappa_c - \kappa_i}\right)^{\alpha}\\ 1 \end{cases}$$

 Memory variable in terms of a non-local equivalent strain:

$$\kappa(t) = \max_{\tau} (e(\tau < t))$$

• Non-local strain resulting from:

$$\tilde{e} - l_{\rm c}^2 \Delta \tilde{e} = e = \sqrt{\sum_{i=1,2,3} (\epsilon_i^+)^2}$$

with $\epsilon_i^+ = \text{positif local principal strains}$ $l_c = \text{non} - \text{local length [m]}$

if $\kappa < \kappa_i$

- Semi-analytic solving:
 - Bar with constrained displacement at the extremities

- Discretisation of the strain field $\epsilon_x(x) \rightarrow \epsilon_i$
 - Computation of non-local strains by **convolution** with appropriate Green's functions W(x, y):

$$\tilde{e}(x) = \int_0^L W(x, y) e(y) dy$$

- Defect at the middle to trigger localisation
- Arc-length method in case of snap-back

Energetic equivalence (computation of $h_{\rm b}$)

- Influence of $h_{\rm b}$ (for a given $l_{\rm c}$) on response:
 - Total dissipated energy Φ = linear with $h_{\rm b}$:
 - Has to be chosen to conserve energy dissipation (physically based)

Material properties				
l_c/L	1/20	D _c	0,8	

Energetic equivalence (computation of $h_{\rm b}$)

- Influence of others parameters on $h_{\rm b}^*$:
 - Linear with non-local length l_c
 - As long as crack insertion occurs during localisation

- Constant with insertion damage D_C :
 - Medium value (0.6-0.8): constant
 - High value (>0.8): growing due to (unphysical) damage spread

Energetic equivalence (computation of $h_{\rm b}$)

- Influence of others parameters on $h_{\rm b}^*$:
 - Constant with other damage model parameters:
 - As long as crack insertion occurs during localisation

- 2D plate with a defect
 - In plane strain
 - Biaxial loading
 - Ratio $\overline{F}_x/\overline{F}_y$ constant during a test
 - Path following method

Proof of triaxiality sensitivity

• 2D plate in plane strain: $\overline{F}_x/\overline{F}_y = 0$

no crack insertion

cohesive models calibrated on 1D bar in plane stress

18

- 2D plate in plane strain:

 - Force evolution

20

- Compact Tension Specimen:
 - Better agreement with the cohesive band model

• Goal:

 Simulation of material degradation and crack initiation / propagation during the ductile failure process

• Already done:

- Cohesive Band model developed to include triaxiality effects
 - Application to isotropic elastic law with non-local damage
 - Calibration with 1D bar
 - Proof of triaxiality sensitivity
 - Experimental validation

• Perspectives:

- Hybrid framework extended for metals
 - Choice of a non-local damage model
 - Determination of transition criterion and cohesive model parameters

Thank you for your attention

Cohesive Band Model: a triaxiality-dependent cohesive model inside an implicit non-local damage to crack transition framework

MS3: Abstract 131573 - CFRAC2017

Julien Leclerc, Ling Wu, Van-Dung Nguyen, Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> B52 - Quartier Polytech 1 Allée de la découverte 9, B4000 Liège Julien.Leclerc@ulg.ac.be

