
Automatic time stepping algorithms for implicit numerical

simulations of non-linear dynamics

Ludovic Noels (1), Laurent Stainier1 (1), Jean Philippe Ponthot (1), Jérôme Bonini (2)

(1) Aerospace Laboratories (LTAS-MCT), University of Liège,

Chemin des Chevreuils 1, 4000 Liège, Belgium

(2) SNECMA-Moteurs, Engineering Division, Centre de Villaroche, 77550 Moissy-Cramayel, France

ABSTRACT

When an implicit integration scheme is used, variable step strategies are especially well suited to

deal with problems characterised by high non-linearities. Constant step size strategies generally

lead to divergence or extremely costly computations. An automatic time stepping algorithm is

proposed that is based on estimators of the integration error of the differential dynamic balance

equations. Additionally, the proposed algorithm automatically takes decisions regarding the

necessity of updating the tangent matrix or stopping the iterations, further reducing the

computational cost. As an illustration of the capabilities of this algorithm, several numerical

simulations of both academic and industrial problems are presented.

KEYWORDS

Computer simulations, plasticity, automatic time-stepping, non-linear dynamics, contact-impact

1 Corresponding author : l.stainier@ulg.ac.be (e-mail), +32-(0)4-366-9141 (fax)

 1

mailto:l.stainier@ulg.ac.be

1 Introduction

Non-linear dynamics problems integrated in time can be solved with two kind of time stepping

algorithms: explicit or implicit. For an explicit algorithm, the elements of solution at time tn+1

depend only on the solution at time tn, while for an implicit algorithm, they also implicitly depend

on other elements of the solution at time tn+1 itself. The problem must then be solved in an iterative

fashion. Stability (i.e. positive damping of initial perturbations) imposes different restrictions on

those two families of algorithms and, with a proper choice of parameters, the time step size can be

much larger for an implicit algorithm than for an explicit algorithm. The total number of time steps

in an implicit scheme will thus generally be smaller. Then, even though the cost of a time step is

higher, as a consequence of the need for computing and inverting a Hessian matrix, the total

computation time for an implicit scheme is often more interesting than for an explicit scheme. In

this context, if the time step size is chosen too small, the calculation is very expensive (in term of

computation time), while if it is chosen too large, the integration is not accurate enough or the

iterations diverge (when solving the balance equations). Therefore, the time step size should be

carefully evaluated. Since the problem evolves with time, the time step size should be

continuously adapted to this evolution. An automatic time stepping algorithm is then the only

solution to accurately solve the problem in a reasonably short computation time.

For an industrial problem that has a large number of degrees of freedom, the most expensive

operation of an implicit code is the inversion of the Hessian Matrix. For non-linear problems, the

Hessian matrix normally evolves with every iteration, but the Newton-Raphson iterations can

sometimes converge while using the old inverted matrix. Still, this inverted matrix must be

regularly recomputed to avoid divergence. In a classical strategy, this inversion occurs at the

beginning of each time step and for some iterations selected (a priori) by the user. But if the

Hessian matrix is not inverted for too many iterations, the problem diverges, while if the inversion

occurs too frequently, the computation becomes too expensive. According to the evolution of the

problem with time, an algorithm automatically selecting if the inverted Hessian matrix must be

recalculated or not can significantly reduce the total computation cost.

 2

Assuming the inverse Hessian matrix is updated at an acceptable frequency, the Newton-Raphson

iterations can still diverge. The time step is then rejected and the time step size is reduced. A

problem is to determine when iterations diverge. Divergence can result from a negative Jacobian.

In this case, divergence detection is trivial. But when there is no negative Jacobian, convergence is

not garanteed since the residual is not ensured to decrease. In this case, divergence detection is

more difficult. Usually, a maximum number of iterations is defined. If this number is too small, a

time step can be rejected while the problem slowly converges. If this number is chosen too large,

some iterations are needlessly computed when the divergence actually occurs. It is then interesting

to determine if divergence occurs on the basis of the evolution of the residual. The maximum

number of iterations is more difficult to be correctly determined when the inverted matrix is not

computed at each iteration. Indeed, this number depends on how frequently the inverted matrix is

computed.

This paper proposes an automatic time step control algorithm based on the measure of the

integration error. This algorithm modifies the time step size only if durable physical changes occur

in the problem evolution. Estimation of the error is made independent of the implicit scheme’s

parameters. Three estimators are compared. An algorithm choosing if the Hessian matrix is to be

recomputed is also proposed. This determination is based on residual evolution with iterations.

Finally, a divergence criterion based on this residual evolution is implemented. Academic and

industrial numerical examples are then presented to illustrate these new algorithms.

2 Numerical integration of transient problems

2.1 Equations of motion

FEM (space) semi-discretization of the equations of motion of a nonlinear structure leads to the

coupled set of second order nonlinear differential equations [1-5]:

 3

 () () 0,, int =−+= xxFxxFxMR ext &&&& (1)

where R is the residual vector, x the vector of nodal positions, the vector of nodal

velocities, the vector of nodal accelerations. M is the mass matrix, F

x&

x&& int the vector of internal

forces resulting from body’s deformation and Fext the vector of external forces. Fext collects all

types of loading (applied through local or distributed actions, in a follow-up way or not, reactions

to imposed displacements and contact situations). Both vectors are non-linear x and in due to

phenomena of contact, plastic deformations, geometrical non-linearity…

x&

The set of equations (1) is completed by two sets of given initial conditions at time zero:

 () ()0000 and txxtxx && == (2)

2.2 Implicit schemes: The generalized-α trapezoidal scheme

The most general scheme for implicit integration of (1) is a generalized trapezoidal scheme [1, 2,

6] where updating of positions and velocities is based on “averaged” accelerations stemming from

associated values between tn and tn+1. It reads for instance

() 11 1 ++ ∆+∆−+= nnnn xtxtxx &&&&&& γγ (3)

1
22

1
2
1 ++ ∆+∆⎟

⎠
⎞

⎜
⎝
⎛ −+∆+= nnnnn xtxtxtxx &&&&& ββ (4)

The discretized equations of motion (1) can be rewritten under the from proposed by Chung and

Hulbert [6]:

() () 0
1

1

1
1

1111, =−
−

+−+
−

+
−
−

= ++++
ext
n

int
n

F

Fext
n

int
nn

F

M
n

F

M
nn FFFFxMxMR

α
α

α
α

α
α

&&&& (5)

Unconditional stability and second order accuracy of the scheme, for linear problems [6], require

that the parameters verify the following conditions:

 4

()2141

21
21

MF

FM

FM

ααβ

αα
ααγ

−+≥

≤≤
+−≥

 (6)

Iterative solution of the nonlinear system (5) first requires the elimination of accelerations and

velocities at time tn+1 with the help of (3) and (4), as well as the writing of the Hessian matrix of

the system, i.e.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∆
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

∆
= TT

F

M KC
t

M
t

S

1
1

1

2 β
γ

α
α

β
 (7)

where KT, CT are respectively the tangent stiffness and damping matrices. The residual for iteration

number i+1 is defined by:

() ()[] (ext
n

int
n

F

Fi
n

i
n

exti
n

i
n

int
n

F

Mi
n

F

M FFxxFxxFxMxMR −
−

+−+
−

+
−
−

= +++++ α
α

α
α

α
α

1
,,

1

1
1

11111 &&&&&&) (8)

Then, the iterative solution of system (5, 6, 7) can be written as:

RxS −=∆⋅ (9)

Iterations stop when the non-dimensional residual r becomes lower than the accuracy tolerance δ,

defined by the user. Therefore, the following relation must be verified:

 δ<
+

=
FF

R
r

intext
 (10)

 5

2.3 Implicit schemes: The generalized-θ mid-point scheme (GMP)

An alternative to the previous scheme is a generalized midpoint scheme with constant acceleration

over the time step [3,4,5]. In this case, the equations of motion (1) are solved at the sampling

time: tn+θ = tn + θ (tn+1-tn) with θ > 0, i.e.

() () 0,, =++−++++= θθθθθθ nxnxextFnxnxintFnxMR &&&& (11)

where

()
[]nxtnxnx

t
nx &&&

2

2
∆−−+

∆
=+ θθ

θ
θ

 (12)

⎥⎦
⎤

⎢⎣
⎡ ∆

−−+∆
=+ nxt

nxnx
tnx &&

2

2 θ

θθθ
 (13)

Iterative solution of the nonlinear system (19) requires the evaluation of the Hessian matrix of the

system given by:

() ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∆
+

∆
= TKTC

t
M

t
S

2

2

2
θθ

 (14)

The present scheme is -independent, thus yielding the final acceleration as a post-treatment

result :

nx&&

θ+=
∆

−+=+ nx
t

nxnx
nx &&

&&
&& 1

1
 (15)

3 Automatic time step size control

3.1 Introduction

A relatively simple method proposed by Ponthot [3] aims at an optimal number of iterations. If the

number of iterations exceeds this optimal number, the next time step size is reduced, while, if the

 6

number of iterations is lower than the optimal number, the time step size is augmented. Givoli and

Henisberg [7] propose to modify the time step size to keep the displacements difference between

two successive times lower than a given limit. Géradin [8] (Figure 1) estimates the integration

error from the accelerations and the inertial forces difference between two successive times

multiplied by the square of the time step size. This error is divided by a constant depending on the

initial positions and by another constant that is the average error for a one-degree-of-freedom

linear system (defined as in section 3.2), the result being the non-dimensional integration error e.

This error must be lower than a given tolerance (PRCU). If this error is higher, the time step is

rejected and its size divided by two. If the error is lower than the tolerance but higher than half the

tolerance, the time step is divided by the ratio between the error and half the tolerance to the power

one third. If the error is lower than the tolerance divided by sixteen, the time step size is multiplied

by two.

For Cassano and Cardona [9], the time step control is the same than for Géradin, but the error is

calculated only from the accelerations difference and is not divided by a constant depending on the

initial positions but by a term that evolves with positions. Hulbert and Jang [10] (Figure 2)

estimate the error from the accelerations difference multiplied by the square of time step size. This

error is then divided by a term that depends on the positions difference. Their time step control

algorithm is characterised by two tolerances (TOL1 and TOL2) and by a counter of maximal index

LCOUNT. If the error is higher than TOL2, then the step is rejected and time step size is reduced.

If the error is lower than TOL2 and higher than TOL1, the time step is accepted and its size is kept

constant. If the error is lower than TOL1 then the time step is accepted. If it occurs successively

LCOUNT times, then the time step size is increased. The counter is introduced to avoid

undesirable change in time step size due to the periodic nature of the local error.

Dutta and Ramakrishnan [11] also calculate the error from the accelerations difference multiplied

by the square of the time step size. It is made non-dimensional by dividing it by the maximum

norm of the positions vector, for the previous time step. The time interval is divided in sub-

 7

domains, and in each sub-domain there are a certain number of time steps of constant size. Once

the time marching scheme has gone through a whole sub-domain, an average error is calculated. A

time step size for the next sub-domain is then computed from this average error.

The automatic control scheme presented in this paper is based on the algorithm proposed by

Géradin [8], [12]. Nevertheless, due to the non-linear characteristics of the problems we are

interested in, we make sure that the time step size reacts only on evolution in physical modes and

not on numerical modes. Changes in time step size will also occur only if the new time step size

can be kept constant for several steps. On the other hand, the error estimator based on the inertial

forces difference (proposed by Géradin [8] and established for a linear theory) and the error

estimator based on the acceleration difference (established for linear and non-linear problem) are

compared. It will appear that for non-linear problems a linear theory is not adequate.

3.2 Error estimator

The integration error is estimated from the truncation error of equations (3, 4) or equations (12,

13). Indeed, the truncation error is of the third order: () ()xtOxtOet &&&&& ∆∆≈∆= 23
6

1
6

1 .

Therefore we can write:

x
t

et &&∆
∆

=
6

2
 (16)

First, this expression must be available for any problem. Then a non-dimensional error end is

defined (x0 is the vector of the initial positions):

x
x

t
end &&∆

∆
=

0

2

6
 (17)

To ensure that the error estimator can be used for each implicit scheme (the generalised-α

 8

trapezoidal scheme or the generalised-θ mid-point scheme), and for each set of parameters

(αF, αM, β, γ or θ) without modifying the tolerance on the error (see section 3.3), expression (17) is

divided by a reference. This reference is the average error (on a period) for a one-degree-of-

freedom linear oscillator. Assuming a constant time step size, and a pulsation ω, we can define the

non-dimensional pulsation as Ω = ω ∆t. For such a problem, equations (3) to (5) can be rewritten:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=++−+++−

+∆+∆−+=+

+∆+∆−+∆+=+

0212)1(1)1(

1)1(1

122)
2
1(1

xnFxnFxnMxnM

xntxntxnxn

xntxntxntxnxn

αωωααα

γγ

ββ

&&&&

&&&&&&

&&&&&

 (18)

or

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∆

∆Ω=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+∆

+∆

+

xnt
xnt

xn
A

xnt

xnt

xn

&&

&

&&

&
2

)(

12

1

1
 (19)

with

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω−−+−Ω−Ω−

−−Ω+−−−+Ω−−Ω−

−−
−Ω−−

Ω
=Ω

2)
2
1)(1(2)1(2

)1)(
2

(2112))(1(2
2

21
121

)(
1)(

βααα

α
γ

βαγαγβαγ

βα
αβαα

FMF

FMMF

M
MFM

D
A

where

βαα Ω−+−=Ω 2)1(1)(FMD

And finally, assuming that for a one-degree-of-freedom linear oscillator we have xn=x0 cos(ω t),

and that equation (19) can be rewritten as:

 9

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∆

∆−Ω=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∆

∆−
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+∆
+∆

+
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆∆

∆∆

∆

xnt
xnt

xn
IA

xnt
xnt

xn

xnt
xnt

xn

xt

xt
x

&&

&

&&

&

&&

&

&&

&
2

])([
212

1
1

2

 (20)

it finally comes:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω−

Ω−−Ω=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

∆∆

∆∆

∆

)cos(02
)sin(0

)cos(0
])([

2 tx

tx

tx
IA

xt

xt
x

ω

ω

ω

&&

&
 (21)

Therefore xt &&∆∆ 2 for the one-degree of freedom linear oscillator is deduced from relation (21):

())cos()(2)21)(1(2)sin(13)cos(2
)(

0

2

tDFMtFt
D

x

xt

ωβααωαω ⎟
⎠
⎞

⎜
⎝
⎛ Ω−Ω−−+−Ω−−Ω−Ω−

Ω

=∆∆ &&
 (22)

and expression (17)becomes:

⎟
⎠
⎞

⎜
⎝
⎛ Ω−+−

Ω
+Ω−

=
∆∆

=

βαα

ωωα

2)1(16

)cos(
2

)sin(3)1(

06

2

FM

ttF

x

xt
end

&& (23)

The reference is the average error for a period. It can be noted ε:

∫

=

=
=

ω
π

π
ωε

2

02

t

t
dtend (24)

Using (23), expression (24) yields:

 10

()
()

() ⎥⎦
⎤

⎢⎣
⎡ Ω−+−

Ω
+Ω−

=Ω

βααπ

α
ε

2113

4

2
131

FM

F (25)

If αM = 0, then one gets back the expression calculated by Géradin [8], [12] for the HHT implicit

scheme. Expression (25) is established for the generalised-α trapezoidal scheme, while for the

generalised-θ mid-point scheme, the system (18) is replaced by:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+∆=+∆

+∆+∆=+∆

+
∆

+∆+=+

xntxnt

xntxntxnt

xn
t

xntxnxn

&&&&

&&&&

&&&

θ

θ

θ

212

21
2

2

1 (26)

with:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=+++

+∆+∆=+∆

+
∆

+∆+=+

02

2
2

22

xnxn

xntxntxnt

xn
t

xntxnxn

θωθ

θθθ

θ
θ

θθ

&&

&&&&

&&&

Therefore the matrix A(Ω) in expressions (19, 20, 21) becomes:

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Ω−Ω−

−
Ω

+Ω−

−
Ω

+−
Ω

+

Ω+
=Ω

0222

0)22(
2

2
12

0)2(
2

2
1)12(

2

2
1

222
2)(

θθ

θθγ

θθθ

θ
A

 (27)

Finally, the reference error (25) is rewritten:

 11

()

⎥⎦
⎤

⎢⎣
⎡

Ω+

Ω+⎥⎦
⎤

⎢⎣
⎡ −+ΩΩ

=Ω

2223

224
2

)21(2222

θπ

θθθ
ε

 (28)

The non-dimensional error (17) is then divided by ε (expression 25 or 28) to have an expression

independent of the particular scheme used. However, Ω need to be known to estimate ε. For the

one-degree-of-freedom linear oscillator, ten time steps in a period gives a good accuracy with a

relatively low computation cost. Therefore with the non-dimensional pulsation corresponding to a

0.1 Hz frequency, given by Ωk = 0.6, we define, using (17):

()
x

xk

t
e &&∆

Ω

∆
=

0

2

1
6 ε

 (29)

For linear systems, Géradin demonstrated ([8], [12]) that the error can be evaluated as expression

(30). This error filters high frequency modes (as numerical modes). However, for non-linear

systems, no advantage is gained (see academic examples 1 and 2) by replacing the acceleration

difference by a term depending on the accelerations and the inertial forces difference as in (30),

yielding:

() []
()[] 2

1

2
1

00

2

2
6

xMx
xMx

t
e T

T
k

&&&& ∆∆
Ω

∆
=

ε
 (30)

Another possibility (Cassano and Cardona [9]) to evaluate the error is to keep the maximum

acceleration difference (L -norm) instead of the vector L2-norm. We define e∞ 3, with ndof the

number of degrees of freedom:

 12

() ()
()i

ndofi
j

ndofj

x
xk

t
e &&∆

Ω

∆
=

=
=

max
max6 ,10

,1

2

3
ε

 (31)

In this paper these three error indicators are compared on academic cases.

3.3 Time step size control

In the next paragraphs, the symbol e is used to represent any one errors of e1 (29), e2 (30) or e3

(31). The computed error must be of the order of a user-defined tolerance that is noted PRCU. A

value of this tolerance that lead to a good accuracy to price ratio is typically 10-3. A low PRCU

gives a good accuracy but a longer computation time. A higher PRCU gives a shorter computation

time but a lower accuracy. If PRCU is too high, the time step size can result in an error lower than

PRCU but can be not small enough to allow for iterations to converge. Therefore, if a problem of

convergence appears (Figure 3), the algorithm reduces PRCU (box 1, Figure 4). Moreover, the

time step size is divided by RDOWN, that is initialised at 3 by default. After some steps without

convergence problems, the tolerance PRCU can be augmented. This number of time steps is large

enough to avoid oscillation in PRCU value. It could depend on divergence occurrences.

If the iterations converge, the algorithm tries to adjust the time step size to have an error equal to

one half of PRCU (box 2, Figure 5). There exist three possibilities:

• The error is larger than PRCU/2, and the algorithm goes to box 3 (Figure 6): the error is

considered to be too high, and to ensure a good accuracy, next time step size must be

smaller.

• The error is in the interval [TRHLD, PRCU/2], and the algorithm goes to box 4 (Figure 7):

the time step size ensures a good accuracy with a relatively low computation cost, and it is

kept constant

• The error is smaller than a limit TRHLD, and the algorithm goes to box 5 (Figure 8): the

error is considered to be too small, and to ensure a reduced computation cost, next time step

 13

size must be larger.

Let us first examine the problem of too high an error (box 3, Figure 6). The next time step size

must therefore be reduced. But to avoid needless changes of time step, we will make sure that the

variation of the integration error is due to a durable and physical evolution in the problem. The

time step is then reduced only if there are a number (CO) of successive time steps for which the

integration error is larger than PRCU/2. This number CO can be taken equal to three. The factor

by which the time step size is reduced depends on the maximum error (ERRO) of CO successive

time steps. Géradin demonstrates that for a linear one-degree-of-freedom system, the factor by

which the time step size needs to be multiplied to reduce the error from e to PRCU/2 can be

written:

 η
1

2 ⎥⎦
⎤

⎢⎣
⎡=

e
PRCURAT , η ∈ [2, 3] (32)

For non-linear systems η can be out of this interval. To ensure that the time step size is sufficiently

reduced, η is taken smaller than two. The factor that finally multiplies the time step size is

RAT=[0.5 PRCU/ERRO]2/3. But if there is a rapid change in the physical problem (impact…), the

time step is not immediately adapted. Therefore, if the error e is larger than PRCU, the time step

size is immediately multiplied by RAT=[0.5 PRCU/e]2/3. If the error e is larger than a limit REJL,

the time step is rejected and its new value is size is multiplied by RAT=[0.5 PRCU/e]2/3. REJL can

be taken equal to 1.5 PRCU.

If error is smaller than PRCU/2 and higher than TRHLD, the time step is kept constant (box 4,

Figure 7). Typical values for TRHLD are discussed in next paragraph.

Let us now examine the problem of too small an error (box 5, Figure 8). The time step size could

be augmented without degrading the solution. To avoid needless time step size changes, another

 14

counter is introduced. If CT successive time steps give an error lower then the limit TRHLD, the

time step size is then augmented. ERRT is the maximal error of those CT steps. To ensure that the

time step size is not augmented too much, η from equation (32) is taken larger than 3. The factor

multiplying the time step size is finally RAT=[0.5 PRCU/ERRT]1/5. A problem due to the

introduction of a counter occurs when the solution becomes smoother (external forces

diminish…). Indeed, TRHLD must be taken small (e.g. PRCU/16) and CT relatively large (e.g. 5)

to ensure a good accuracy. In these conditions, the time step size augments slowly. To reduce the

computation cost, TRHLD can be increased and CT can be decreased when the time step size is

augmented. TRHLD can be multiplied by 1.3 while CT is reduced to 4 first and to 2 next. Once a

time step size is reduced, TRHLD and CT are set back to their respective initial values PRCU/16

and 5. In some problems (translation at constant velocities), the error becomes nil. To avoid a

division by zero, ERRT is limited by TRHLD.PRCU /10.

To complete boxes 1 to 5, let us note that: Parameters ICO and ERRO are reinitialised to their

initial value if the scheme goes in box 1, 4 or 5 while parameters ICT and ERRT are reinitialised if

the scheme goes in box 1, 3 or 4.

4 Resolution of the Newton-Raphson iterations

4.1 Selective updating of the inverse Hessian matrix

For non-linear problems, if the Hessian matrix is not recomputed and inverted, the convergence of

Newton-Raphson iterations is slower than if the Hessian matrix were recomputed and inverted at

each iteration. For some step, divergence could also occur. Therefore, the criterion must consider

two facts:

• Convergence of the iterations must be ensured.

• Not updating the Hessian matrix must reduce the total computation cost. Indeed, a problem

with a small number of degrees of freedom and with strong non-linearities can converge in a

few iterations when the Hessian matrix is updated at each iteration, but converge with more

 15

iterations when the Hessian matrix is not updated. When the number of degrees of freedom

is reduced, an iteration without recalculation is not much less expensive. The total cost is

then reduced when the Hessian matrix is often recalculated. On the other hand, if the

problem has a large number of degrees of freedom and only a few non-linear elements, not

updating the Hessian matrix can then reduce the computation cost.

The evolution of the non-dimensional residual r (10) could indicate if the problem converges or

not. While r decreases, iterations converge even if the Hessian matrix is not recalculated and not

inverted. An indication of how much it could be interesting not to recalculate the Hessian matrix is

the ratio VALRF between the time needed for an iteration with recalculation and an iteration

without recalculation. This ratio indicates how much an iteration without recalculation could

advantageously replace an iteration with recalculation.

The proposed algorithm is the following:

• The Hessian matrix is recalculated at the first iteration if the time step size has changed.

Indeed, S significantly depends on ∆t (7).

• If the number of the iterations is greater than VALRF (rounded to an integer), the next

iteration is made with recalculation of the Hessian matrix. Then, iterations occur without

recalculation only if it is less expensive.

• If the number of the iterations is lower than VALRF (rounded to an integer) in an integer,

the Hessian matrix is recalculated only if the non-dimensional residual r has not been

reduced by a ratio chosen equal to RAPRES = VALRF/10 ∈ [0.2, 0.95].

• If the non-dimensional residual has not been divided by RAPRES, the next iteration then

needs recalculation of the Hessian matrix. But ideally, this iteration does not take as initial

values for (x , ,) the values at the end of the previous iteration, but the value at the end

of the last iteration which has converged. Some divergences of the iterations are then

avoided. For practical reasons, the implementation of this last remark in MECANO, one

x& x&&

 16

softwares used to validate our algorithms, was not possible. Thus, the following solution

has been adopted. If the non-dimensional residual has not been reduced, the next iteration

occurs with recalculation and the initial values are the prediction values.

• If an iteration, with a number lower than VALRF (rounded to an integer) in an integer and

larger than one, with recalculation of the Hessian matrix occurs, all the subsequent iterations

of this step will occur with recalculation. Not updating risks to lead to a strategy that

diverges or that requires more computation time than with updating.

• If the last iteration of the previous time step has needed recalculation of the Hessian matrix,

the first iteration of the present step occurs with recalculation.

This algorithm avoids some needless recalculations and inversions of the Hessian matrix. For

strongly non-linear problems with a small number of degrees of freedom, this algorithm is at

worst as expensive as an algorithm with recalculation at each iteration. For problems with

more degrees of freedom, this algorithm is less expensive than an algorithm where the user

decides, more or less arbitrary, of the number of the iterations with recalculation. In fact, this

algorithm allows a lot of iterations without recalculation when possible, and recalculates

frequently the Hessian matrix when needed.

4.2 Criterion of divergence

Two problems of divergence can occur. First an element has a negative Jacobian. In this case,

detection of divergence is easy to detect by verifying the Jacobian of element. A more difficult

problem is to detect divergence when all Jacobian are positive, but when the evolution of the

residual in Newton-Raphson iterations does not lead to a residual lower than the defined tolerance.

Usually, the user specifies a maximum number of iterations. If upon reaching this number, the

non-dimensional residual r is not lower than the tolerance δ, the time step is rejected and the time

step size is divided. But when the residual r decreases slowly, the maximum number of iteration is

exceeded before r becomes lower than δ. On the other hand, the process can diverge after a few

 17

iterations. More iterations are then needless. Finally, if we accept the problem to be solved without

recalculation of the Hessian matrix, the number of iterations is higher than when frequent

recalculations occur. A solution consists in considering that divergence occurs if the non-

dimensional residual has not been divided by two after 5 successive iterations with recalculation.

Several iterations need to be considered, because when divergence occurs, the non-dimensional

residual usually presents some oscillations.

5 Numerical examples

In a first part, three academic cases are studied. The problems are solved with the proposed time

step control algorithm. The error indicator employed are successively those given by relation (29),

relation (30) and relation (31), respectively denoted e1, e2 and e3. A tolerance PRCU=10-3 is used

for all the problems except for problem 1 that is more difficult to integrate. For this problem, a

tolerance PRCU=10-4 is taken. Finally, the problems are also solved with Ponthot ’s method [3]

described in section 3.1. This solution is called “opti”. The optimal number of iterations is taken

equal to 4 except for problem 1. For the same reason than with new algorithm, the optimal number

of iteration is thus taken equal to 2. The problems considered are solved within the formalism of

large deformations and displacements. Academic cases were computed in the research code

METAFOR [3], in which the automatic time step size control algorithm has been implemented. The

criterion of automatic updating and of divergence were also introduced and studied on two others

academic cases. Contact is treated with the penalty method [14].

In a second part, industrial problems are studied. The three algorithms (automatic time step size

control, selective updating of the inverse Hessian matrix, divergence criterion) have been

implemented in the dynamics module MECANO of SAMCEF [13]. In the commercial version of

MECANO, time step size is chosen with the scheme proposed by Géradin [8], [12]. The user defines

the number of the iterations with recalculation of the Hessian matrix and the maximum number of

iterations. With the current algorithm, recalculation occurs at the first iteration of all time steps,

according to the fact that time step size can change. Two industrial problems from SNECMA have

 18

been computed with the old and the new algorithm. These problems were three dimensional models

with thousands of degrees of freedom. Some elements are non-linear, simulating contacts, rupture…

When comparing the new and the old algorithms, precision parameters (δ , PRCU) are taken

identical. For the old algorithm, the iteration numbers with recalculation of the Hessian matrix are

chosen to minimise the total computation cost. Some attempts were necessary to define these

parameters for having a low cost without divergence of the problems.

5.1 Academic case 1: Contact of an elastic bar

An elastic bar in plane stress (properties in Table 1) with an initial velocity (Figure 9) of -5 m/s

(minus sign comes from the orientation of x axis) enters into contact with a rigid matrix initially

distant of 0.25 mm. Due to a Poisson coefficient equal to zero, and considering vertical

displacement fixed to zero, the problem is one-dimensional. The analytic solution of this problem

is knew. In the interval [0 s, 5 10-5 s], the bar is in translation at constant velocity towards the wall.

Contact occurs at 5 10-5s and the velocity of left edge becomes equal to zero. The velocity of the

wave then appearing in the bar is (E/ρ)1/2=5120 m/s. Given the length of the bar, the wave needs

10-4 s to go from the left edge to the right edge and back. The velocity of left edge is then equal to

zero during the interval [5 10-5 s, 15 10-5 s] and becomes equal (due to conservation properties of

an elastic problem) to 5 m/s after 15 10-5s. The problem is solved with the generalized-α

trapezoidal scheme (αM = -0.997 and other parameters automatically computed to have a stable

scheme, i.e. αF = 0.05, γ = 1.997 and β =1.558).These parameters are given the most

“energetically conservative” values, given the conservative nature of the problem. The numerical

dissipation must then be reduced as much as possible to ensure the accuracy of the solution. The

evolution of left edge’s velocity is illustrated at Figure 10. Oscillations at the end of the computation

are a typical numerical problem of implicit schemes. To reduce these, more dissipative parameters

should be chosen but they would reduce the accuracy of the solution with the introduction of

numerical dissipation at lower frequencies. Relative computation costs are reported in Table 2.

Critical observations of these results will be done for the three problems altogether in paragraph

5.3.

 19

5.2 Academic case 2: Taylor’s bar

A cylindrical bar (properties in Table 3) with an initial velocity enters into contact with a rigid

wall. A reference computation is defined. This reference is a computation of the problem with a

small constant time step (∆t = 0.17 µs). The problem is solved with the generalised-θ mid-point

scheme (θ = 1.1). The solution obtained after 80 µs is illustrated at Figure 11. Relative

computation costs are reported in Table 2. For this problem, a comparison with an explicit central

difference scheme is made. The explicit final configuration is nearly identical to the implicit one

(Figure 11) but, due to the low number of degree of freedom, the explicit solution is much more

expensive (52 s).

5.3 Academic case 3: Dynamic buckling of a cylinder

A hollow cylinder [14, 15, 16] (properties in Table 4) enters into contact with a rigid matrix

(Figure 12). The left edge of the cylinder is constrained to move with a constant velocity of 9090

mm/s. The problem is solved with the generalized-α trapezoidal scheme (αM = -0.87 and other

parameters automatically computed to have a stable scheme, i.e. αF = 0.1, γ = 1.48 and β =0.98).

The evolution of the geometry every 1.1 ms is showed in Figure 13. The solution obtained after 12

ms is illustrated in Figure 14. Relative computation costs are illustrated in Table 2.

From the three cases studied up to now, we can say that the automatic time step size control

algorithm developed is more accurate than the “opti” method. Indeed, a garanty of accuracy is

introduced (which depends on the PRCU the user has defined). Computation costs (Table 2) can

be lower (70 % for academic case 3) than with the “opti” method and are never much more

expensive. Slightly better results (same accuracy and lower computational costs) were obtained

when the error estimator e1 (29) was used instead of e2 (30). The error e3 is more severe but is

also more expensive than e1. In fact, the error indicator e2 was developed for linear problems

[8], [12] and does not remain appropriate.

 20

5.4 Academic case 4: 3D-Taylor’s bar

This problem is similar to the academic case 1 but is treated as a three dimensional problem. The

properties of the bar are those given in Table 1. There is no practical interest in a three dimensional

model, but it will serve to validate our algorithms. On the basis of the conclusions drown from the

previous cases, only error e1 is used. Nevertheless, the automatic criterion of Hessian matrix

updating is introduced. Therefore four resolutions are compared: the “opti” method, the new time

stepping algorithms with error e1 and with systematic re-computation of the Hessian matrix at each

iteration, the new time stepping algorithms with error e1 and with criterion of the Hessian matrix

updating and finally a reference computation with a time step ∆t=3.2 10-7 s and updating of

Hessian matrix at each iteration. The problem is solved with the generalized-α trapezoidal scheme

(αM = -0.87 and other parameters automatically computed to have a stable scheme, i.e. αF = 0.1, γ

= 1.48 and β =0.98). The solution obtained after 80 µs is illustrated in Figure 15. Relative

computation costs are reported in Table 5. Critical observations of these results will be done

together with those on next example in paragraph 5.5.

5.5 Academic case 5: Dynamic buckling of a 3D-bar

The problem is the dynamic buckling of a prism of initial height 600 mm (Table 6), and of

uniform section (Figure 16). Properties of the bar are given in Table 6. This example models an

automobile stringer during a frontal crash. The bar than has initial velocity (25 m/s) parallel to its

axis when it enters into contact with a rigid wall. To simulate the vehicle inertia, the opposite edge

of the bar is kept moving at constant speed. The methods compared are identical to the previous

case, but here, a constant time step strategy lead to a very expensive computation (a few days).

Therefore we defined the reference computation, as resolution using error e3 (that is, the most

severe criteria) and a lower PRCU (i.e. 10-5). Moreover we impose time step size to be kept lower

than 10-5 s. The problem is solved with the generalised-θ mid-point scheme (θ = 1.1). The evolution

of the geometry every 1.7 ms is showed at Figure 17. The solution obtained after 17 ms is illustrated

in Figure 18. Relative computation costs are reported in Table 5.

 21

When the criterion of automatic updating is introduced, the new time stepping algorithm requires a

lower expensive (from 5% to 50% in term of CPU) computation cost than with the “opti” method,

even if the solution is less accurate (15 % difference in the maximal von Mises stress for problem

5). Let us note that the updating criterion is efficient with the new time stepping because the time

step size is kept constant on long periods and that the Hessian matrix must not be updated only

because the time step size has changed.

This problem (and previous ones) leads to the next concluding remarks:

• For most problems, an automatic time stepping is necessary. A constant time step

strategy is too expensive for practical usage.

• Time stepping algorithms based on an integration error ensure an accuracy that the

“opti” method cannot ensure. This accuracy depends on the tolerance PRCU chosen

by the user. For elaborate problems (buckling , auto-contact and dynamic effects), a

better convergence (and a better accuracy) is obtained when PRCU is chosen equal to

10-4 than when it is choose at 10-3 (academic cases 1 and 5) or when “opti” (academic

cases 1, 3 and 5) method is used. Indeed, the evolution of time step size is then more

appropriate to the evolution of the problem.

• The automatic criterion for Hessian matrix updating allows to reduce computation

times (CPU) in some cases (academic case 4). For problems with a lot of

modifications of contact (academic example 5), the automatic criterion is reduced to a

re-actualisation for most of the iterations. Nevertheless, the problem converges with a

good accuracy (in critical academic case 5 there is a lack of 15% accuracy). It allows

us to say that, for industrial problems where only a part of the elements are as critical

as in academic case 5, the automatic updating criterion will allow to reduce

computation costs without loss in accuracy.

• The robustness of the proposed algorithms is established since the algorithm has

 22

always produced accurate results without leading to an exaggerated computational

cost for all the highly non linear problems treated.

Let us now confirm these conclusions on industrial cases from SNECMA.

5.6 Industrial case 1

It consist in a three-dimensional model of unbalance in an aircraft engine. The number of

degrees of freedom is about ten thousands. Some non-linear element are used (contact between

blades and casing, contact between shaft and bearing …). This problem is solved with the old

algorithms (commercial version of MECANO) and the new ones (time step control, Hessian

matrix recalculation and divergence criterion). In both cases, the tolerance δ on the non-

dimensional residual r (10) is taken equal to 10-3. Tolerance PRCU on the integration error is

taken equal to 10-3. The initial time step size is the same. With the old algorithm, there is

recalculation of the Hessian matrix for iterations 1, 3, 6, 7, 8, 9… Figure 19 is showing the time

evolution of the displacement of a bearing degree of freedom. New algorithms give a solution

nearly identical to the old ones.

Figure 20 shows the energy balance, i.e. the potential energy plus kinetic energy minus the

work of external forces. If this balance is positive, energy appears with time and the

computation is unstable. If this balance is negative, energy disappears. It could be due to

physical dissipation or to numerical dissipation, and if the numerical dissipation is too high,

the integration is not accurate. On Figure 20, we see that dissipation with new algorithms is a

little lower (0.5%) than with the old algorithms. The new algorithms thus give a good

accuracy. Moreover they decrease the computational cost (CPU) to 40% of the old ones.

5.7 Industrial case 2

It consist in a three-dimensional model of a bearing rupture in an aircraft engine. The number of

degrees of freedom is about ten thousands. This problem is solved with the old algorithms

(commercial version of MECANO) and the new ones (time step control, Hessian matrix

 23

recalculation and divergence criterion). In both cases, tolerance δ on the non-dimensional residual

r is taken equal to 10-4. The tolerance PRCU on the integration error is taken equal to 10-3. The

initial time step size is the same. With the old algorithms, there is recalculation of the Hessian

matrix for iterations 1, 3, 5, 6, 7, 8… Figure 21 represents the force evolution for an intact

bearing degree on freedom. The new algorithms give the same solutions than the old ones.

Figure 22 shows the evolution of time step size. With the new algorithm of time step control,

the time step size is constant during longer periods. Costly updating of the Hessian matrix

because of time step size changes can thus be avoided. New algorithms reduce the

computation time (CPU) to 60% of the old ones.

6 Conclusions

A new time step size control algorithm has been presented. This algorithm is based on the measure

of an integration error. By introducing counters, the time step size is modified only for physical

and durable variations in dynamical problems. But for a sudden change such as an impact or a

contact, the integration error increases in one time step and the algorithm reduces instantaneously

the time step size. By modifying the limit under which the time step could be augmented, if the

problem becomes smoother, time step size can increase rapidly. This algorithm thus gives a good

accuracy with a low computation time and a constant time step for long period. If problems of

convergence occur, tolerance on the integration error is reduced to adapt the time step size. Costly

time step, nevertheless rejected, are thus avoided. This algorithm has been applied to academic

problems with contacts and large deformations. Associated to an estimator of the integration error

based on the average acceleration jump (relation 29), the algorithm has been shown to ensure

accuracy at a relatively low cost.

Next, an algorithm deciding if the Hessian matrix must be re-evaluated has been proposed. This

algorithm re-computes the Hessian matrix only if it is necessary for convergence. If not, the old

Hessian matrix is used in the iterative process and the computation time is reduced. Finally, a

criterion of divergence was implemented. It considers that the problem does not converge if the

 24

non-dimensional residual does not decrease when iterating. A lot of needless iterations are thus

avoided.

These algorithms were also validated on academic cases. Moreover they were implemented in

SAMCEF’s module MECANO [13], with the proposed time stepping algorithm, and they were

validated on industrial cases from SNECMA. Solutions obtained with these algorithms are similar

to the old ones but computational cost have been reduced to about 50%.

References

[1] Belytschko T, Hughes TJR (editor). Computational Methods for Transient Analysis. North

Holland, 1983.

[2] Hughes TJR. The Finite Element Method. Prentice-Hall, 1987.

[3] Ponthot JP. Traîtement unifié de la Mécanique des Milieux Continus solides en grandes

transformations par la méthode des éléments finis. PhD thesis (in French). Liège, Belgium:

Université de Liège, 1995.

[4] Ponthot JP, Hogge M. On relative merits of implicit / explicit algorithms for transient problems in

metal forming simulation. International Conference on Numerical Methods for Metal Forming in

Industry. Baden-Baden, Germany, Sept 1994; (2):128-148.

[5] Hogge M, Ponthot, JP. Efficient implicit schemes for transient problems in metal forming

simulation. NUPHYMAT’96, Numerical and Physical Study of Material Forming Processes.

CEMEF - Ecole Nationale supérieure des Mines de Paris Sophia-Antipolis: France, June 5-7 1996.

[6] Chung J, Hulbert, GM. A time integration algorithm for structural dynamics with

improved numerical dissipations: the generalized-α method. Journal of Applied Mechanics.

1993; 60: 371-375.

[7] Givoli D, Henisberg, I. A simple time-step control scheme. Communication in Numerical

Methods in Engineering. 1993; 9: 873-881.

[8] Géradin M. Analyse, simulation et conception de systèmes polyarticulés et structures

déployables. Cours IPSI. Paris, 11-13 mars 1997.

 25

[9] Cassano A, Cardona A. A comparison between three variable-step algorithms for the

integration of the equations of motion in structural dynamics. Latin American Research. 1991;

21: 187-197.

[10] Hulbert GM, Jang I. Automatic time step control algorithms for structural dynamics.

Computer Methods in Applied Mechanics and Engineering. 1995; 126: 155-178.

[11] Dutta A, Ramakrishnan CV. Accurate computation of design sensitivities for structures

under transient dynamic loads using time marching scheme. International Journal for

Numerical Methods In Engineering. 1998; 41: 977-999.

[12] Géradin M. Flexible multibody dynamics (A finite element approach). John Wiley and

Sons Inc, 2000.

[13] SAMTECH. User Manuel of Samcef, v8.0. Liège, 1999.

[14] Graillet D. Modélisation tridimensionnelle du contact entre structures à parois minces dans les

phénomènes d’impacts et de mise à forme. PhD Thesis (in French). Liège,Belgium: Université de

Liège, To appear.

[15] Graillet D, Ponthot, JP. Efficient implicit schemes for the treatment of the contact between

deformable bodies: Application to schock-absorber devices. IJCrash . 1999; 4 (3): 273-286.

[16] Laursen TA. Formulation and treatment of frictional contact problems using finite elements.

PhD Thesis. USA: Departement of mechanical engeneering, Stanford University. 1992.

 26

e>PRCU/2

Error computation : e

∆t := ∆t /2
yes

yes

RAT=[] 3
1

2e
PRCU

e>PRCU

no

no

e<PRCU/16
noyes

RAT=1

Step accepted, go to
time tn+1=tn+∆t

RAT=2

Resolution of the
system at time tn

Step rejected, return
to time tn=tn-1+∆t

0.5<RAT<0.9

∆t :=RAT ∆t

e>TOL1

Error computation: e

∆t reduced
IND=0

yes

yes

RAT=1

IND =0

e>TOL2

no

no

IND=
LCOUNT noyes

RAT=1

Step accepted, go to
time tn+1=tn+ ∆t

RAT>1

Resolution of the
system at time tn

Step rejected, return
to time tn=tn-1+∆t

∆t :=RAT ∆t

IND :=IND+1

Newton’s iterations at time tn

Iterations
convergence

no yes

Go to box 1. Go to box 2.

First step

RAT=1/RDOWN
:= ∆tn RAT

yes no

PRCU :=PRCU/3

Go to first iteration at time tn

∆tn

yes e>TRHLD

Computation of the integration error: e

e>PRCU/2
yes

Go to
box 3

no

Go to
box 4

no

Go to
box 5

e>REJL

3
2

2 ⎥⎦
⎤

⎢⎣
⎡=

e
PRCURAT

∆t :=∆t RAT
ICO=0
ERRO=0

Return to time tn

yes

no

no

e>PRCU

3
2

2 ⎥⎦
⎤

⎢⎣
⎡=

e
PRCURAT

∆t :=∆t RAT
ICO=0
ERRO=0

Go to time tn+1

yes no

ICO=CO
yes

ICO :=ICO+1

3
2

2 ⎥⎦
⎤

⎢⎣
⎡=

ERRO
PRCURAT

∆t :=∆t RAT
ICO=0
ERRO=0

RAT=1
∆t :=∆t RAT
ERRO=

max(e,ERRO)

RAT=1
∆tn+1=∆tn RAT

Go to time tn+1

CT =5

ICT=CT

ICT :=ICT+ 1

yes no

[] 5
1

2ERRT
PRCURAT =

∆t := ∆ t RAT
TRHLD :=1.3TRHLD
ICT :=0

RAT =1
∆t:= ∆t RAT
ERRT:=

max (e,ERRT)

yes no

CT :=4 CT :=3

Go to time tn+1

x

-6000

-4000

-2000

0

2000

4000

6000

8000

0,00E+
00

5,00E-
05

1,00E-
04

1,50E-
04

2,00E-
04

2,50E-
04

3,00E-
04

3,50E-
04

4,00E-
04

4,50E-
04

time (s)

vé
lo

ci
ty

 (m
/s

)

"opti"
"e1"
"e2"
"e3"
analytic

9090 mm/s

Contact with
friction (µ=0.2)

Contact without
friction

50 mm

60
 m

m

5 mm

2 mm

2 mm

x

y

z

1

 0

-1R
el

at
iv

e
di

sp
la

ce
m

en
t

0 1

Relative time

Old algorithms
New algorithms

Old algorithms
New algorithms

0,1
0

-0,1
-0,2
-0,3
-0,4
-0,5
-0,6
-0,7

 E
ne

rg
y

ba
la

nc
e

(%
)

Relative time

0 1

For
ce

Old algorithms
New algorithms

0 0.5 1

1

0

-1

R
el

at
iv

e
fo

rc
e

Relative time

Old algorithms
New algorithms

R
el

at
iv

e
tim

e
st

ep
 si

ze

Relative time
0 10,5

0

1

Height Length Initial distance to

matrix
Density Young modulus Poisson coefficient Initial velocity

d=40 mm l=247.65 mm di=0.25 mm

ρ = 7895 kg/m3 E=206.84 109 kg/m² ν=0.0 0x& =5 m/s

Table 1: Properties of elastic bar

Problem e1 e2 e3 "opti" "reference"
Problem 1 330 380 430 28 (analytic)
Problem 2 467 528 627 418 2292
Problem 3 7745 6538 12670 25500 27680

Table 2: Computation cost (ms) comparison for the first three problem

Diameter Length Density Young modulus Poisson

coefficient
Yield stress Hardening

parameter
Initial velocity

d=6.4 mm l=32.4 mm ρ = 8930 kg/m3 E=117 109 kg/m² ν=0.35 σ0=4 108 N/m² h=1 108 N/m² 0x& =227 m/s

Table 3: Properties of Taylor’s bar

Internal
diameter

External
diameter

Length Density Young modulus Poisson
coefficient

Yield stress Hardening
parameter

Matrix velocity

di=27 mm de=31.17 mm l=180 mm ρ = 7850 kg/m3 E=2.1 1011
kg/m2

ν=0.3 σ0=700 N/mm2 h=808 N/mm2
0x& =9.09 m/s

Table 4: Properties of buckling cylinder

Problem e1 with updating at each

iteration
e1 with automatic updating "opti" "reference"

Problem 4 6.35 4.43 4.7 12.6
Problem 5 264 254 395 917

Table 5: Computation cost (min) comparison for problems 4 and 5

Length Density Young modulus Poisson coefficient Yield stress Hardening

parameter
Matrix velocity

l=600 mm ρ = 8900 kg/m3 E=2 1011 kg/m2 ν=0.3 σ0=200 N/mm2 h=630 N/mm2
0z& =25 m/s

Table 6: Properties of buckling 3D-bar

Figure 1: Time step size control proposed by Géradin [8]

Figure 2: Time step size control proposed by Hulbert and Jang [10]

Figure 3: Iterations convergence test

Figure 4:Description of box 1, step size control when iterations diverge

Figure 5: Description of box 2, step size control when itrations converge

Figure 6: Description of box 3, step size control when error is too large

Figure 7: Description of box4 , step size control when error is correct

Figure 8: Description of box 5, step size control when error is too small

Figure 9: Model of contact of an elastic bar

Figure 10: Velocity of left edge for contact of an elastic bar

Figure 11: Configuration and Von-Mises stress (N/mm2) for Taylor’s bar

Figure 12: Model of dynamic buckling of a cylinder

Figure 13: Configuration (every 1.1 ms) for the dynamic buckling of a cylinder

Figure 14: Configuration and Von-Mises stress (N/mm2) for the dynamic buckling of a cylinder

Figure 15: Configuration and Von-Mises stress (N/mm2) for 3D-Taylor’s bar

Figure 16: Section of buckling 3D-bar

Figure 17: Configuration at each 4.25 ms for dynamic buckilng of 3D-bar (representation of a

fourth of the bar)

Figure 18: Configuration and Von-Mises stress (N/mm2) for dynamic buckilng of 3D-bar

(representation of a fourth of the bar)

Figure 19: Displacement of industrial case 1

Figure 20: Energy balance of industrial case 1

Figure 21: Force for industrial case 2

Figure 22: Time step size evolution for industrial case 2

Table 1: Properties of elastic bar

Table 2: Computation cost (ms) comparison for the first three problem

Table 3: Properties of Taylor’s bar

Table 4: Properties of buckling cylinder

Table 5: Computation cost (min) comparison for problems 4 and 5

Table 6: Properties of buckling 3D-bar

	ABSTRACT
	KEYWORDS
	3 Automatic time step size control
	3.2 Error estimator

	Resolution of the Newton-Raphson iterations
	Selective updating of the inverse Hessian matrix
	4.2 Criterion of divergence
	5 Numerical examples

	6 Conclusions
	References
	Table 1: Properties of elastic bar
	Table 2: Computation cost (ms) comparison for the first thre
	Table 3: Properties of Taylor’s bar
	Table 4: Properties of buckling cylinder
	Table 5: Computation cost (min) comparison for problems 4 an
	Table 6: Properties of buckling 3D-bar
	Figure 15: Configuration and Von-Mises stress (N/mm2) for 3D

	Figure 19: Displacement of industrial case 1
	Table 2: Computation cost (ms) comparison for the first thre
	Table 6: Properties of buckling 3D-bar

