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Abstract

Coherent backscattering, which is an enhancement of the
backscattered intensity of a light going through a medium made
of point-like scatterers, is known as one of the most robust inter-
ference effects. It has been shown, although it is nowadays not
fully understood yet, that in the presence of non-linearities, this
enhancement turns to an inhibition. We propose to study that
effect by means of a system in which we study the transport of
a Bose-Einstein condensate through Aharonov-Bohm rings in the
presence of interaction and disorder. We find that our system is
indeed a good candidate to observe the coherent peak’s inversion
and is also suitable for more feasible theoretical calculations than
\in the original case. }

Coherent backscattering

Laser light Iy and wavevector k;, going through a sample
composed of point-like scatterers at random positions
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No interference 7 = Ohm’s law

Ensemble average over scatterer’s positions yields a spe-
cific conic pattern
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Constructive interferences between time-reversed conju-
gate paths (same phase acquired due to disorder) around
\9 = 0 (same path’s length). )

CBS peak inversion

Numerical integration of the Gross-Pitaevskii equation
in 2D shows that the interaction strength parameter g
plays an important role

[M. Hartung et al. Phys. Rev. Lett. 101, 020603 (2008)]
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Inverted cone in presence of finite interaction
— crossover from constructive to destructive interfer-
ence

Theoretical calculations beyond the Gross-Pitaevskii

Kzaqop]roach difficultly feasible in 2D )

Our system : BEC coupled to 2 semi-infinite waveguides
connected to a ring
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Usually described by Gross-Pitaevskii equation

Waveguide

h2
o V() + V() + gl () P(r) = i (r)
— Ok if interaction strength g “small enough”

Numerical integration of GP equation and truncated

\Wigner method )

Theoretical description

Ring geometry connected to two semi-infinite homoge-
neous leads

Perfect condensation of the reservoir (T = 0K) with
chemical potential u

Discretisation of a 1D Bose-Hubbard system
[J. Dujardin et al. Phys. Rev. A 91, 033614 (2015)]
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Hamiltonian

H:HQ—I—HER—FHR—FHS
where

Hs = lﬁ)(t)CALLS[; + 1" ()b g, + pbh
with :

o 4o (b) and &l (b') the annihilation and creation
operators at site a (of the source),

o F5 o< 1/6% the on-site energy,

e V,, the disorder potential at site «,

e ¢ the interaction strength,

e N — 00 the number of Bose-Einstein condensed
atoms within the source,

\* r(t) = 0 the coupling strength. y

CBS within a ring

Time-reversed paths are exactly the same (same expe-
rienced disorder)

Constructive interference between those paths

Enhanced backscattering probability
— Aronov-Altshuler-Spivak oscillations
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How to highlight the CBS contribution 7
Schematic approach of the problem

[Thn T., Semiconductor nanostructures, Oxford (2010)]

The reflection probability is given by

R = |rg +rie"® +rie 4+ .. .‘2
— 7‘0’2—|—’7‘1’2—|—... (1)
+ 4|rg| - |r1|cosAcos® + ... (2)
+ 2|71]% cos (2®) + . .. (3)

with A the disorder-dependent phase accumulated after
one turn with & = 0.

(1) no ®-dependence, classical contributions

(2) ®-periodicity, AB contribution, damped to zero
when averaged over the disorder

(3) ®/2-periodicity, AAS contribution, robust to av-
erages over the disorder

Ensemble average over disorder
— Appearance of AAS oscillations
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What happens if we set a weak interaction 7
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e The oscillations amplitude is reduced

e The minimum at ® = m becomes a maximum !
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e Truncated Wigner simulations confirm the coher-
ent peak inversion for weak interaction

e Presence of dephasing for strong interaction

e Analytical calculations with our 1D model more
feasible

e Full diagrammatic theory with interaction (non-
linearity)

\ 'T. Hartmann et. al. Ann. Phys. (Amsterdam) 327 (2012)] )
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