Long-term field study of the influence of the photosynthetic performance of temperate
grassland species on ecosystem CO, exchange fluxes at the ecosystem-scale
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 Under environmental constraints, plants are able to proceed to adjustment in their photosynthetic processes to promote acclimation. However, Chlorophyll fluorescence parameters description

it is currently unclear how alteration in the functioning of the photosystem Il and the photosystem | influences CO, gas exchange at the Fy/Fy  Maximum quantum yield of the PSIT

ecosystem-scale. P Performance Index : representation of the energy conversation from photons absorbed by PSII
 During two years, frequent measurements of chlorophyll a fluorescence (ChlF) in field condition were performed on the three main species of a ABS {0 the reduction of intersystem electron acceptors

temperate grassland ecosystem (Lolium perenne L., Taraxacum sp. and Trifolium repens L.). ChlF data were analyzed with the JIP-test to Uro Efficiency of the electron transport beyond Qa

characterize the photosynthetic performance and its response to combined environmental constraints. Species responses were weighed based AVip Efficiency with which an PSII trapped electron is transferred beyond the PSI acceptor side

on their relative abundance to estimate the photosynthetic performance of the ecosystem. In addition, monitoring of CO, fluxes was performed

, , . . S _ (Strasser R et al. 2000. In : Yunnus M, Pathre U and Mohanty P (eds) Probing photosynthesis : mechanism,
by eddy covariance. ChlF data were analyzed along with CO, fluxes to determine the impact of alteration in the ecosystem photosynthetic

regulation and adaptation. Taylor and Francis, London, 445-483 ; Oukarroum A et al. 2009. Physiologia

performance on CO, ecosystem exchange. Plantarum 137 : 188-99.)
Evolution of photosynthetic processes mesured by ChIF and Il. Relationship between micro-meteorological conditions, photosynthetic performance and CO, fluxes.

micro-meteorological conditions in the field
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Ez ':%’ :,;? glg 5, '§> é” 5? lo Figure 3. Canonical correlation analysis showing the relationships between (a) micro-meteorological parameteters (PPFD, photosynthetic photon flux density; VPD, vapour pressure deficit; T, air temperature; T,,, soil temperature. RH,

relative air humidity; SM, soil moisture) and ChlF parameters (purple, L. perenne; orange, Taraxacum sp., orange; light blue, T. repens; black, ecosystem). Correlations between the first canonlcal axis of the two CCA plots and between the
second canonical axis of the two CCA plot were 88.6% (P < 0.001) and 60.5% (P < 0.001) respectively. (b) micro-meteorological parameters and CO, fluxes (GPP, gross primary productivity; R,.,, ecosystem respiration). Correlations between
the first canonical axis of the two CCA plots and between the second canonical axis of the two CCA plot were 78.8% (P < 0.001) and 54.7% (P < 0.001) respectively. (c) ChlF parameters and CO, fluxes. Correlations between the first
canonical axis of the two CCA plots and between the second canonical axis of the two CCA plot were 72.4% (P < 0.001) and 15.6% (P > 0.05) respectively.

Figure 1. Environmental conditions encountered in the 2014 and 2015 study periods. Values at 11, 13, 15 and 17 h for each day of ChIF
measurements are represented for (a) PPFD, photosynthetic photon flux density; (b) T,;, air temperature; (c) SM, soil moisture at a depth of 5 cm
and (d) VPD, vapour pressure deficit. Grey bars separate the different days of measurements. The arrows indicate the first and third day of the heat
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