Effects of a giant exercising board game intervention on ambulatory physical activity among nursing home residents: a preliminary study

Alexandre Mouton, Nicolas Gillet, Flore Mouton, Dave Van Kann, Olivier Bruyère, Marc Cloes, Fanny Buckinx

July 8, 2017

Introduction

Being active…a forgotten need

Majority of nursing home residents are physically inactive (Paterson & Warburton, 2010)

Physical activity (PA) levels among nursing home residents are much lower than existing recommended levels (3000 steps/day) (Tudor-Locke et al., 2011)

Most of their time is spent sleeping, doing nothing or watching TV in a lying or sitting position (den Ouden et al., 2015)

Among the most sedentary segment of the society: increased risk of physical and neurocognitive impairments leading to frailty and increased mortality (Sun et al., 2013; Clegg et al., 2013)

Benefits of physical activity in later life

Significant health benefits among older adults who became physically active in later life (Hamer et al., 2014)

Walking programs by ambulatory nursing home residents produced significant improvements in walk endurance capacity and distance (Macrae et al., 1996)

Improvements in physical and muscular performances among this population could counter the development of frailty and preserve their quality of life (Buckinx et al., 2016)

Moving beyond monotonous lifestyle in nursing homes:

- Making PA enjoyable and sociable to encourage residents to engage regularly in activities (Chen & Li, 2014)

Growing evidence indicates that gaming approaches for PA promotion, such as board games, lead to increased enjoyment and motivation, in addition to positive cognitive and physical positive outcomes (Bleakley et al., 2015)
Investigate the effects of a giant exercising board game intervention on ambulatory PA among nursing home residents

1. Primary objective: examine the effects of the intervention on the ambulatory PA of residents, by recording the number of steps/day and the energy expenditure (kcal/day)

2. Secondary objectives: assessment of the impact of the intervention on a broader array of physical and psychological outcome measurements, including measurements of physical and muscular performance, health and cognitive status, and motivation for PA.
Introduction

Methods

Results

Conclusions

Recruitment

- Intervention resting home (n= 94)
- Control nursing home (n= 124)
- Excluded by staff screening (n= 47)
- 47 residents
- Refusal to participate (n= 35)
- MMSE ≤ 18 (n= 2)
- Enrollment
- 10 participants
- Intervention (1 month)
- Voluntary withdrawal (n= 1)
- 9 participants
- Follow-up (3 months)
- Acute disease (n= 1)
- 8 participants

Intervention design

- Ambulatory
- Balance
- Strength
- Flexibility
Intervention design

- Decreased assistance by a PA coach:
 - 1st week: 4 sessions
 - 2nd week: 3 sessions
 - 3rd week: 2 sessions
 - 4th week: 1 session

- Autonomy-oriented approach based on the self-determination theory (SDT):
 - Promoting social interactions (relatedness)
 - Providing adapted physical exercises (competence)
 - Encouraging regular voluntary participation in the game (autonomy)

- Registration of participation in the game on a logbook after each session
3 Outcome measurement

Baseline (T0) → Post-intervention (T1) → Follow-up (T2)

- Intervention (1 month)
- Follow-up (3 months)

Tests & interviews Tests & interviews Tests & interviews

- Pa level: 3 days of recording with ActiGraph GT3X ©
- Steps per day
- Energy expenditure (kcal/d)

*References for the tests are mentioned in the bibliography

3 Other assessment tools

<table>
<thead>
<tr>
<th>Cognitive status</th>
<th>Mini-Mental State Examination (MMSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of life</td>
<td>EuroQol 5-dimensions (EQ-5D)</td>
</tr>
<tr>
<td>Motivation for physical activity</td>
<td>Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2)</td>
</tr>
</tbody>
</table>

Body balance, physical, and muscular performance

- **Body balance, gait**: Tinetti test
- **Body balance, gait, chair stand**: Physical Performance Battery (SPPB)
- **Functional mobility**: Timed Up and Go test

Muscular isometric strength
- knee extensors and flexors
- hip abductors and extensors
- ankle flexors and extensors

- MicroFET2 hand-held dynamometer

Questionnaires: structured face-to-face interview

References for the tests are mentioned in the bibliography
Results

Baseline characteristics

- No significant differences at baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Intervention group (n=10)</th>
<th>Control group, (n=11)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>6 (60)</td>
<td>8 (72.7)</td>
<td>0.54</td>
</tr>
<tr>
<td>Age (years)</td>
<td>82.5 (79-89)</td>
<td>89.9 (87-91)</td>
<td>0.08</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>162.9 (158-170)</td>
<td>159.2 (146-169)</td>
<td>0.53</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>67.7±19.2</td>
<td>64.1±15.8</td>
<td>0.85</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>25.3 (20.5-28.6)</td>
<td>25.4 (22.1-24.7)</td>
<td>0.97</td>
</tr>
<tr>
<td>Energy expenditure (kcal/d)</td>
<td>1,753.3 (1,639-1,877)</td>
<td>1,582.2 (1,569-1,794)</td>
<td>0.33</td>
</tr>
<tr>
<td>Steps per day (number)</td>
<td>2,920.9±1,315.5</td>
<td>3,386±207.0</td>
<td>0.19</td>
</tr>
<tr>
<td>MMSE score (30)</td>
<td>26.6±2.2</td>
<td>25.6±2.5</td>
<td>0.56</td>
</tr>
<tr>
<td>EQ-5D score (%)</td>
<td>64.2 (58.7–76.4)</td>
<td>60.3 (50.4–66.4)</td>
<td>0.56</td>
</tr>
<tr>
<td>Relative autonomy index (BREQ-2)</td>
<td>30.5±14.5</td>
<td>31.6±16.9</td>
<td>0.82</td>
</tr>
<tr>
<td>TUG (sec)</td>
<td>23.6±3.2</td>
<td>23.5±2.5</td>
<td>0.92</td>
</tr>
<tr>
<td>SPPB score (12)</td>
<td>7.9±2.7</td>
<td>6.6±2.3</td>
<td>0.28</td>
</tr>
<tr>
<td>Time up and go test (sec)</td>
<td>16.2 (10.4–19.8)</td>
<td>22.7 (13.9–23.6)</td>
<td>0.22</td>
</tr>
<tr>
<td>Strength of the knee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensors (N)</td>
<td>113.2±56.4</td>
<td>110.7±38.6</td>
<td>0.76</td>
</tr>
<tr>
<td>Flexors (N)</td>
<td>108.9±43.8</td>
<td>117.8±28.6</td>
<td>0.56</td>
</tr>
<tr>
<td>Strength of the hip</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensors (N)</td>
<td>93.9±55.4</td>
<td>88.2±36.9</td>
<td>0.71</td>
</tr>
<tr>
<td>Flexors (N)</td>
<td>74.2±44.8</td>
<td>60.2±16.5</td>
<td>0.92</td>
</tr>
<tr>
<td>Strength of the ankle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensors (N)</td>
<td>93.9±80.8</td>
<td>89.9±29.9</td>
<td>0.81</td>
</tr>
<tr>
<td>Flexors (N)</td>
<td>65.3±35.2</td>
<td>82.4±20.5</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Introduction

Methods

Results

Conclusions

2921 steps/day at baseline
- 3358 steps/day post-intervention (+14.9%, \(p = 0.04\))
- 4083 steps/day after 3 months follow-up (+39.8%, \(p = 0.03\))

Other outcomes

- Significant increase of energy expenditure/day
 - after the intervention (+112 kcal/day, +6.3%, \(p = 0.01\))
 - after three months (+213 kcal/day, +12.3%, \(p = 0.02\))
- Significant improvement of perceived quality of life after three months (\(p = 0.04\))
Introduction

Methods

Results

Conclusions

Body balance, physical and muscular performance

- Tinetti scores increased significantly after the follow-up period (+9.1%)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Post-intervention (T1)</th>
<th>P-value *</th>
<th>Follow-up (T2)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinetti score (28)</td>
<td>Intervention group: +1.00±2.12</td>
<td>0.14</td>
<td>+1.80±2.12</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Control group: -0.80±0.55</td>
<td>0.48</td>
<td>-0.55±2.19</td>
<td>0.37</td>
</tr>
<tr>
<td>P-value*</td>
<td>0.20</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Strength of ankle extensors (+37.6%) and flexors (+32.1%) increased significantly

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Post-intervention (T1)</th>
<th>P-value *</th>
<th>Follow-up (T2)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength of the knee extensors (Nm)</td>
<td>Intervention group: +37.6±52.89</td>
<td>0.15</td>
<td>+44.59±27.99</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Control group: +33.2±20.05</td>
<td>0.17</td>
<td>+33.6±23.06</td>
<td>0.23</td>
</tr>
<tr>
<td>P-value*</td>
<td>0.28</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Strength of the hip extensors (Nm) | Intervention group: +10.3±52.05 | 0.59 | +23.07±5.72 | 0.41 |
| | Control group: +6.2±22.73 | 0.37 | -4.9±27.14 | 0.57 |
| P-value* | 0.91 | 0.02 |

- Strength of the ankle extensors (Nm) | Intervention group: +31.7±28.64 | 0.03 | +23.69±3.37 | 0.03 |
| | Control group: +12.4±17.05 | 0.04 | -13.2±26.67 | <0.01 |
First study to implement a PA intervention driven by the SDT among nursing home residents

+ Social support experienced during the game
+ Pedagogical approach oriented towards progressive autonomy
+ Adapted activities

Contribution to the significant outcomes observed in the intervention group
(Schutzer & Graves, 2004)

Participants in the study were those with the best level of autonomy
Participation in the giant exercising board game:

- Improvements in, or at least maintenance of physical states (QOL) that prevent further frailty and diseases among nursing home residents

- Improvements of the strength of the ankle in the intervention group: Strength and flexibility of the musculature is needed to ensure extension (dorsiflexion) and flexion (plantar flexion) of the ankle during walking

- Likely to be associated with gait and balance training (Sherrington et al., 2012)

- Could prevent falls and frailty (Schultz et al., 2015)

Exercising is not supervised: not control of an optimal intensity level

Results based on a limited number of participants from 2 nursing homes

Efforts were made to recruit 2 similar nursing homes (population, number of beds, services and geographical situation)
Effects of a giant exercising board game intervention on ambulatory physical activity among nursing home residents: a preliminary study

References

References

Schultz M, Rosted E, Sanders S. Frailty is associated with a history with more falls in elderly hospitalised patients. Danish medical journal. 2015;62(6).

References for methodology

References for methodology

References for methodology

