



#### **Co-activation mapping and Parcellation**

#### Sarah Genon

Jülich Research Centre, Institute of Neuroscience and Medicine, Brain and Behavior (INM-7)



## **Meta-Analyses**



- Topic based meta-analyses:
  - derive brain regions consistently found across studies investigating a specific function
- Location based meta-analyses:





- Topic based meta-analyses:
  - derive brain regions consistently found across studies investigating a specific function

## **Meta-Analyses**



• Topic based meta-analyses:

derive brain regions consistently found across studies investigating a specific function

• Location based meta-analyses:

derive brain regions consistely found to activate together with a specific region across studies investigating different functions





- Topic based meta-analyses:
  - derive brain regions consistently found across studies investigating a specific function
- Location based meta-analyses:





"left M1 functional network "

# MRI/PET-based connectivity



|         | Fun<br>Function                                        | ctional:<br>al MRI & PET                      | Structural/anatomical:<br>Diffusion MRI           |
|---------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| Data    | Task-based fMRI & PET<br>(behavioral task !)           | Resting state fMRI<br>(no behavioral task !)  | Diffusion MRI                                     |
| Concept | Task-based:<br>Activation during task                  | Resting-state:<br>Signal fluctuations at rest | Diffusion-based:<br>Estimation of fiber direction |
| How ?   | E.g.: Meta-Analytic<br>Connectivity Modeling<br>(MACM) | Correlation in signal fluctuations            | E.g. : probabilistic diffusion tractography       |

## Functional Connectivity **JULICH**

- Functional Connectivity:
  - Temporal coincidence of spatially distinct neurophysiological events
  - Task-based fMRI: Concurrent activity of brain regions
     →Co-activation
- Location based meta-analyses:
  - Co-activations consistently found across different experiments
  - Meta-analysis as a tool to derive functional connectivity
    - $\rightarrow$  Meta-analytical connectivity modeling (MACM)

## Databases





3139 papers15549 experiments121082 locations

http://brainmap.org/

- Coordinates in stereotactic space
- Experimental information





- Identification of all experiments activating the seed region
- General and specific inclusion/exclusion criteria
- Extraction of all coordinates reported in identified experiments
- Performing a meta-analysis across identified experiments





## Which brain regions are functionally connected to left M1 ?



#### Identify all experiments activating the seed region



| _ |        |      |             |                         |   |                                                   |                        |      |   |   |
|---|--------|------|-------------|-------------------------|---|---------------------------------------------------|------------------------|------|---|---|
|   | BMapID | Year | 1st Auth.   | Journal                 | # | Experiment Name                                   | Behavioral Domain      | #Loc | 4 | ۲ |
| ☑ | 30015  | 2000 | Desmurget M | Experimental Brain Re   |   | 4 RAND - STAT                                     | Perception.Vision.Moti | 5    |   |   |
|   | 30016  | 2001 | Desmurget M | Journal of Neuroscience |   | 1 Overall hand-reaching effect                    | Action.Execution,Perce | 17   |   |   |
| ☑ | 30016  | 2001 | Desmurget M | Journal of Neuroscience |   | 2 Strict hand-reaching effect                     | Action.Execution       | 14   |   |   |
|   | 30016  | 2001 | Desmurget M | Journal of Neuroscience |   | 3 Eye error correction effect                     | Perception.Vision.Moti | 3    |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 1 Foot vs. Rest                                   | Action.Execution       | 9    |   |   |
| ☑ | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 2 Hand vs. Rest                                   | Action.Execution       | 14   |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 3 Simultaneous vs. Rest                           | Action.Execution       | 17   |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 4 Hand vs. Foot                                   | Action.Execution       | 5    |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 5 Foot vs. Hand                                   | Action.Execution       | 4    |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 6 Conjunction Analysis                            | Action.Execution       | 13   |   |   |
|   | 30020  | 2000 | Ehrsson H H | European Journal of N   |   | 7 {(Hand - Rest) + (Foot - Rest)} - (Simultaneous | Action.Execution       | 3    |   |   |
|   | 30022  | 2001 | Gosain A K  | Plastic and Reconstruct |   | 1 Smile vs. Rest                                  | Action.Execution       | 2    |   |   |
| • | 30022  | 2001 | Gosain A K  | Plastic and Reconstruct |   | 2 Finger-tapping vs. Rest                         | Action.Execution       | 2    |   |   |
| - |        |      |             |                         |   |                                                   |                        |      |   |   |

#### 155 experiments activating left M1

|   |   | 30026 | 1998 | Sadato N   | Brain                   | 6 Discrimination-Sweep (Sighted)                   | Perception.Somesthesi    | 10 |
|---|---|-------|------|------------|-------------------------|----------------------------------------------------|--------------------------|----|
|   |   | 30026 | 1998 | Sadato N   | Brain                   | 7 Sweep-Rest (Blind)                               | Perception.Somesthesi    | 3  |
|   |   | 30026 | 1998 | Sadato N   | Brain                   | 8 Discrimination-Rest (Blind)                      | Perception.Somesthesi    | 10 |
|   |   | 30026 | 1998 | Sadato N   | Brain                   | 9 Rest-Discrimination (Blind)                      | Perception.Somesthesi    | 5  |
|   |   | 30026 | 1998 | Sadato N   | Brain                   | 10 Blind > Sighted (Non-Braille discrimination com | Perception.Somesthesi    | 7  |
| ٦ |   | 30026 | 1998 | Sadato N   | Brain                   | 11 Sighted > Blind (Non-Braille discrimination com | Perception.Somesthesi    | 8  |
| ٦ |   | 30026 | 1998 | Sadato N   | Brain                   | 12 Blind > Sighted (Rest)                          | Action.Rest              | 8  |
|   |   | 30026 | 1998 | Sadato N   | Brain                   | 13 Sighted > Blind (Rest)                          | Action.Rest              | 2  |
|   | ✓ | 30033 | 2001 | Indovina I | Experimental Brain Re   | 1 Move vs. No-Move                                 | Action.Execution         | 15 |
|   |   | 30033 | 2001 | Indovina I | Experimental Brain Re   | 2 Move-Attend vs. No-Move                          | Action.Execution,Cogni   | 23 |
| ٦ |   | 30033 | 2001 | Indovina I | Experimental Brain Re   | 3 Move-Attend vs. Move                             | Cognition.Attention,Acti | 15 |
| ٦ |   | 30033 | 2001 | Indovina I | Experimental Brain Re   | 4 Attend vs. No-Move                               | Cognition.Attention,Acti | 10 |
| ٦ | ✓ | 30045 | 2001 | Mayer A R  | Neuroreport             | 1 Right Hand > Foot                                | Action.Execution         | 2  |
|   |   | 30045 | 2001 | Mayer A R  | Neuroreport             | 2 Right Foot > Hand                                | Action.Execution         | 2  |
|   |   | 30054 | 1997 | Rao S M    | Journal of Neuroscience | 1 Synchronization-300 vs. Rest                     | Action.Execution         | 3  |
|   |   | 30054 | 1997 | Rao S M    | Journal of Neuroscience | 2 Continuation-300 vs. Rest                        | Action.Execution         | 7  |
|   | ~ | 30054 | 1997 | Rao S M    | Journal of Neuroscience | 3 Listening-300 vs. Rest                           | Perception.Audition      | 2  |
|   | ~ | 30054 | 1997 | Rao S M    | Journal of Neuroscience | 4 Discrimination-300 vs. Rest                      | Perception.Audition      | 3  |
|   |   | 30054 | 1997 | Rao S M    | Journal of Neuroscience | 5 Synchronization-600 vs. Rest                     | Action.Execution         | 3  |
| 1 |   | 30054 | 1997 | Rao S M    | Iournal of Neuroscience | 6 Continuation-600 vs. Rest                        | Action.Execution         | 7  |



#### • Extract all coordinates



|              | BMapID | Year | 1st Auth.    | Journal                 | # Experiment Name                                 | Behavioral Domain        | #Loc | 11 |
|--------------|--------|------|--------------|-------------------------|---------------------------------------------------|--------------------------|------|----|
| ☑            | 30015  | 2000 | Desmurget M  | Experimental Brain Re   | 4 RAND - STAT                                     | Perception.Vision.Moti   | 5    |    |
|              | 30016  | 2001 | Desmurget M  | Journal of Neuroscience | 1 Overall hand-reaching effect                    | Action.Execution,Perce   | 17   |    |
|              | 30016  | 2001 | Desmurg      | -90 -70 -50             | 20 -10 00 10 20 50 20                             | Action.Execution         | 14   |    |
|              | 30016  | 2001 | Desmurg 🛁    | -30 -70 -30             | -30 -10 00 10 - 30 - 30                           | Perception.Vision.Moti   | 3    |    |
|              | 30020  | 2000 | Ehrsson      |                         | ~ Y                                               | Action.Execution         | 9    |    |
|              | 30020  | 2000 | Ehrsson / U- |                         |                                                   | Action.Execution         | 14   |    |
|              | 30020  | 2000 | Ehrsson .    |                         | +                                                 | Action.Execution         | 17   |    |
|              | 30020  | 2000 | Ehrsson   -  |                         |                                                   | Action.Execution         | 5    |    |
|              | 30020  | 2000 | Ehrsson 50-  |                         | ↓ <b>+</b> ↓ ↓ ↓ ↓                                | Action.Execution         | 4    |    |
|              | 30020  | 2000 | Ehrsson      | )                       |                                                   | Action.Execution         | 13   |    |
|              | 30020  | 2000 | Ehrsson      |                         | + · · · · · · ·                                   | Action.Execution         | 3    |    |
|              | 30022  | 2001 | Gosain A 30- | 1                       |                                                   | Action.Execution         | 2    |    |
|              | 30022  | 2001 | Gosain A     | 2                       | +*                                                | Action.Execution         | 2    |    |
|              | 30026  | 1998 | Sadato N     | 1                       | +                                                 | Perception.Somesthesi    | 27   |    |
|              | 30026  | 1998 | Sadato N10-  | /                       |                                                   | Perception.Somesthesi    | 24   |    |
|              | 30026  | 1998 | Sadato N -   |                         |                                                   | Perception.Somesthesi    | 7    |    |
| ☑            | 30026  | 1998 | Sadato N 0.0 |                         |                                                   | Perception.Somesthesi    | 15   |    |
|              | 30026  | 1998 | Sadato N     | (                       | 1                                                 | Perception.Somesthesi    | 12   |    |
|              | 30026  | 1998 | Sadato N-10  | $\smile$                |                                                   | Perception.Somesthesi    | 10   |    |
|              | 30026  | 1998 | Sadato N -   | 7                       | 5                                                 | Perception.Somesthesi    | 3    |    |
|              | 30026  | 1998 | Sadato N     | 3 ++ +                  |                                                   | Perception.Somesthesi    | 10   |    |
|              | 30026  | 1998 | Sadato N-30  | , \                     |                                                   | Perception.Somesthesi    | 5    |    |
|              | 30026  | 1998 | Sadato N     |                         |                                                   | Perception.Somesthesi    | 7    |    |
|              | 30026  | 1998 | Sadato N     | Diani                   | 11 Signes > Dimit (NOT Drame discrimination cort) | Perception.Somesthesi    | 8    |    |
|              | 30026  | 1998 | Sadato N     | Brain                   | 12 Blind > Sighted (Rest)                         | Action.Rest              | 8    |    |
|              | 30026  | 1998 | Sadato N     | Brain                   | 13 Sighted > Blind (Rest)                         | Action.Rest              | 2    |    |
| $\checkmark$ | 30033  | 2001 | Indovina I   | Experimental Brain Re   | 1 Move vs. No-Move                                | Action.Execution         | 15   |    |
|              | 30033  | 2001 | Indovina I   | Experimental Brain Re   | 2 Move-Attend vs. No-Move                         | Action.Execution,Cogni   | 23   |    |
|              | 30033  | 2001 | Indovina I   | Experimental Brain Re   | 3 Move-Attend vs. Move                            | Cognition.Attention,Acti | 15   |    |
|              | 30033  | 2001 | Indovina I   | Experimental Brain Re   | 4 Attend vs. No-Move                              | Cognition.Attention,Acti | 10   |    |
|              | 30045  | 2001 | Mayer A R    | Neuroreport             | 1 Right Hand > Foot                               | Action.Execution         | 2    |    |
|              | 30045  | 2001 | Mayer A R    | Neuroreport             | 2 Right Foot > Hand                               | Action.Execution         | 2    |    |
|              | 30054  | 1997 | Rao S M      | Journal of Neuroscience | 1 Synchronization-300 vs. Rest                    | Action.Execution         | 3    |    |
|              | 30054  | 1997 | Rao S M      | Journal of Neuroscience | 2 Continuation-300 vs. Rest                       | Action.Execution         | 7    |    |
| ┛            | 30054  | 1997 | Rao S M      | Journal of Neuroscience | 3 Listening-300 vs. Rest                          | Perception.Audition      | 2    |    |
| ┛            | 30054  | 1997 | Rao S M      | Journal of Neuroscience | 4 Discrimination-300 vs. Rest                     | Perception.Audition      | 3    |    |
|              | 30054  | 1997 | Rao S M      | Journal of Neuroscience | 5 Synchronization-600 vs. Rest                    | Action.Execution         | 3    |    |
|              | 30054  | 1997 | Rao S M      | Iournal of Neuroscience | 6 Continuation-600 vs. Rest                       | Action.Execution         | 7    |    |



#### • Extract all coordinates from 155 experiments



• Perform a meta-analysis across identified experiments



#### Network significantly co-activating with M1

#### Comparison to resting state functional connectivity MACM







**Resting-State** 







### Functional Connectivity

- Functional Connectivity:
  - Temporal coincidence of spatially distinct neurophysiological events
  - Task-based fMRI: Concurrent activity of brain regions
     →Co-activation
- Location based meta-analyses:
  - Co-activations consistently found across different experiments
  - Meta-analysis as a tool to derive functional connectivity

 $\rightarrow$  Meta-analytical connectivity modeling (MACM)

➔ Functional connectivity to parcellate the brain

#### **Brain parcellation**



• The brain is topographically organized



Different brain regions have different characteristics





# **Connectivity** based parcellation (CBP)





#### Cieslik et al., 2013

Clos et al., 2013

#### MACM-CBP : Workflow

- Perform a MACM analysis for every individual voxel of the ROI
  - → Connectivity matrix: Probability of co-activation for every voxel of the ROI with all voxels of the brain
- Examination of distances in connectivity between each pair of voxels within the VOI
  - $\rightarrow$  (Dis)Similarity matrix: Correspondence between profiles
- Clustering: hierarchical or K-mean clustering

# MACM-CBP of dorsal premotor cortex (PMd)



Are there functionally distinct subregions within the dorsal premotor cortex ROI ?



 Perform a MACM analysis for every individual voxel of the PMd ROI



For each VOI voxel:

- Identification of all experiments activating that voxel
- Computation of across-experiment convergence of coactivations



Perform a MACM analysis for every individual voxel of the PMd ROI 

connectivity matrix



Connectivity between ROI voxel "x" and brain voxel "y"

For each VOI voxel:

Its connectivity profile (fingerprint)

![](_page_22_Picture_1.jpeg)

 Calculation of distance in connectivity between each voxel pair of the PMd

![](_page_22_Picture_3.jpeg)

![](_page_22_Figure_4.jpeg)

Mitglied der Helmholtz-Gemeinschaft

![](_page_23_Picture_1.jpeg)

• Clustering:

![](_page_23_Picture_3.jpeg)

Original similarity matrix

![](_page_23_Figure_5.jpeg)

Voxels with similar co-activation patterns ->

Voxels with patterns  $\rightarrow$ 

![](_page_23_Picture_8.jpeg)

![](_page_23_Picture_9.jpeg)

Reordered similarity matrix

![](_page_23_Figure_11.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

## What are the connectivity differences driving this parcellation?

![](_page_24_Picture_4.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_24_Picture_6.jpeg)

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

![](_page_24_Picture_10.jpeg)

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

## What are the connectivity differences driving this parcellation?

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_26_Picture_6.jpeg)

## **MACM-CBP** projects

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

Subiculum: Chase et al., Neuroimage 2015

![](_page_27_Picture_4.jpeg)

Pulvinar: Barron et al., Hum Brain Mapp 2015

![](_page_27_Picture_6.jpeg)

Amygdala: Bzdok et al., Hum Brain Mapp 2013

![](_page_27_Picture_8.jpeg)

Right PMd: Genon et al., Cerebral Cortex 2017

![](_page_27_Picture_10.jpeg)

IFS / DLPFC: Cieslik et al., Cerebral Cortex 2013

![](_page_27_Picture_12.jpeg)

dmPFC: Eickhoff et al., Cerebral Cortex 2015

![](_page_27_Picture_14.jpeg)

Left PMd: Genon et al., NeuroImage in press

![](_page_27_Picture_16.jpeg)

PrC / PCC: Bzdok et al., Neuroimage 2015

![](_page_27_Picture_18.jpeg)

BA 44: Clos et al., Neuroimage 2015

![](_page_27_Picture_20.jpeg)

SPL: Wang et al., Hum Brain Mapp 2015

![](_page_27_Picture_22.jpeg)

IFJ: Muhle-Karbe et al., Cerebral Cortex 2015

#### Database for meta-analytical results

Meta-analytic maps are openly shared through the ANIMA database: http://anima.fz-juelich.de

| A |         | IIMF                                                    | [beta edition]                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 |      |             |               |            |
|---|---------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|---------------|------------|
|   | WELCOME |                                                         |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                 | Q    | UERY        | SUBMIT        | ABOUT      |
|   | Sea     | arch by author:                                         | Example: Smith, jones                                                                                                                                 | Sort by author A-Z                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                 |      | ◀ ◀ 11-20 0 |               | 38 🕨       |
|   | •       |                                                         | Study                                                                                                                                                 | Desc                                                                                                                                                                                                                                                                                                                                                                                                           | ription                                                                                                                                                                                                                                                                                                                                                         | Size | Files       |               |            |
|   | 0       | Is there "one" I<br>Evidence for het<br>parcellation. C | Cieslik et al. 2013<br>DLPFC in cognitive action control?<br>erogeneity from co-activation-based<br><i>Cerebral Cortex</i> . 23(11): 2677-2689.       | This study shows that the right DLPFC as o<br>executive action control may be subdivided<br>ventral and a posterior-dorsal one based or<br>across neuroimaging studies. The posterior<br>with bilateral intraparietal sulci, whereas the<br>connectivity with the anterior cingulate cort<br>anterior network to be more strongly associa<br>processes, whereas the posterior network w<br>and working memory. | bserved in 4 different experiments of<br>into 2 distinct subregions an anterior-<br>on their whole-brain co-activation patterns<br>subregion showed increased connectivity<br>anterior subregion showed increased<br>ex. Functional characterization revealed the<br>ated with attention and action inhibition<br>was more strongly related to action execution | 1.6M | 5           | <b>.</b>      | 1(a)<br>60 |
|   | •       | (<br>Three key region<br>evidenc<br>analyses. N         | Cieslik et al., 2015<br>ns for supervisory attentional control<br>e from neuroimaging meta-<br>leuroscience and Biobehavioural<br>Reviews. 48: 22-34. | We here investigated the core neural correla<br>coordinate-based meta-analyses of brain ac<br>interference, stop-signal and go/no-go tasks<br>role of the right anterior insula and right infe<br>control, as these were the only two regions<br>classes. Furthermore, the anterior midcingu<br>area were commonly recruited by all but the                                                                    | ites of cognitive action control via<br>ctivity reported for the Stroop, spatial<br>s. Our study revealed evidence for a pivotal<br>rior frontal junction in supervisory attentional<br>consistently involved in all four paradigm<br>late cortex and pre-supplementary motor<br>go/no-go task.                                                                 | 1.6M | 8           | <b>.</b>      | 10<br>6    |
|   | 0       | Tackling the mu<br>meta-analytically<br>area 44         | Clos et al. 2013<br>Itifunctional nature of Broca's region<br>y: co-activation-based parcellation of<br>4. <i>Neuroimage</i> . 83: 174-188.           | We investigated whether the functional het<br>distinct modules within cytoarchitectonicall<br>connectivity-based parcellation (CBP). Our<br>left area 44. A post-hoc functional characte<br>of these five clusters was then performed, m                                                                                                                                                                       | erogeneity of Broca's region is reflected in<br>y-defined left area 44 using meta-analytic<br>analysis revealed five separate clusters within<br>rization and functional connectivity analysis<br>evealing specific and distinct functional                                                                                                                     | 2.6M | 23          | <b>.</b><br>2 | l@<br>€)   |

## Summary

![](_page_29_Picture_1.jpeg)

- Topic based meta-analyses: identify networks associated to a specific function
- Location based meta-analyses: identify networks co-activating with a specific region across different functions
- Meta-analytic connectivity modeling offers an approach to task-based functional connectivity
- Co-activation based parcellation enables to identify cortical modules in a data-driven fashion

![](_page_30_Picture_0.jpeg)

#### Thank you!

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

#### Natalie Alexana Deept Alben

Simon B. Eickhoff Julia Camilleri Ji Chen Edna Cieslik Felix Hoffstaedter Shahrzad Kharabian Robert Langner Xiaojin Liu Thanos Manos Veronika I. Müller Alessandra D. Nostro Kaustubh Patil Rachel N. Pläschke Oleksandr Popovych Niels Reuter Natalie Schlothauer Alexander Silchenko Deepthi Varikuti Albena Vassileva

![](_page_30_Picture_6.jpeg)

#### Funding

![](_page_30_Picture_8.jpeg)

Human Brain Project

![](_page_30_Picture_10.jpeg)

### References

![](_page_31_Picture_1.jpeg)

Cieslik EC, Zilles K, Caspers S, Roski C, Kellermann TS, Jakobs O, Langner R, Laird AR, Fox PT, Eickhoff SB (2012). Is there "one" DLPFC in cognitive action control? Evidence for heterogeneity from co-activation based parcellation. Cereb. Cortex, 23(11), 2677-2689.

Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB (2013). Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44. Neurimage, 83, 174-188.

Eickhoff S, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, Behrens T (2010). Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J. Neurosci. 30, 6409–6421.

Eickhoff SB, Bzdok D, Laird AR, Roski C, Caspers S, Zilles K, Fox PT (2011). Coactivation patterns distinguish cortical modules, their connectivity and functional differentiation. Neuroimage 57, 938–949.

Genon S, Li H, Fan L, Müller VI, Cieslik EC, Hoffstaedter F, Reid AT, Langer R, Grefkes, C, Fox PT, Moebus S, Caspers S, Amunts K, Jiang T, Eickhoff SB (2017). The Right Dorsal Premotor Mosaic: Organization, Functions, and Connectivity. Cereb. Cortex, 27(3), 2095-2110.

Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL & Fox PT (2013). Networks of task co-activations. Neuroimage, 80, 505-514.

Robinson JL, Laird AR, Glahn DC, Lovallo WR, Fox PT (2010). Meta-analytic connectivity modelling: delineating the functional connectivity of the human amygdala. Hum. Brain Mapp., 31, 173–184.

Toro R, Fox PT, Paus T (2008). Functional coactivation map of the human brain. Cereb. Cortex, 18, 2553–2559.

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_1.jpeg)

#### CBP: how many clusters ?

![](_page_33_Figure_1.jpeg)

Mitglied der Helmholtz-Gemeinschaft