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We derive several expressions for the scattering wave functions in the frame of R -matrix
theory. Particular attention is paid to the one-channel situation and to the one-level plus
constant background approximation. These results are then applied to the radiative capture
process. In particular, we investigate the possible appearance, and the physical interpreta-
tion, of asymmetric resonance peaks and of zeros in the capture cross section. The contri-
butions of the external and internal regions are both included. Finally, we show that the
resonance parameters of the one-level plus constant background Breit-Wigner approximation
are stable against variation of the boundary parameters, the values of which therefore re-
main largely arbitrary. Correspondingly, the validity of this approximation does not depend
critically upon the choice of the boundary parameters.

NUCLEAR REACTIONS R-matrix theory:

various expressions for scattering

wave functions with application to radiative capture; dependence of resonance
parameters upon boundary conditions.

I. INTRODUCTION

The proper physical interpretation of the reso-
nance parameters and of the background cross
section is a central problem in compound nuclear
reaction theory.! This topic has recently received
renewed attention, stimulated by the experimental
observation of background cross sections and of
asymmetric resonance peaks, mainly in photonu-
clear reactions,?”® and also in reactions involving
only particle channels.'®!! The type of asymmetry
is related to the phase of interference between the
background and the resonance contributions, and
may therefore yield rather detailed information on
the scattering wave function in the vicinity of a
resonance. This has been exploited in the analy-
sis of the isobaric analog resonances excited in
(p, p) and (p, n) reactions,'* where the asymmetry
can be related to the isospin purity.? Here we
derive, in the frame of R-matrix theory,’® expres-
sions for the scattering wave functions and for the
radiative capture amplitude which are well suited
for the discussion and analysis of this type of ex-
perimental data. More specifically, the main pur-
pose of the present paper is threefold.

(i) In Sec. II, we establish several expressions
for the scattering wave functions ¥§ at an energy
E, both in the internal and external region. Here
the upper index ¢ refers to the entrance channel.
We show that the result given for ¥§ in Ref. 13 is
not valid in the important case when a few levels
are treated on a separate footing, as for instance
in the one-level plus constant background approx-
imation. We first derive a general expression for
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V% in the internal region, in terms of the full R
matrix. Then we divide the levels into two groups
and find a form of ¥§ which contains the level ma-
trix corresponding to the levels of one group only,
and is therefore convenient for the discussion of
the few-level approximation and of the resonance
and background wave functions. We combine the
external and internal parts of ¥§ in one single ex-
pression. We show that, in the one open channel
case, ¥§ becomes real except for an energy-de-
pendent phase factor. This result leads to inter-
esting consequences for the radiative capture am-
plitude. Finally, we discuss in more detail the
one-level plus constant background approximation.
(ii) Section III is devoted to the radiative capture
amplitude, in the case when the coupling of the nu-
cleons to the electromagnetic field can be treated
in first order perturbation theory. We can then
use the expressions obtained in Sec. II for ¥ and
obtain various forms for the radiative capture am-
plitude. We pay particular attention to the radia-
tive capture at low energy, where the one-channel
assumption usually applies. Then we show that
the capture cross section must vanish between
two consecutive eigenvalues for which the products
of the particle by the photon partial width ampli-
tudes have the same sign. A zero always exists
in the one-level plus constant background approx-
imation, and may lead to an asymmetric resonance
peak if it falls sufficiently close to the resonance
energy. These results may be considered as ex-
tensions of a theorem due to Wigner.'*!®* We em-
phasize that we include the contribution of the ex-
ternal region (external capture).
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(iii) In Sec. IV, we investigate the influence of
the choice of the boundary parameters (channel
radii a, and logarithmic derivatives B,) on the res-
onance parameters in the one-level plus constant
background approximation. This is related to the
problem of the “best” choice of the boundary pa-
rameters, i.e., the choice for which the one-level
approximation is justified. This problem has been
discussed for the one-level approximation without
background in Ref. 16 for potential scattering and
in Refs. 17 and 18 for the many-channel case. The
choice of the boundary parameters was found to
be fairly critical in the latter case. Here, we
show that this choice is largely arbitrary in the
one-level plus constant background approximation.
The argument is based upon a set of differential
equations which express the dependence of the R-
matrix quantities upon the boundary parameters.'®

II. SCATTERING WAVE FUNCTION

A. Notation

We denote by ¥§ the scattering wave function
with an incoming wave of unit flux in channel c,
and by v, and &, the relative velocity and relative
wave number, respectively. We call §, the sur-
face function, which contains the external wave
functions of the two fragments. We have in the
external region (v, > a,-)

‘I’% = Z wc’[vc-uzlc(rc: kc)écc’

‘ - Uc'-l/zUcc'Oc’(yc'y kc')] . (Hl)

Here, I, and O, denote the incoming and outgoing
waves, respectively. As much as possible we
adopt the notation of Ref. 13. In the internal re-
gion (v, <a,:), we expand ¥% in terms of the eigen-
states {X,}, which have a specified logarithmic
derivative B, at 7, =a,:

UG =D ASXy . (11.2)
IN

The coefficients A§ fulfill the linear system of
equations!®2°

ZDM 6= —in2Q Ty, (I1.3)
"
where
Dy, =A™y =(Ex = E)Byu+ D (Anye = 28T 0) s
i (11.4)
Bxpe=(Be=S)¥re¥ o s
Tape 2Py aY e (IL.5)

F)\c =r)«)\c'

The quantities E,, Q., S., and P, are the familiar

eigenvalues, hard sphere functions, shift and pene-
tration factors of R-matrix theory.'* Equating
(II.1) and (I1.2) at .. =a,., we find

Ugre =R 8cer = Qe Y2 3~ AT M2 (I1.6)
X

B. Wave function in the internal region

The relation (IX.1.31) of Ref. 13 for ¥§ in the
internal region is obtained by solving Egs. (II.3)
and by inserting the result in Eq. (II.2). The re-
sulting expression is not convenient in practice
since it involves the infinite matrix A. Hence it
is useful to consider few-level appro_ximations.
We use the standard notation'®

L0=S,- B, +iP, =S +iP,,

(1.7
L0, =1%

cc’

and write Eq. (II.3) in the form
Ai+z Lg’(Ew_E)-l’)/uc’ ZACU’VUCl
c’ n

- _iﬁX/ZQchcl/z(Ew _E)-l .
(I1.8)

By multiplying Eq. (II.8) by ¥ ..+ and summing
over w, we obtain a system of linear equations
for the quantities ZnAi,y,,c', whose solution reads

S A ner = =il ?Q, (2P
n
< S LA=RLY o Romy,  (I19)
~

Ry = Ywe¥we!’

Iy (I.10)

are the elements of the R matrix. From (II.8) and
(I1.9), we obtain

AS = —in*?*Q 2P )V*(E ,-E)!
| -
X}Y‘“c * Z'}/wc'Lg' Z 1(1_51‘0) IJC'C”RC”C:) .
= =
(1.11)

Another form for A¢, can be found by using in Eq.
(II.11) the relation (IX.1.13) of Ref. 13:

AS = —in'?Q (2P,)*(E, - E)*

X <7wc+ Z Lg’?’wc' Z'ync'Yn'c'Ar;n'> .
c’ nn'

(I1.12)

We now divide the levels X, into two groups.
We reserve the indices A, u, ... for the retained
levels, and call v, 7, ... the other ones. The
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quantities w, 1, ... refer generically to both
types of levels. We write

’ Y 7 Y !
Rcc'—RCC'+RCC'—Z s - E):_};‘c
(I.13)
The following relation holds*?
(1 -RL)TRleer =l - ROL) TR e
(I1.14)

+ Z auc uc’AXpy
A

where

K)\u:(é-l))\u, )\p:(E)\—E)é)\p_ ZB)\c‘)/pcy
c

(I1.15)

B)\chga)\cs a)\c:Z Hl’gol‘o)-l]cc’}/kc"

' (11.16)

J

c

the internal region reads

Equations (II.11) and (II.14) yield
AC = —ini*?Q (2P )VHE,-E)!

X <awc + E ZZXU‘)/WC’B)\Clau‘:) . (I1.17)
c’ A

This is the result we were aiming at, since the
dimension of the matrix qu equals the number of
selected levels. The right-hand side of Eq. (I1.17)
can be given a simple form when w equals one of
the selected values p. Then we can use the follow-
ing relation, obtained from Egs. (II.15):

(Ex=E)Ay,=0y,= >3 BreYpeAyy. (11.18)
c u’
We find
AL = —in*?Q (2P,)"? ZZMQM. (I1.19)

x

This is the expression given in Ref. 13 |Eq.
(IX.1.27)] where, however, it was overlooked
that it holds only to the selected indices. In the
general case, the more complicated expression
(I1.17) must be used. The expression for ¥§ in

—-mm(zpc)mszc[ —-a_x . }:Axp e <Xx + Z Bror 3 e x ﬂ (11.20)

E,-FE

In the analysis of an isolated resonance, it appears natural to treat explicitly only one level (X,) and to
take the other ones into account in a global way. Equation (II.20) yields

Qe Qe

- __ih—UZ(zpc)l/ZQc [
. E,,—E

The one-level approximation plus constant back-
ground is obtained by assuming that the matrix

R° is independent of energy, in the region of inter-
est. The corresponding Breit-Wigner form of the
collision matrix is given by13

Ucc'_Ucc' +ZQchf —E ~1F (II )
where
E,=E,-Re Zﬁxc'YM':Ex +A5, (I1.23)
=
T)2=@P)"2ay,, Th=2 ITwl, (I1.24)

c

Ugc' =Qc26¢:c’ +2chPcU2Qc'Pc'l/2[(_]_'_—I_{OEO)-IBO]CC'

(I1.25)

These expressions will be used in Sec. IV. For
simplicity, we neglect here the energy dependence
of the surface functions L2. Then the quantities
a5, and By, are independent of energy. Equation

Ex—E Zﬁxc/Yxc

(I1.21)

( x*Zﬁxc EYWEX>-’

r

(11.22) shows that the quantities U%,., T, Y2, E,,
and T, can then be identified with the background,
partial width, resonance energy, and total width,
respectively. Equation (II.21) can now be writ-
ten in the form

Vg = —il'*Q <g°+———_ D' Yy (11.26)
E Ey\—E +3iT, ’ ’
where
f 1/2
0 _ ve
& 2 EV_EXU,
(I1.27)

Yy= )‘q*rZﬁxc ZEY"_CE

The state Y, has the properties which are ex-
pected for a resonance state: it is independent
of the entrance channel and appears to be excited
with a Breit-Wigner “probability amplitude.” We
note that it contains admixtures from all the eigen-
states X,,. Moreover, ¥% contains a background
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contribution (£2) which depends upon the entrance
channel. The states Y, and £2 are not orthogonal.
It is therefore not quite justified to identify the
coefficient of Y, with an “excitation probability
amplitude.” We shall see below that ¥, reduces
to X, in the internal region in the one-channel
case.

C. Wave function in full space

Following Lane and Lynn,?! we extend the basis
states X, in the external region by introducing the
quantities

X, =X, forr,<a,,
= (.._ZMJ'ac')l/zy 'Oc’(rc”kc’)w ,
n* ©e Oc’(ac”kc') ¢
(11.28)

We note that the value of )-(w in the external region
is energy-dependent, and that the radial deriva-
tive of X, is discontinuous at 7,.=a,.. From Egs.
(II.1) and (II.6), we find, in the whole space,

‘IIJCE = (Uc)-llzﬂc[ﬂc—llc - Qn’:oc]c:xtl»bf:ﬁcc’ + Z Afu)-(w ’
w

forr, =a,..

(I1.29)

where the index “ext” indicates that the quantity
contained inside the square brackets differs from
zero in the external region only; since Q) =9,7%,
this quantity is, moreover, purely imaginary. The
one-level form is obtained from Egs. (II.26) and
(I1.29)

v = vc-uzgc[g:lc - Qcoc]mwc

i 1/2 ¥0 chllz
—in Qc <EC+Ex——El—+'§’if;‘-Y>\> 5 (IISO)

where £ and Y, are obtained by replacing X,, by
X, in the expressions (II.27) of £% and Y. The
quantity fﬁ is purely outgoing in the external re-
gion and is therefore also a possible candidate for
the wave function of the resonance.

D. One-channel case

The definition of a,, involves the matrix
(1 -R°L%)™*, which takes a simple form only
when R® is diagonal. Most of the expressions
given below can easily be extended to that case.
In the present section, however, we restrict the
discussion to the one-channel case, which applies
to low energy neutron scattering and to radiative
capture on even-even nuclei, as we shall discuss

in Sec. III. Eq. (II.11) yields
Afuz'ihuzgc')’wc(l _Rchg)-l . (II'BI)

From Eqgs. (I1.28) and (II.29), we then find that,

in all space,

¥6 =2iv,”Y2Q (1 =R, L2)™*

X {Im[Q: (1 - RCCLS)IcJexth

Y -
_ %ch/zh—l/z(zpc)uz Z E"ﬁ)‘“%'
w v /

(I1.32)

This expression shows that ¥§ is in the one-chan-
nel case a real function of the coordinates except
for an energy dependent phase factor. Since this
result is not based on any approximation, we ex-
pect that it can be proved in the frame of general
scattering theory. This is shown in the Appendix.

Using Eqs. (II.18) and (II.21), we find the follow-
ing expression for ¥% in the internal region:

\IIE‘ = —iﬁuzﬂc(Ek -E- B)\cYXc)-l

T 1/2
rUc

X [rn“zxA +(Ex-E) Y 5 _EX,,]
v v
(11.33)

This result shows that Aj(E,)=0 for v#1. Hence,
the one-level approximation without background
is exact at E =E,. In other words, £ is exactly
compensated by the components of the resonance
state Y, along the background eigenstates X,

(v #X) at the energy E,. It can be checked that the
closed channels do not modify qualitatively these
conclusions: they simply shift the energy at which
the coefficients A{ vanish. This shift disappears
if we take the boundary parameters B, equal to S,
in the closed channels.

From Eqgs. (II.16), (II.17), (I1.19), (II.30), and
(I1.33), we find, after a straightforward calcula-
tion, the following value for ¥§ in all space, in
the one-channel, one-level case:

VS =20, Y2Q (1 - RO, L) YE, -E +3i| T, |)*

X {Im[Q:(EX -E+ %l | f‘)\c I )(1 - Rchg)Ic]ex(lpc
- %UCI/ZHL/Z(zpc)UZ

.
><[yhxX +(E\ -E) ZEY"T‘E—X”‘ }
v v

(I1.34)

This one-level expression has over Eq. (II.30) the
merit of showing explicitly that ¥§ is real, except
for a phase factor.

III. RADIATIVE CAPTURE

We assume that the coupling between the nucle-
ons and the electromagnetic field can be treated in
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first order perturbation theory. The transition
amplitude for radiative capture from an entrance
channel c into a final nuclear state ¥, is then giv-
en by

U, =¥, | EM|¥5) , (II1.1)

where p denotes the quantum numbers of the pho-
ton and EM is the photon emission operator, suit-
ably normalized. If the contribution of the photon
channels to the resonance widths and energy shifts
is not negligible, one can still use for ¥% those
expressions derived in Sec. II which involve the
level matrix A, provided that the quantities A,
and Iy, include contributions from the photon
channels.?® Since, however, A,,, cannot be fac-
torized in a product of two quantities depending
upon A and U, respectively, it is, in that case,
not possible to introduce a channel matrix R with-
out making a further approximation. Here we as-
sume that the damping due to photon channels can
be neglected, and give several forms for U,.
From Eqs. (II.3), (II.4), and (II.29), we obtain

Uy, =UM +iQ, ZAwanc”zl"n,”Z, (111.2)
w,n
where

U =072 Q ¥ |EM | (@7, = 2,0 )exithe)  (I11.3)
is a purely imaginary quantity, while
T,,Y2 = 1Y%V, |EM|X,) . (111.4)

Equation (III.2) is not useful since it involves the
infinite matrix A. A more practical expression is
obtained from Eq. (II.30):

We note that the quantities US,, T'y,, and T, are
all complex. The shape of the resonance peak de-
pends upon their relative phases and can in gener-
al not be predicted.

More specific results can be written in the case
of only one particle channel. Equation (II.32) then
yields

Ucp = Zi(Uc)-UZQc(l _}achg)—l(zl—)&‘)u2

<ZM&+1) > (111.8)

where the quantities

Vwp = =30 XU [ EM | X))
- (2P) VW | EM|Im[Q7 L2 )l Y e »

(I11.9)

o0 = (QP,)" 2 (U | EM | Im([Q 1] o) (111.10)
are real. Equation (III.8) shows that the capture
cross section vanishes between two eigenvalues
for which the products v, .y, have the same sign.
This property is analogous to the Wigner theorem
in the two-particle channel case.'*''* We note that
the contribution of external capture is included.
This contribution is, however, smoothly energy-
dependent, but this should not, in practice, affect
the validity of the result. If the contribution of the
external region is neglected, one recovers the
standard form of Wigner’s theorem. If, on the
contrary, the contribution of the internal region

U =u° Fxcl/ T,,Y 5 can be neglected, the capture cross section van-
e =Usr = ‘E- Ey+3y’ (III.5) ishes between two consecutive energies E .
where If the zero falls close enough to a resonance en-
0 _qrhs _ ;31/2 Zo ergy, it may yield asymmetric resonance peaks.
U =Usgs =i 0Ly IEM_I £ (111.6) It is thus of interest to study in more detail the
Ty, 2 =-n"2Q (¥, |[EM|Yy ). (II1.7) one-level plus constant background approximation.
J
From Eqs. (I1.34) and (III.1), we obtain
.- - ey —
Ug, =2iv,7*2Q,(1 - RO, LY) 1p)‘E———ETI1—rF: (I11.11)
where
pr =(¥y | EM [ Im[Q2(1 = RLLY L)) = 30, VA QP S 12 (¥y [EMX,) (I1.12)
v v
ex =pX-1{(‘I’f}EM|Im[(_E_>\ +3 | T DRI = RELIL L)
- 3v. o3 (2P,)Y? (7 AV | EM | X5) +E ”° (Y| EM| X, >)} (I11.13)
v
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The zero at e, is meaningful only if it falls in the
region of validity of the one-level plus constant
background approximation. In practice, it will be
observable only if it lies within or close to the en-
ergy range (Ey - |T'\.|, Ex+|Tx|). If the contri-
bution of the external region can be neglected, and
if (¥;|EM|X,) =0, we find e, =E, which is a con-
sequence of the fact that Vg, is proportional to X,
in the internal region. This for instance applies
to T =0 resonance in light even-even nuclei,? and
to the asymmetry of isobaric analog resonances
as observed in (p, n) reactions.'’ These examples
show that the type of asymmetry which is observed,
i.e., the phase of interference between the reso-
nance and the background, may sometimes be giv-
en a physical interpretation or, alternatively,
yield detailed information on the scattering wave
function. Another case concerns the asymmetry
of the (p,y) resonance peak at the isobaric analog
resonances. A dip is often observed between the
resonance energy and the giant dipole resonance.’
This is probably related to the extension of Wig-
ner’s theorem stated above, since it appears that
in these cases the products y,.v,, have the same
sign for both resonances.?*2* In a more detailed
analysis, however, the existence of other open
channels and of a spreading of the two states (in-
termediate structure) should be taken into account.

In order to acquire a better physical understand-
ing of the physical origin of the zero in the cap-
ture cross section, it is useful to discuss in more
detail two extreme examples. We assume for sim-
plicity that external capture can be neglected.
Equations (III.12) and (III.13) yield then

V. |EM|X
ey =E, +7xc2-‘j—[—\P;IEM|Z:>, (111.14)
where
- Yve 1
Z, E,,—EX"' (I11.15)
v#EN

The state y,.Z, plays the role of a “background
state.” The internal wave function reads

VS = —i2Q (Ex = E = BrcVre) M1 =RY.LI?
X[y xe Xx +(Ex = E)Z,]. (II1.16)
At the energy e,, the contributions of X, and of Z,
to the radiative capture amplitude cancel each oth-
er. The zero may be observable if

lex —Ey|< (Im.17)

which amounts to

| L2

V| EM| X\ )< ——5%—+
<fl I )\) ll"R?;chl

<\I’f|EMlZo>'Y)\c .
(I11.18)

Inequality (III.18) means that the radiative width
amplitude of X, must be small compared to that
of the background state. Three limiting cases are
of illustrative interest. (i) (¥;|EM|X,)=0. Then
e\ =E, and a dip appears in the radiative capture
cross section if B, is chosen equal to S.. This
may probably apply to the data reported in Ref. 6.
(ii) (¥;|EM|Z,) =0. Then the zero is rejected to
infinity, and a symmetric resonance peak is ob-
served. (iii) ¥, =0. Then the zero apparently
falls at E,. However, the damping effect of the
photon channels can no longer be neglected, and
Eq. (III.1) may not be used.

IV. STABILITY OF THE RESONANCE PARAMETERS

The use of R-matrix theory in the analysis of ex-
perimental data has been criticized on the basis
that it involves the arbitrary boundary parameters
a, and B, upon which the collision matrix should
not depend. A related problem concerns the de-
termination of those values of a, and B, for which
the one-level approximation is valid. In the pres-
ent section, we show that the choice of @, and B,
is largely arbitrary, in the sense that the analysis
of an isolated resonance usually yields correct val-
ues for the reduced widths y,,%(B,), for a wide
range of values for B.. In other words, the reso-
nance parameters are stable under a change of B,
although the quantities E, and v,.? depend upon B,.

The problem of the “best” choice of B, has been
discussed by several authors, in the case of the
one-level approximation without background. Most
of them®!* 16:1® advocate the value

Bczsc(E)\): (IVI)

for which the level shift A, (E)) vanishes. It was
pointed out in Refs. 17 and 18 that a deviation from
the choice (IV.1) in the open channels usually leads
to only a small shift of the resonance energy from
E,, and that, more importantly, the choice (IV.1)
is usually not the one for which the one-level ap-
proximation without background is justified. In
fact, it appears that the value of ¢, is the most
critical one. In the numerical study of a many-
channel model, it was found in Ref. 23 that, in
contrast, the one-level plus constant background
approximation appears to be justified for a wide
variety of values for B, in the vicinity of the
choice (IV.1), for a given arbitrary a,. We shall
now explain and extend these numerical observa-
tions.

In a practical analysis of an isolated resonance,
the channel radii a, in the open channels are fixed
a priori, and chosen close to the sum of the radii
of the fragments in channel ¢. The problem then
amounts to the study of the change of the resonance
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parameters when B, is modified. The following
differential equations hold®:

AFE
aB:=—Y)cZ: (Iv.2)

A asYae)
(ya)\B')/)«t 27)\37)\0Rgt(E)\) +7)\t7)\cRgs(E)\)'
]
(Iv.3)

The one-level approximation with constant back-
ground is given by Egs. (I1.22)-(I1.25). We limit
the discussion to the case when the background is
diagonal. In practice, one chooses the boundary
parameters a, and B,, and one fits the background
cross section with Eq. (II1.25). Since the experi-
mental background is given, and since the channel
radii a, are fixed a priori, the variation with B,
of the value of R, obtained from the fit is deter-
mined by the equation

U2

G‘C=0
)

2B, (Iv.4)

which yields

aRgC_ 0 \2
9B, = (R

(IV.5)
It is then straightforward to obtain, from Eqs.
(I1.19), (11.29), (II.24), and (IV.5), the stationarity
relations

8B, 9B, (IV.6)

Hence the resonance parameters are independent
of the boundary parameters B,, as announced
above. We conclude that the choice of B, is large-
ly arbitrary, with, however, a limit being set by
the fact that the level shift A,,, should be smaller
than the spacing between eigenvalues, so that @"
can indeed be approximated by a constant. As dis-
cussed in Ref. 1, the latter limitation is not a
stringent one. In other words, one may analyze
the experimental data with several values of B,
and be confident that the values E,(B,) and ¥,.2(B,)
have a physical meaning. As shown in Ref. 25, it
can happen that two R-matrix eigenvalues fall with-
in the observed resonance, but this event is very
exceptional and unpredictable.

The result obtained above reconciles the facts
that, on the one hand, the assumption that R® is
constant should not be critically dependent upon
the choice of B, and that, on the other hand, the
reduced widths v, 2 and the eigenvalue E, vary
with B,. Another way to interpret the result is
the following. The collision matrix U is indepen-
dent of B,; since the background par? U° is auto-
matically independent of B,, the same must be
true for the resonance part, and hence for the res-

onance parameters. This reasoning makes one
expect that a similar property holds for the depen-
dence upon a,, but we have not been able to prove
it. It also appears likely that Eqgs. (IV.2) and
(IV.3), and similar ones for the dependence upon
a., could be derived directly from the property
that the collision matrix is independent of the
boundary parameters.

Finally, several comments about the “natural”
choice (IV.1) are in order. This choice is in gen-
eral not the one for which R° is minimum, and
should therefore not be expected to favor the one-
level approximation without background. In fact,
Eq. (II.25) shows that the assumption R°=0 can
only be satisfied for suitable values of the channel
radii, and that, for these values of a., the choice
of B, is largely arbitrary, in keeping with Egs.
(IV.2) and (IV.3). The value (IV.1) was recom-
mended in Refs. 16 and 19 on the basis that T,
would then be stable under a variation of a,, i.e.,

g, av.m

c

However, the derivation of Eq. (IV.7) contains a
slight flaw, because it implies the assumption that
the one-level approximation without background
remains valid when a, is varied or equivalently
that 81_%°/8ac =0, which is not true. Although not
critical, the choice (IV.1) is nevertheless favor-
able, for the following reasons. Firstly, it en-
sures that the eigenvalue E, falls close to the res-
onance energy. Secondly, it is the one for which
oy ~¥), for [P.[ <1, so that the value of R® is
not needed at low energy. This is useful, since
1_%° is usually only poorly determined by the back-
ground cross section. We recall, however, that
the choice (IV.1) does not imply that 1_‘_£° is small.

V. SUMMARY AND CONCLUSIONS

The main merit of R-matrix theory is probably
that any approximation on the R matrix yields a
unitary expression for the collision matrix. More-
over, the R matrix has a simple analytic struc-
ture, and few-level approximations can be intro-
duced in an easy and natural way. However, the
physical interpretation of any approximation in
terms of nuclear models normally rests upon the
use of a truncated basis of wave functions. It is
therefore of interest to derive the expressions of
the scattering wave function ¥§ which correspond
to the few-level approximations of the R matrix.
The index ¢ refers to the entrance channel and E
to the energy. In Sec. II, we derive several forms
for ¥, in terms of the full level matrix 4, of a
truncated level matrix A which pertains to a few
selected levels, of the full R matrix, etc. We dis-
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cuss in particular the one-level and the one-chan-
nel cases. We also include the external region in
our study. Some of these results had been pre-
viously obtained by Lane and Lynn®“2° in the spe-
cial case of isolated resonances. In Sec. III we
apply our results to the study of radiative capture
at low energy, with particular emphasis on the
existence and on the physical interpretation of
asymmetric resonance peaks. Finally, we show
in Sec. IV that the one-level plus constant back-
ground approximation is usually justified for a
wide range of values of the boundary parameters
B, and a,.

Many of the problems studied in this paper were
brought to our attention by Dr. A. M. Lane, to
whom we are very grateful for a stimulating cor-
respondence.

APPENDIX

Here we show, in the frame of general scatter-
ing theory, that ¥% is a real function of the nucle-
on coordinates, in the one-channel case. The
Lippmann-Schwinger equation®” reads, with ob-

vious notation,
B=XE +(ET=Ho)T' V¥, (A1)

where x% is an eigenstate of the free Hamiltonian
H,. The transition matrix is given by

VIG =D Teerx§ - (A2)
py
We also introduce the standing wave eigenstate,
which is a solution of
Vg =xg + P(E =H,)"'V¥5, (A3)

where P indicates that the principal value integral
should be taken. Clearly, ¥¢ is a real function.
From Egs. (A1)-(A3), we find

Vg =¥ =P(E -Ho) 'V[Wg - Tg]-in D~ Teerxg
—~

(A4)

In the one-channel case, the comparison between
Egs. (A4) and (A3) yields

\I’% :E%(l - i"ch) ) (A5)

which shows that ¥§ is, like ¥%, a real function
of the nucleon coordinates.
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