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Several neurodegenerative diseases are characterized by both cognitive and motor deficits associated
with accumulation of tau aggregates in brain, brainstem, and spinal cord. The Tg30 murine tauopathy
model expresses a human tau protein bearing two frontotemporal dementia with Parkinsonism linked to
chromosome 17 pathogenic mutations and develops a severe motor deficit and tau aggregates in brain
and spinal cord. To investigate the origin of this motor deficit, we analyzed the age-dependent
innervation status of the neuromuscular junctions and mutant tau expression in Tg30 mice. The human
transgenic tau was detected from postnatal day 7 onward in motoneurons, axons in the sciatic nerve,
and axon terminals of the neuromuscular junctions. The development and maturation of neuromuscular
junctions were not disrupted in Tg30 mice, but their maintenance was disturbed in adult Tg30 mice,
resulting in a progressive and severe muscle denervation. This muscle denervation was associated with
early electrophysiological signs of muscle spontaneous activities and histological signs of muscle
degeneration. Early loss of synaptic vesicles in axon terminals preceding motor deficits, accumulation of
Gallyas-positive aggregates, and cathepsin-positive vesicular clusters in axons in the sciatic nerve
suggest that this denervation results from disturbances of axonal transport. This physiopathological
mechanism might be responsible for motor signs observed in some human tauopathies, and for synaptic
dysfunction resulting from alterations at the presynaptic level in these diseases. (Am J Pathol 2015,
185: 2685e2697; http://dx.doi.org/10.1016/j.ajpath.2015.06.011)

Tauopathies are a class of neurodegenerative diseases char-
acterized by the presence of aggregates of abnormally hyper-
phosphorylated forms of the microtubule-associated protein
tau (MAPT) in nerve cells and/or glial cells.1 Tauopathies
include Alzheimer disease, some forms of frontotemporal
lobar degeneration, Pick’s disease, progressive supranuclear
palsy, and corticobasal degeneration, among others. Several of
these tauopathies are characterized by both cognitive and
motor deficits and tau pathology in brain, brainstem, and spinal
cord. Frontotemporal lobar degeneration patients can develop
both dementia and a motoneuron disease with loss of moto-
neurons in spinal cord.2 The Guam amyotrophic lateral
sclerosis/Parkinsonism-dementia complex is characterized by
amotor neuron disease with widespread neurofibrillary tangles

(including some in the spinal cord), Parkinsonism, and
dementia.3 Frontotemporal dementia with Parkinsonism
linked to chromosome 17 (FTDP-17) is caused bymutations in
the MAPT gene4 and presents with behavioral, language, and
motor abnormalities.5

Tau is mainly expressed in neuron, and its primary
function, by binding to microtubules, is to regulate or
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modulate the stability of axonal microtubules. Other func-
tions of tau include a role in signal transduction, the regu-
lation of axoplasmic transport, and interaction with actin
cytoskeleton.6,7 FTDP-17 tau mutations reduce the ability of
tau to interact with microtubules, promote the assembly of
tau into filaments, or perturb the normal ratio of tau iso-
forms, leading to abnormal aggregation of tau.4

Expression of FTDP-17eassociated mutant tau proteins
in transgenic mice induces development of tau pathology
and neurofibrillary tangles, and several of these models
develop motor deficits.8e10 To better understand the
development of motor impairment in tauopathies, we have
analyzed the age-dependent expression of mutant tau and
the age-dependent innervation status of the neuromuscular
junction in the Tg30tau transgenic model. Tg30tau trans-
genic mice express a human tau protein bearing two FTDP-
17 pathogenic mutations (P301S and G272V)11 in the
forebrain and in the spinal cord and develop tau pathology
and neurofibrillary tangles.10 Tg30tau mice develop a severe
motor deficit beginning at 8 months, an axonopathy and
severe muscle atrophy. We observed that the expression of
human transgenic tau impaired the maintenance of neuro-
muscular junctions (NMJ), leading to muscle denervation in
Tg30 mice. Loss of synaptic vesicles at the NMJ and
accumulation of tau inclusions and cathepsin-positive vesi-
cles suggest the existence of disturbance of axonal transport
in the sciatic nerve of Tg30 mice. Similar alterations might
explain the development of a motoneuron phenotype in
some human tauopathies.

Materials and Methods

Animals

Tg30tau transgenic mice were generated and characterized
as described.10,11 Briefly, these mice express a 1N4R human
tau isoform mutated at positions G272V and P301S, under
the control of a Thy1 promoter. Only heterozygous animals
were used here, and nontransgenic littermates were used as
wild-type (WT) controls. Mice were genotyped by PCR as
reported.12 All mice were maintained on a 12-hour lighte
dark cycle, with food and water ad libitum. All studies on
animals were performed in compliance and following
approval of the ethical committee for the care and use of
laboratory animals of the medical School of the Free Uni-
versity of Brussels.

Tissue Preparation

Newborn and adult mice were sacrificed by decapitation or
cervical dislocation, respectively. The brain, the lumbar
portion of the spinal cord, sciatic nerve, and left hindlimb
muscles were dissected and then formalin-fixed overnight at
room temperature. Samples were embedded in paraffin and
cut at 7 mm thickness using a microtome (Leica Leitz 1400;
Leica Microsystems, Diegem, Belgium). Right hindlimb

muscles were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS), pH 7.4, at 4!C for 20 to 60 minutes
according to their developmental stage. After fixation, the
tissues were rinsed three times in PBS and then cry-
oprotected in 20% sucrose/PBS for 48 hours. Tissues were
embedded in Tissue Tek (Prolabo; VWR International,
Leuven, Belgium) and cut at 20 mm thickness using a
cryostat (Leica CM3050 S). Cryosections were dried at
room temperature and stored at "20!C.

Immunofluorescence Labeling of Neuromuscular
Junctions

Muscle cryosections (tibialis anterior, gastrocnemius, and
quadriceps) were treated with 0.1 mol/L glycine in PBS for 30
minutes before processing. After washes with PBS, sections
were permeabilized with PBS/0.3% TritonX-100 for 10 mi-
nutes and treated with PBS/10% horse serum/0.1% Triton
(buffer A) for 1 hour at room temperature. The primary anti-
bodies were diluted in the buffer A and incubated overnight at
4!C on tissue sections. After washes in PBS/Triton 0.1%, the
secondary antibodies and a-bungarotoxin (BTX) were diluted
in buffer A and incubated on tissue sections for 1 hour at room
temperature. After washes in PBS/Triton 0.1%, the slides were
mounted with Gelvatol containing DABCO 0.1 g/mL (Sigma-
Aldrich, Diegem, Belgium).
Primary antibodies for immunofluorescence were mouse

monoclonal anti-neurofilament (NF; clone SMI32, NE1023,
dilution 1:1000; Millipore, Overijse, Belgium), rabbit
monoclonal anti-synaptophysin (#01-1019, dilution 1:500,
Millipore) and rabbit polyclonal anti-human tau (BR21,
dilution 1:500).12 Secondary antibodies were a goat anti-
mouse antibody conjugated to fluorescein isothiocyanate
(F-1010, dilution 1:250; Sigma-Aldrich) or a goat anti-
rabbit antibody conjugated to biotin (BA-1000, 1:300;
Vector Laboratories, Burlingame, CA) followed by strep-
tavidin conjugated to AlexaFluor 488 (S-11223, dilution
1:250; Life Technologies, Merelbeke, Belgium). BTX
conjugated to Alexa594 (B13423, dilution 1:1000; Life
Technologies) was incubated with the secondary antibodies.
Pictures were taken with an Axiovert 200M fluorescence
microscope (Carl Zeiss, Zaventem, Belgium). For all im-
ages, brightness and contrast were adjusted with Adobe
Photoshop CS3 extended version 10.0 (Adobe Systems, San
Jose, CA) after acquisition to match with the observation.

Analysis of the Maturation and the Innervation Status
of Motor Endplates

Motor endplate maturation was evaluated in postnatal day
(P)14 newborn mice based on criteria previously
described.13,14 A minimum of 100 junctions was analyzed
for each animal (n Z 3). The innervation status of motor
endplates was assessed after labeling with the synaptophy-
sin antibody and BTX by classifying the synaptophysin
distribution into three categories: i) perfect superposition of
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the BTX and synaptophysin labeling; ii) partial super-
position of synaptophysin and BTX labeling; and iii)
absence of synaptophysin labeling.15 The innervation status
of NMJ was also assessed after labeling with NF and BTX
by categorizing them as innervated if there was any overlap
between the two labels or denervated if NF was completely
absent at the synaptic junction.16 A minimum of 300 junc-
tions was analyzed for each mouse (n Z 3).

Immunocytochemistry

The immunohistochemical labeling was performed using the
ABC method. Briefly, tissue sections were treated with
peroxide for 30 minutes to inhibit endogenous peroxidase.
After washes in Tris buffer saline (TBS), sections were incu-
bated with the blocking solution (10% horse serum or goat
serum in TBS/0.13% sodium azide). The primary antibodies
were diluted in 1% horse serum or goat serum/TBS/0.13%
NaN3 and incubated on tissue sections overnight at room
temperature. After washes in TBS, sections were sequentially
incubated with either horse anti-mouse or goat anti-rabbit
antibodies conjugated to biotin (Vector Laboratories) for 30
minutes at room temperature, followed by the ABC complex
(Vector Laboratories). After washes in TBS, the peroxidase
activity was detected using diaminobenzidine as chromogene
(Dako, Carpinteria, CA). In some case, the slides were coun-
terstained with hematoxylin and eosin (H&E). The slides were
mounted with Depex (VWR International).

The primary antibodies for immunocytochemistry were
mouse monoclonal anti-NeuN (NEUN-A60, dilution
1:10,000; Millipore), rabbit polyclonal anti-human tau
(BR21, dilution 1:5000),12 and rabbit polyclonal anti-
cathepsin (BR6, dilution 1:5000).17

Gallyas Staining

Gallyas staining was used for the detection of tau aggregates.
Formalin-fixed, paraffin-embedded sections of the sciatic
nerve (7 mm thick) from 7- and 10-month-old WT and Tg30
mice were stained with a modified Gallyas silver-staining
method10,18 and counterstained with 0.1% Nuclear Fast Red.

Motor Neuron Counts

The number of motoneurons in lumbar spinal cord sections
was quantified after staining with cresyl violet stain and
after immunohistochemistry for NeuN. Counting of moto-
neurons was performed on the left and right ventral sides of
three spinal cord sections for each mouse (n Z 3). Moto-
neurons were identified on the basis of the large size of their
cell body and the cytoplasmic abundance of Nissl bodies.

Fiber Diameter Analysis

A fragment of hindlimb muscle was dissected at 1 month
and the tibialis anterior, gastrocnemius, and quadriceps

muscles were dissected at 3 and 10 months. They were
formalin-fixed, paraffin-embedded, cut (7 mm thick), and
stained with H&E. Pictures were acquired with a DM5000
microscope with LAS EZ software version 3.0 (Leica
Microsystems). The muscle fiber cross-sectional area (CSA)
was measured on 200 fibers for quadriceps and gastrocne-
mius muscles and on 100 fibers for tibialis and hindlimb
muscles of mice, age 1 month, in each animal (n Z 3) using
the ImageJ software version 1.49s (NIH, Bethesda, MD;
http://imagej.nih.gov/ij).

Electromyography

Electromyography recordings were performed in control
and Tg30 mice ages 2 months to 11 months; measurements
were conducted at 2 (n Z 4), 3 (n Z 4), 6 (n Z 5), 8
(n Z 3) and 11 (n Z 4) months of age. Repeated mea-
surements were obtained at 1-month intervals for four mice
and at 5-month intervals for four other mice. The animals
were first sedated by intraperitoneal injection of 1 mg/g body
weight of medetomidine (Sedator; Eurovet Animal Health,
Bladel, the Netherlands). Anesthesia was induced and
maintained using isoflurane (Isoflo, 1.5% in oxygen; Abbott
Laboratories, Wavre, Belgium) delivered through a face
mask (0.4 mL per minute). The sedation was reverted by
intraperitoneal injection of 0.25 mg of atipamezol (Anti-
sedan; Elanco, Anvers, Belgium). During the anesthesia, the

Figure 1 Human tau transgenic protein is expressed in the spinal cord of
Tg30 mice from P7. AeC: Immunocytochemical labeling with the BR21
antibody specific for human tau on traverse sections of the lumbar spinal
cord (anterior horn) of Tg30 mice at P1 (A), P7 (B), and P14 (C). Insets show
the immunolabelling with the BR21 antibody on traverse sections of the
lumbar spinal cord of WT mice. A: Human tau transgenic protein is not
expressed in the lumbar spinal cord of Tg30 mice at P1. B and C: Human tau
transgenic protein is expressed in motoneurons of the anterior horn in the
lumbar spinal cord of Tg30 mice from P7. D: Quantification of motor neuron
numbers in the lumbar spinal cord of WT (black bars) or Tg30 (white bars) at
P14, 1 month, or 10 months. The number of motor neurons is similar in WT
and in Tg30 mice. No significance was observed with the t-test. Error bars
indicate means# SEM. nZ 3 (D). Scale barZ 50 mm. BR21, human-specific
antibody to tau; MN, motor neuron; P, postnatal day; WT, wild type.
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Figure 2 Early muscle hypertrophy and late hypotrophy in mutant tau Tg30 mice. A and B: H&E staining of transverse sections of hindlimb muscles from
1-month-old WT (A) or Tg30 (B), showing a similar aspect in both groups. C: Distribution of muscle fiber cross-sectional areas in hindlimb muscles of 1-month-
old WT (black bars) or Tg30 (gray bars) mice. The distribution of fiber areas in posterior muscle is similar in WT and in Tg30 mice at 1 month. D and E: H&E
staining of transverse sections of quadriceps muscle from 3-month-old WT (D) or Tg30 mice (E). Some signs of muscle degeneration are observed in Tg30 mice
as shown by the presence of nuclei in the center of muscle fibers (arrowhead) and of clusters of fibers with reduced size. Numerous fibers in Tg30 mice have a
large size. F: Distribution of muscle fiber cross-sectional areas in quadriceps muscle of 3-month-old WT or Tg30 mice. The distribution of fiber areas in
quadriceps muscle indicates that there is a significantly increased proportion of the largest muscle fibers in Tg30 mice at 3 months. G and H: H&E staining of
transverse sections of quadriceps muscle from 10-month-old WT (G) or Tg30 (H) mice. There is a reduction in cross-sectional areas of many muscle fibers and
frequent nuclei are located in the center of muscle fibers (arrowhead), indicative of muscle degeneration. I: Distribution of muscle fiber areas in quadriceps
muscle of 10-month-old WT or Tg30 mice. There is a significantly increased proportion of the smallest muscle fibers in Tg30 mice at 10 months. JeM:
Electromyogram recordings of gastrocnemius muscle in WT (J) or Tg30 (KeM) mice aged 2 (J and K), 9 (L), and 11 (M) months. The number of spontaneous
muscle activities has a net tendency to increase with aging in Tg30 mice. n Z 3 (F and I). P < 0.001 by c2 Pearson’s test [comparison of 1 month (C) with 3
months (F), and 10 months (I) with 1 month (C)]. Scale bars: 50 mm (A and D). H&E, hematoxylin and eosin; WT, wild type.
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animals were placed on a heated pad (38!C). A Medelec
Sierra II apparatus (Medelec Instruments, New Delhi, India)
connected to a personal computer running the program
Sierra XP version 3.3.3 was used for both stimulation and
recordings. The stimulation of the sciatic nerve was
performed using percutaneous needle electrodes placed
caudal to the greater trochanter, close to the sciatic nerve.
Recordings were documented using subcutaneous needle
electrodes inserted at the level of the gastrocnemius muscle
in a belly-tendon configuration; a subcutaneous ground
electrode was positioned midway between the stimulating
cathode and the recording electrode. The maximum

amplitude of the muscle compound action potential was
recorded, and its decrement during a train of 10 stimulations
at 3 per second was measured (calculated as the difference
between the amplitude of the tenth and first response
divided by the amplitude of the first response). Detection
electromyography was performed with concentric needle
electrode (25 $ 0.3 mm; Technomed, Maastricht, the
Netherlands) inserted in the leg muscles at least at three
locations, and spontaneous muscle activities were recorded.
The amplitudes of the muscle potential evoked by the sciatic
nerve stimulation were compared using a t-test for paired
samples in the 2 $ 4 mice groups.

Figure 3 The initial formation of NMJ and their innervation is not disrupted in Tg30 mice. AeD: Double labelling on muscle fiber sections of acetylcholine
receptors in muscle motor endplate by a-bungarotoxin (A and C) and immunofluorescence detection of synaptophysin in motor nerve terminal (B and D) in WT
(A and B) or Tg30 (C and D) mice at P14. Insets in B and D show overlapping BTX/SYN labelling illustrated in A and B, and C and D, respectively. The
progressively increased apposition of the motor nerve terminals to motor endplates observed during the maturation of the motor endplates happens normally
in Tg30 mice. E: Quantification of NMJ maturation in WT or Tg30 mice at P14 based on four morphological stages of AChR patterns of distribution (M1: oval
plaque; M2: single perforation; M3: multiple perforations; M4: mature junction). The proportion of each stage is similar in WT and Tg30 mice, indicating that
the maturation of the NMJ junctions is normal in Tg30 mice. Error bars indicated means # SEM. F and G: Labeling of acetylcholine receptors by a-bungarotoxin
and immunofluorescence detection of neurofilament on muscle fiber sections of WT (F) and Tg30 (G) mice at P14. The innervation of motor endplates is normal
in Tg30 mice. H: Quantification of muscle mono- or polyinnervation at P14 using NF/BTX overlap as criterion. The proportion of mono- or polyinnervated
endplates is similar in WT and Tg30 mice. The t-test showed nonsignificant results. n Z 3 (E and H, each group). Scale bar Z 5 mm. AChR, acetylcholine
receptor; BTX, a-bungarotoxin; NF, neurofilament; NMJ, neuromuscular junctions; P, postnatal day; SYN, synaptophysin; WT, wild type.
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Statistics

Data are presented as means # SEM. Unpaired t-test and c2

Pearson’s test were used to determine statistical significance
using GraphPad Prism version 4 software (San Diego, CA).
Differences at P < 0.05 were considered significant.

Results

Human Tau Transgenic Protein Is Expressed in the
Spinal Cord of Tg30 Mice from P7

To determine the timing of postnatal expression of human
tau transgenic protein, an immunocytochemical labeling
with the BR21 antibody specific for human tau was per-
formed on traverse sections of the lumbar spinal cord of
Tg30 and WT mice at P1, P7, and P14. At P1, the human
tau transgenic protein was not detected in the spinal cord of
Tg30 newborn mice (Figure 1A) but was detected at P7 in
the cell bodies and in some axonal processes in motoneu-
rons of the ventral horn of Tg30 mice (Figure 1B). The
expression of human tau was increased in Tg30 mice at P14,
and the protein was clearly detected in neuronal processes
(Figure 1C). Human tau protein was also detected from P7
in the brain of Tg30 mice (data not shown). Thus, human
tau transgenic protein was expressed early in motoneurons
of the ventral horn in the spinal cord and in the brain from
P7 in Tg30 newborn mice.

Tg30 Mice Show an Early Hypertrophy of Muscle Fibers
and a Late Hypotrophy of Muscle Fibers

Tg30 mice develop a motor deficit of hindlimbs from 8
months of age that is severely worsened at 12 months.10 To
analyze the evolution of muscular atrophy, the mean CSA of

muscle fibers in hindlimb muscles was measured at 1, 3, and
10 months in Tg30 mice. The mean CSA and the distribution
of muscle fibers areas were similar in WT and Tg30 mice at 1
month (Figure 2, AeC). By contrast, at 3 months, the CSA in
quadriceps muscle (Figure 2, DeF) and gastrocnemius
muscle (data not shown) increased in Tg30 mice and was
associated with a significantly increased proportion of mus-
cle fibers with large sizes (Figure 2F). At 3 months, the CSA
in tibialis muscle was similar in WT and Tg30 mice (data not
shown). Furthermore, nuclei in the center of muscle fibers
were frequently observed in Tg30 mice at 3 months, sug-
gesting that Tg30 muscle fibers undergo degeneration
(Figure 2, DeF). At 10 months, the CSA in gastrocnemius,
quadriceps, and tibialis muscles was decreased in Tg30 mice
and was associated with a significantly increased proportion
of muscle fibers with small sizes (Figure 2I). In addition,
muscle fibers with central nuclei were frequently observed in
Tg30 mice at 10 months (Figure 2, GeI).

Thus, at 3 months, Tg30 mice showed an increased
proportion of hypertrophic muscle fibers in gastrocnemius
and quadriceps muscles associated with the beginning of
muscle fiber degeneration. Whereas at 10 months, Tg30
mice showed an increased proportion of hypotrophic muscle
fibers with robust signs of muscle fiber degeneration.

Absence of Motoneuron Loss in the Spinal Cord of Tg30
Mice

To rule out the possibility that muscle atrophy in Tg30 mice
could be the consequence of a denervation due to neuronal
loss in the spinal cord, the number of motoneurons was
evaluated in the lumbar spinal cord of WT and Tg30 mice at
different ages (P1, P7, P14, 1, 3, and 10 months). The
density of lumbar motoneurons was similar in WT and Tg30
mice at all investigated ages (Figure 1D). These results

Figure 4 Expression of human tau transgenic protein leads to NMJ denervation in adult Tg30 mice. AeF: Labeling of acetylcholine receptors by
a-bungarotoxin (red, AeC) and immunofluorescence labeling of synaptophysin (green, DeF) on muscle fiber sections of 1-month-old WT (A and D) or Tg30 (B, C,
E, and F) mice. Insets in D, E, and F show overlapping BTX/SYN labeling illustrated in A and D, B and E, and C and F, respectively. A and D: In WT mice, NMJ
display the expected pretzel-like shape and show perfect apposition of the synaptophysin labeling with the motor endplate. B and E: In Tg30 mice, a majority of
NMJ are very similar to those observed in WT animals. C and F: In 1-month-old Tg30 mice, a minority of NMJ junctions show a defective localization of syn-
aptophysin, which only partially overlaps with AChR labeling (the asterisk in F shows an area of a motor endplate devoid of overlapping synaptophysin labeling).
G: Quantification of patterns of synaptophysin distribution in NMJ of WT or Tg30 mice at 1 month. Both in WT and in Tg30 mice, the vast majority of NMJ shows a
perfect superposition of synaptophysin and a-bungarotoxin labelling (black), and a minority shows a partial overlap (gray) H and I: Labeling of acetylcholine
receptors by a-bungarotoxin (red) and immunofluorescence detection of neurofilament (green) on muscle fiber sections of 1-month-old WT (H) or Tg30 (I) mice.
All of the junctions were innervated in Tg30 mice. J: Quantification of muscle innervation at 1 month in WT and Tg30 mice using NF/BTX overlap as criterion. The
vast majority of junctions are innervated in both WT and Tg30 mice. KeR: Labeling of acetylcholine receptors by a-bungarotoxin (red, KeN) and immuno-
fluorescence labeling of synaptophysin (green, OeR) on muscle fibers section of 10-month-old WT (K and O) or Tg30 (LeR) mice. Insets in O, P, and Q show
overlapping BTX/SYN labeling illustrated in K and O, L and P, and M and Q, respectively. K and O: In WT mice, NMJ display the expected pretzel-like shape and
show perfect apposition of the synaptophysin labeling to the motor endplate. L and P: In Tg30 mice, a minority of NMJ are very similar to those observed in WT
animals. M, N, Q, and R: A majority of junctions in Tg30 mice show defective localization of synaptophysin, which only partially overlaps with AChR labeling
(M and Q, arrowhead) or is absent (N and R, double asterisks). S: Quantification of synaptophysin distribution in NMJ of WT or Tg30 at 10 months.
Synaptophysin labeling is properly superposed to the a-bungarotoxin labeling in a vast majority of junctions in WT mice (black), but only in a minority of NMJ
in Tg30 mice, and shows most often a partial overlap (gray), or is absent from the terminal nerve (white). TeV: Labeling of acetylcholine receptors by
a-bungarotoxin (red) and immunofluorescence labeling of neurofilament (green) on muscle fiber sections of 10-month-old WT (T) or Tg30 (U and V) mice. T: All of
the junctions are innervated in WT mice. U: Some junctions are innervated in Tg30 mice, but others are denervated (V). Arrows point on the juunctions (TeV).
W: Quantification of muscle innervation at 10 months in WT and Tg30 mice using NF/BTX overlap as criterion. The vast majority of junctions are innervated in WT
mice (black), but a significant proportion are denervated (gray) in Tg30 mice. *P < 0.05 (G), **P < 0.01 (S), and ***P < 0.001 (S and W) by t-test. nZ 3 (J, S,
and W). Scale bars: 5 mm (A and K). BTX, a-bungarotoxin; NF, neurofilament; NMJ, neuromuscular junctions; SYN, synaptophysin; WT, wild type.
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confirm our previous observation of absence of neuronal
loss in 12-month-old Tg30 mice10 and indicated that the
muscular atrophy and the motor deficit in Tg30 mice cannot
be simply due to neuronal loss.

The Formation and the Maturation of Neuromuscular
Junctions Are Not Affected in Tg30 Mice

We next investigated the formation and the maturation of
NMJ in WT and Tg30 mice. The development of NMJ was
studied between birth and P14, using BTX as a marker of
acetylcholine receptors (AChR) in muscle motor endplates
and immunolabelling for synaptophysin to detect synaptic
vesicles in motor nerve terminals. The development of
NMJ was normal in Tg30 hindlimb muscles. Indeed, at
birth, AChR appeared as plaques overlaid with sparse dots
of synaptophysin-positive clusters likely corresponding to
presynaptic vesicles (data not shown). At P7, motor end-
plates reorganized and started to display classical perfo-
rations whereas morphological matching between motor
nerve terminals and motor endplates increased (data not
shown). At P14, the most mature junctions displayed a
pretzel-like shape, whereas synaptophysin labeling was
superposed to the motor endplates, indicative of a precise
apposition of the motor nerve terminals to the motor
endplates (Figure 3, AeD). To confirm this result, the
maturation of NMJ was evaluated at P14 based on four
morphological stages of maturation of motor endplates
(based on AChR patterns) (Figure 3E) and their innerva-
tion status (based on neurofilament immunoreactivity)
(Figure 3, F and G). A similar distribution of NMJ matu-
ration stages (Figure 3E) and a similar proportion of
monoinnervated motor endplates (Figure 3H) was
observed in WT and Tg30 mice (Figure 3, FeH). Taken
together, these observations suggested that the formation
and initial maturation of NMJ were not altered in hindlimb
muscles of Tg30 mice.

Tg30 Mice Develop a Progressive Denervation of
Neuromuscular Junctions with Aging and Show an
Abnormal Muscle Electrical Activity

To determine whether more tardive consequences on the
stabilization of NMJ might be present in Tg30 mice, the
morphology of NMJ was studied at 1 and 10 months in WT
and Tg30 mice. Labeling of AChR by a-BTX unveiled that
NMJ displayed a pretzel-like shape in WT and Tg30 mice at
1 month, indicative of a normal morphology of motor
endplates on muscle fibers (Figure 4, A, B, D, E). However,
the localization of synaptophysin was defective in a pro-
portion of NMJ in 1-month-old Tg30 mice (Figure 4, C and
F). In WT mice, 95.58% # 0.49% of the NMJ showed
extensive superposition of BTX and of synaptophysin la-
beling (Figure 4, D and G), indicative of precise apposition
between motor nerve terminals and motor endplates. By
contrast, in Tg30 mice, 90.36% # 0.65% of NMJ exhibited
precise superposition of BTX and of synaptophysin labeling
(Figure 4, E and G), and in 9.63 # 0.65% cases, synapto-
physin was partly superposed to the BTX labeling (Figure 4,
F and G). Despite this defect of synaptophysin distribution
at 1 month, the motor endplates were correctly innervated

Figure 5 Human tau transgene is expressed in sciatic nerve and in the
motor nerve terminals. AeF: Labeling of acetylcholine receptors by a-bun-
garotoxin (A, C, and E) and immunofluorescent labeling of human tau trans-
genic protein with the BR21 antibody (B, D, and F) on muscle fiber sections of
P14 (A and B), 1-month-old (C and D), or 10-month-old (E and F) Tg30 mice.
Human tau is detected in the motor nerve terminals (arrowheads) and in axons
(arrows) from P14 and its distribution overlaps to some extent with BTX
labeling in the motor endplate. G and H: Immunocytochemical labeling of
human tau with the BR21 antibody on longitudinal sections of the sciatic nerve
of Tg30 mice at 3 months (G) and 10 months (H). Insets show results of a
similar labeling with the BR21 antibody on longitudinal sections of sciatic
nerves of WT mice (G and H). Human tau is expressed in axons in the sciatic
nerves at 3 months and 10months. Scale bars: 5 mm (AeF) or 10 mm (G andH).
BTX, a-bungarotoxin; P, postnatal day; WT, wild type.
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by motor nerve terminals in Tg30 mice as judged by NF/
BTX labeling (Figure 4, HeJ).

In 10-month-old WT mice, 96.81% # 0.41% of the NMJ
showed extensive superposition of BTX and of synapto-
physin labeling (Figure 4, K, O, and S), indicative of perfect
apposition of motor nerve terminals to the motor endplates.
By contrast, in Tg30 mice, only 39.64% # 3.31% of NMJ
exhibited perfect superposition of motor nerve terminals to
the motor endplates (Figure 4, L, P, and S). In the other
NMJ, the synaptophysin labeling was either partly super-
posed to the BTX labeling (Figure 4, M, Q, and S) or absent

(Figure 4, N, R, and S). Furthermore, in WT mice and in a
proportion of Tg30 mice, NMJ were correctly innervated
(Figure 4, T, U, and W). But in 41.36% # 2.28% of Tg30
NMJ, motor endplates were denervated without apposition
of motor nerve terminals (Figure 4, V and W). Taken
together, these data demonstrate a disturbance of NMJ sta-
bilization in Tg30 mice leading to a progressive denervation
of motor endplates with aging.

Furthermore, the denervation of motor endplates observed
in Tg30 mice was confirmed by electromyographic re-
cordings (Figure 2, JeM). Positive sharp waves and/or

Figure 6 Human tau expression leads to accumulation of Gallyas-positive inclusions and cathepsin Bepositive vesicular clusters in sciatic nerve. A and B:
Gallyas silver staining of longitudinal sections of sciatic nerve of Tg30 mice at 7 (A) and 10 (B) months counterstained with Nuclear Fast Red. Insets show the
same staining on longitudinal sections of sciatic nerve of WT mice. Gallyas-positive aggregates are observed in Tg30 mice at 7 months and 10 months. CeG:
Immunocytochemical labeling with the BR6 antibody to cathepsin B on longitudinal sections of the sciatic nerve of WT (C and D) or Tg30 (EeG) mice at 7
months (C and E) and 10 months (D, F, and G) counterstained with hematoxylin and eosin. The distribution of cathepsin Bepositive vesicular structures is
similar at 7 months in WT and Tg30 mice. Local accumulations of clusters of cathepsin Bepositive vesicular structures (arrowheads) are observed in the sciatic
nerves of Tg30 mice at 10 months. Scale bars: 25 mm (A and B); 30 mm (CeF); 10 mm (G). WT, wild type.
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fibrillation were detected in some Tg30 mice at 2 months of
age that became more abundant in older animals. At 10
months of age, abundant spontaneous activities could be
recorded in Tg30 mice (Figure 2M). Spontaneous activities
were not observed in 2-month-old WT mice (Figure 2J). To
test whether this abnormal electrical activity reflected an
altered neurotransmission at the NMJ, we recorded the
muscle evoked response to repetitive nerve stimulation. If
neuromuscular transmission was affected, a sharp decrease
(>10%) in the amplitude of the electrical response should be
observed after repeated stimulations. But muscle compound
action potential amplitude decrement ranged from "0.4% to
"9.9% in Tg30 mice, indicating that neuromuscular trans-
mission did not seem compromised using this test.

Human Tau Transgenic Protein Is Expressed in Sciatic
Nerve and in Motor Nerve Terminals But Not in Muscle
in Tg30 Mice

We further analyzed the expression and the localization of the
human tau protein in the NMJ, sciatic nerve, and muscle of
Tg30 mice. To analyze tau expression in NMJ, we performed
a double labeling of AChR by a-BTX combined with an
immunofluorescent labeling of human tau transgenic protein
on hindlimb tissue sections in Tg30 mice at P7, P14, and 1
and 10 months. At P7, human tau protein was not detected in
the NMJ (data not shown). At P14, the human tau protein was
expressed in axons and in motor nerve terminals (Figure 5, A
and B). A superposition of BTX and of human tau protein

was observed to some extent in NMJ. The human tau protein
was also expressed in axons and in motor nerve terminals at 1
and 10 months in Tg30 mice (Figure 5, CeF). We also
immunolabelled sections of muscle tissue and of sciatic nerve
with the BR21 anti-human tau antibody. The human tau
protein was expressed in axons of sciatic nerves of 3- and 10-
month-old Tg30 mice (Figure 5, G and H). Human tau was
not detected in muscle (data not shown).

Accumulation of Gallyas-Positive Inclusions in Sciatic
Nerve in Tg30 Mice

Gallyas-positive tau aggregates develop in the brain and the
spinal cord of Tg30 mice with age.10 To assess whether
aggregates were also present in sciatic nerves in Tg30 mice,
we stained sciatic nerves with the Gallyas silver-staining
method. A few elongated Gallyas-positive inclusions and
clusters of dot-like inclusions were detected along axons in
sciatic nerves of 7-month-old Tg30 mice (Figure 6A).
Gallyas-positive aggregates were much more numerous in
10-month-old Tg30 mice and of larger size. Gallyas-positive
aggregates were also encountered in focal areas of axonal
degeneration (Figure 6B). These Gallyas-positive aggre-
gates were not encountered in WT mice (Figure 6, A and B).
Thus, Gallyas-positive aggregates develop also in sciatic
nerves and increase with age in Tg30 mice.

Accumulation of Cathepsin BePositive Vesicular
Clusters in Sciatic Nerve in Tg30 Mice

Tau proteins regulate the stability of axonal microtubules and
the axonal transport,7 and abnormal expression of tau could
disrupt axonal transports and lead to the observed NMJ
denervation in Tg30 mice. Disturbances in the axoplasmic
transport leads to accumulation of cathepsin-positive auto-
phagic vacuoles.19 To document potential disturbances in the
axoplasmic transport in axons in Tg30 axons, we compared in
WT and Tg30 mice the distribution of cathepsin B immuno-
reactivity in the sciatic nerve at 3, 7, and 11 months (Figure 6,
CeG). At 3 months of age, the cathepsin B immunoreactivity
was similar in WT and Tg30 mice (data not shown). Occa-
sional small clusters of cathepsin Bepositive vesicular struc-
tures were observed along axons at 7months in sciatic nerve of
Tg30mice, but not inWTmice (Figure 6, C and E). Numerous
clusters of such cathepsin Bepositive vesicular structures
were observed at 10 months in sciatic nerve of Tg30 mice
(Figure 6, F and G), but not in WT mice (Figure 6D).

Discussion

We show in this study that the Tg30 tauopathy murine model
develops a muscular degeneration due to a progressive NMJ
denervation, leading to a severe motor deficit. This motor
deficit is preceded by an early defective localization of syn-
aptophysin in NMJ, spontaneous muscle electrical activity,

Figure 7 Chronological sequence of pathological events observed in
Tg30 mice. Human tau transgenic protein is expressed in the spinal cord of
Tg30 mice from P7 and in motor nerve terminals from P14. The develop-
ment of neuromuscular junctions is normal in Tg30 newborn mice, but a
defective localization of synaptophysin in motor nerve terminals is
observed from 1 month. Then, at 2 months, an abnormal spontaneous
electrical activity is detected in hindlimb muscles of Tg30 mice. At 3
months, accumulation of tau aggregates are observed in the spinal cord of
Tg30 mice. In addition, some muscle fibers are hypertrophic and early signs
of muscle fiber degeneration are apparent. At 7 months, accumulation of
tau aggregates are observed in sciatic nerves. At 8 months, the beginning
of deficit motor is observed in Tg30 mice. Finally, at 10 months, accu-
mulation of cathepsin-positive vesicles are evident in sciatic nerves of Tg30
mice, suggesting a disturbance of axonal transport. Moreover, muscle fibers
of Tg30 mice are atrophic and exhibit robust signs of degeneration. A
severe denervation is also observed at this age. These pathogenic events
lead to muscular weakness and a severe motor deficit. P, postnatal day; m,
month(s).
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muscle fibers degeneration, and accumulation of tau aggregates
in sciatic nerve axons. The sequence of appearance of these
pathogenic events is schematically represented in Figure 7.

The Motor Phenotype and NMJ Denervation in Tg30
Mice Is Not Due to Motoneuron Loss

We did not observe a loss of spinal motoneurons in Tg30
mice from P0 to 10 months, extending our previous results
showing no neuronal loss in 12-month-old Tg30 mice.10

This absence of neuronal loss is striking in view of the se-
vere motor phenotype developed by Tg30 mice from 8
months and onward, and demonstrates that the muscular
atrophy and NMJ denervation in Tg30 mice is not second-
ary to death of spinal motor neurons. A denervation of the
neuromuscular junctions despite an absence of death of
spinal motor neurons was also observed in a TDP-43
knockout mice model developing a motor impairment
around the age of 60 weeks, a degeneration of large motor
axons, grouped atrophy of the skeletal muscle.20 These
observations indicate that a severe motoneuron phenotype
can develop in the absence of significant motoneuron death.

Early Expression of Human Tau Transgenic Protein up
to the Nerve Terminals of Motoneurons Is Not
Associated with Denervation

We observed that the human tau protein was expressed in
cell body and dendrites of motoneurons in the spinal cord of
Tg30 mice from P7. This is consistent with the observation
that the Thy1 promoter starts to drive expression in neurons
at P6.21 From P14, the human tau protein was also
expressed in motor axons and in motor nerve terminals. We
previously reported that the human tau protein was detected
at P18 in brain and spinal cord of Tg30 mice.10 Despite this
early expression of human mutant tau up to the nerve ter-
minals of motoneurons, the initial maturation of NMJ up to
P14 was not affected in Tg30 mice. The first abnormality
that we detected was a defect of synaptophysin distribution
in a moderate proportion of NMJ at 1 month that was not
associated with morphological signs of denervation and
without evidence of motor deficits. These observations
suggest that the toxic effect of human tau is a relatively slow
process that manifests itself only in mature NMJ and leads
to a progressive denervation only in adulthood.

Tg30 Mice Develop a Progressive Muscle Denervation

We observed a two-phase evolution of muscle fibers changes
in Tg30 mice. Although the size of muscle fibers was similar
at 1 month in WT and Tg30 mice, a higher proportion of
hypertrophic muscle fibers (and some signs of muscle fibers
degeneration) was seen at 3 months in Tg30 mice, followed
by a higher proportion of hypotrophic muscle fibers (with
robust signs of muscle fiber degeneration) at 10 months.
This two-phase evolution most probably corresponds to a

slow process of muscular denervation: the onset of
muscular degeneration concerns a selected population of
muscle fibers but initially this is associated to a compen-
sation mechanism with nearby/neighboring muscle fibers
increasing their size. The ongoing denervation then con-
cerns an increasing population of muscle fibers showing
hypotrophy. The presence of both hypotrophic and hyper-
trophic muscle fibers has been observed in other models of
progressive neurodegenerative diseases. For example, in
aged SOD1G93A mice, the gastrocnemius muscles show
severe changes, including a small group of atrophic muscle
fibers, centrally placed nuclei, and hypertrophic fibers.22

This early compensation mechanism might explain why
Tg30 mice do not develop a clinical motor deficit before 8
months of age, ie, starting when the ongoing muscle
degeneration leads to the observed hindlimb muscle weak-
ness at this age. This compensation mechanism might also
explain the absence of difference in the amplitude of the
muscle compound action potential at an early age in Tg30
mice, because collateral re-innervation may mask the real
progress of neuromuscular junction loss. Muscle sponta-
neous activities were, however, recorded in the majority of
mice, already at early ages, indicative of the presence of
denervated muscle fibers, as supported also by histological
findings in the NMJ. Three-Hertz repetitive stimulations
may detect postsynaptic impairment at the neuromuscular
junction level, whereas 30-Hz repetitive stimulations, not
attempted here, might have disclosed a presynaptic problem
similar to the one reported in this study.

Disturbance of Axonal Transports as a Mechanism
Leading to NMJ Denervation in Tg30 Mice

We previously observed in Tg30 mice the occurrence of
axonal spheroids and axonal accumulation of cytoplasmic
organelles and neurofilaments in the spinal cord. Accumula-
tions of degraded organelles were also observed in axons in the
sciatic nerve.10 These ultrastructural abnormalities were
indicative of impairment in axonal transports. We further
document these disturbances of axoplasmic transport by
showing that clusters of cathepsin Bepositive vesicles accu-
mulated in sciatic nerve axons in Tg30 mice. Cathepsin B is a
marker of lysosomes/autophagosomes, and disturbances in
axoplasmic transport lead to accumulation of cathepsin-
positive autophagic vacuoles in experimental models.19 Ac-
cumulations of autophagic vacuoles in distended, dystrophic
neurites is frequently encountered in Alzheimer disease and
other neurodegenerative diseases.19,23e26 Interestingly,
Gallyas-positive aggregates accumulated also in sciatic nerve
axons in Tg30 mice, and might also play a role in impairments
in axonal transports. We suggest that the progressive reduction
of synaptic vesicles observed in the motor nerve terminals in
Tg30 mice also results from impairments in their axonal
transports, and participates in an alteration of synaptic trans-
mission and the functional denervation of NMJ. In the Thy22
mutant tau transgenic model expressing the same mutant tau
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protein as the present Tg30 tau model, defects in retrograde
transport in the septohippocampal pathway were also previ-
ously demonstrated.27 In drosophila overexpressing a human
tau protein, a disruption of synaptic transmission at the
neuromuscular junction was observed as a consequence of
disturbance of axonal transports and reduction of the number
of mitochondria in axons.28

Disturbances of anterograde and retrograde transports have
been implicated as a pathogenic mechanism in several
neurodegenerative diseases.29e33 In models of amyotrophic
lateral sclerosis, expression of mutant SOD1 leads to
impaired fast axonal transport at an early asymptomatic stage
preceding loss of spinal motor neurons.22 Mutations in
dynein (a motor protein complex that moves along microtu-
bules in the minus-end direction) result in progressive motor
neuron degeneration34 and the formation of Lewy-like in-
clusion bodies leading to defects in retrograde transport.35 In
Alzheimer disease, a reduction of axonal transport is an early
pathogenic mechanism,36e38 affecting particularly retrograde
transport.33 Tau proteins play a role in modulation of axonal
transport, and tau pathology plays a crucial role in distur-
bances of these axonal transports in Alzheimer disease.39e43

The role of pathological tau at the dendritic level has been
pointed out in several studies on tauopathy models.44,45 Much
evidence points, however, to dying-back axonal degeneration
due to axoplasmic transport defects induced by pathological
tau as a physiopathological mechanism in Alzheimer dis-
ease.46 Consistently, the alterations at the level of the NMJ in
Tg30tau mice illustrate a toxic effect of abnormal tau at the
presynaptic level. A recent study also pointed to disturbances
at the presynaptic level in mossy fibers in the hippocampus in
a tauopathy model.47

To conclude, we show in this study that expression of a
human mutant tau protein in the motoneurons and their pro-
cesses leads to dying-back axonopathy and an early alteration
of synaptophysin distribution in motor nerve terminals from 1
month in Tg30 mice. An axonopathy develops during the
following months, characterized by accumulation of aggre-
gates and organelles. These alterations progressively result in a
defect in synaptic transmission leading to denervation of NMJ,
muscular atrophy, and motor deficit.

We suggest that abnormalities developing at the NMJ in
Tg30 mice will be a useful model to unravel mechanisms of
synaptic dysfunction resulting from disturbances of
axoplasmic transports in neurodegenerative diseases.
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