
Guarantee IP Lookup Performance with FIB Explosion

Tong Yang,Gaogang Xie*
ICT, CAS, China.

yangtongemail@gmail.com,
*xie@ict.ac.cn

YanBiao Li
Hunan University, China

lybmath_cs@hnu.edu.cn

Qiaobin Fu
ICT, CAS, China

fuqiaobin@ict.ac.cn

Alex X. Liu
Department of Computer
Science and Engineering,
Michigan State University
alexliu@cse.msu.edu

Qi Li
ICT, CAS, China

liqi19872006@gmail.com

Laurent Mathy
University of Liege, Belgium

laurent.mathy@ulg.ac.be

ABSTRACT
The Forwarding Information Base (FIB) of backbone routers
has been rapidly growing in size. An ideal IP lookup algo-
rithm should achieve constant, yet small, IP lookup time
and on-chip memory usage. However, no prior IP lookup
algorithm achieves both requirements at the same time. In
this paper, we first propose SAIL, a Splitting Approach to IP
Lookup. One splitting is along the dimension of the lookup
process, namely finding the prefix length and finding the
next hop, and another splitting is along the dimension of
prefix length, namely IP lookup on prefixes of length less
than or equal to 24 and IP lookup on prefixes of length
longer than 24. Second, we propose a suite of algorithms
for IP lookup based on our SAIL framework. Third, we im-
plemented our algorithms on four platforms: CPU, FPGA,
GPU, and many-core. We conducted extensive experiments
to evaluate our algorithms using real FIBs and real traffic
from a major ISP in China. Experimental results show that
our SAIL algorithms are several times or even two orders of
magnitude faster than well known IP lookup algorithms.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Store and forward networks

Keywords
IP Lookup; SAIL; Virtual Router Multi-FIB Lookup; LPM

1. INTRODUCTION

1.1 Background and Motivation
The growth of FIB sizes on backbone routers has been

accelerating. According to the RIPE Network Coordina-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.

http://dx.doi.org/10.1145/2619239.2626297.

tion Centre, FIB sizes have become about half a million
entries [3]. At the same time, cloud computing and network
applications have driven the expectation on router through-
put to the scale of 200 Gbps. The fast growth of FIB sizes
and throughput demands bring significant challenges to IP
lookup (i.e., FIB lookup). An ideal IP lookup algorithm
should satisfy the following two harsh requirements. First,
IP lookup time should meet wire speed yet remain constant as
FIB sizes grow. IP lookup time is per packet cost and should
be optimized to the extreme to meet wire speed. Second,
on-chip memory usage should meet capacity constraints yet
remain constant as FIB sizes grow. On-chip memory (such
as CPU cache and FPGA block RAM) is about 10 times
faster than off-chip DRAM [9], but is limited in size (in the
scale of a few MB) and much more expensive than DRAM;
furthermore, as on-chip memory technologies advance, its
sizes do not grow much as compared to DRAM. Without
satisfying these two requirements, router performance will
degrade as FIB grows, and router hardware will have to be
upgraded periodically.

1.2 Summary and Limitations of Prior Art
IP lookup has long been a core networking issue and var-

ious schemes have been proposed. However, none of them
satisfies the two requirements of both constant lookup time
and constant on-chip memory usage. Some algorithms can
achieve constant IP lookup time, such as TCAM based
schemes [11,19] and FPGA based schemes [14,16], but their
on-chip memory usage will grow quickly as FIB sizes grow.
Some algorithms, such as full-expansion [31] and DIR-24-
8 [13], can achieve constant memory usage by simply push-
ing all prefixes to levels 24 and 32, but even the lookup table
for level 24 alone is too large to be stored in on-chip memory.

1.3 Proposed SAIL Approach
In this paper, we propose SAIL, a Splitting Approach to

IP Lookup. We split the IP lookup problem along two di-
mensions as illustrated in Figure 1. First, we split the IP
lookup problem into two sub-problems along the dimension
of the lookup process: finding the prefix length (i.e., find-
ing the length of the longest prefix that matches the given
IP address) and finding the next hop (i.e., finding the nex-
t hop of this longest matched prefix). This splitting gives
us the opportunity of solving the prefix length problem in
on-chip memory and the next hop problem in off-chip mem-
ory. Furthermore, since on-chip and off-chip memory are

two entities, this splitting allows us to potentially pipeline
the processes of finding the prefix length and the next hop.

On-Chip

Finding prefix length

Prefix length 0~24

Prefix length 25~32 Off-chip

Off-chip

Off-chip

Finding next hop

Figure 1: Two-dimensional splitting of IP lookup.

Second, we split the IP lookup problem into two sub-
problems along the dimension of prefix length: length ≤ 24
and length ≥ 25. This splitting is based on our key obser-
vation that on backbone routers, for almost all traffic, the
longest matching prefix has a length ≤ 24. This intuitive-
ly makes sense because typically backbone routers do not
directly connect to small subnets whose prefixes are longer
than 24. Our observation may not hold for edge routers;
however, the FIBs for edge routers are significantly smaller
that those for backbone routers. The scope of this paper
is on backbone routers. The key benefit of this splitting is
that we can focus on optimizing the IP lookup performance
for traffic whose longest matching prefix length is ≤ 24.

There is some prior work that performed splitting along
the dimension of the lookup process or the dimension of
prefix length; however, no existing work performed splitting
along both dimensions. Dharmapurikar et al. proposed to
split the IP lookup process into two sub-problems: finding
the prefix length using Bloom filters and finding the next
hop using hash tables [36]. Pierluigi et al. and Gupta et
al. proposed to split IP prefixes into 24 and 32 based on the
observation that 99.93% of the prefixes in a backbone router
FIB has a length of less than or equal to 24 [13, 31]. Note
that our IP prefix splitting criteria is different because our
splitting is based on traffic distribution and their splitting
is based on prefix distribution.

1.4 Technical Challenges and Solutions
The first technical challenge is to achieve constant, yet

small, on-chip memory usage for any FIB size. To address
this challenge, in this paper, we propose to find the longest
matching prefix length for a given IP address using bit maps.
Given a set of prefixes in a FIB, for each prefix length i (0 ≤
i ≤ 32), we first build a bit map Bi[0..2

i − 1] whose initial
values are all 0s. Then, for each prefix p, we let Bi[|p|] = 1
where |p| denotes the binary value of the first i bits of p.
Thus, for all prefixes of lengths 0∼24 in any FIB, the total
memory size for all bit maps is

∑24
i=0 2

i = 4MB, which is
small enough to be stored in on-chip memory.

The second technical challenge is to achieve constant, yet
small, IP lookup time for any FIB size. To address this chal-
lenge, in this paper, we classify the prefixes in the given FIB
into two categories: those with length ≤ 24 and those with
length ≥ 25. (1) For prefixes of length ≤ 24, for each prefix
length i (0 ≤ i ≤ 24), we build a next hop array Ni[0..2

i−1]
in off-chip memory so that for each prefix p whose next hop
is n(p), we let Ni[|p|] = n(p). Thus, given an IP address a,
we first find its prefix length using bit maps in on-chip mem-
ory and find the next hop using one array lookup in off-chip
memory. To find the prefix length using bit maps, for i from
24 to 0, we test whether Bi[a >> (32− i)] = 1; once we find

the first i so that Bi[a >> (32− i)] = 1 holds, we know that
the longest matching prefix length is i. Here a >> (32 − i)
means right shifting a by 32− i bits. In this step, the maxi-
mum number of on-chip memory accesses is 25. To find the
next hop, suppose the longest matching prefix length for a
is i, we can find its next hop Ni[a >> (32 − i)] by one off-
chip memory access. (2) For prefixes of length ≥ 25, many
IP lookup schemes can be plugged into our SAIL framework.
Possible schemes include TCAM (Ternary Content Address-
able Memory), hash tables, and next-hop arrays. Choosing
which scheme to deal with prefixes of length ≥ 25 depend-
s on design priorities, but have little impact on the overall
IP lookup performance because most traffic hits prefixes of
length ≤ 24. For example, to bound the worst case lookup
speed, we can use TCAM or next hop arrays. For next hop
arrays, we can expand all prefixes of length between 25 and
31 to be 32, and then build a chunk ID (i.e., offsets) array
and a next hop array. Thus, the worst case lookup speed is
two off-chip memory accesses.

The third technical challenge is to handle multiple FIBs
for virtual routers with two even harsher requirements: (1)
Multi-FIB lookup time should meet wire speed yet remain
constant as FIB sizes and FIB numbers grow. (2) On-chip
memory usage should meet capacity constraints yet remain
constant as FIB sizes and FIB numbers grow. To address
this challenge, we overlay all FIB tries together so that all
FIBs have the same bit maps; furthermore, we overlay all
next hop arrays together so that by the next hop index and
the FIB index, we can uniquely locate the final next hop.

The remaining of the paper proceeds as follows. We first
review related work in Section 2. In Section 3 and 4, we
introduce our basic SAIL algorithm and optimization tech-
niques, respectively. We then present our implementation
details and experimental results in Section 5 and 6, respec-
tively. We discuss the application of our SAIL framework
to IPv6 lookup in Section 7. Finally, we give concluding re-
marks in Section 8.

2. RELATED WORK
As IP lookup is a core networking issue, much work has

been done to improve its performance. We can categorize
prior work into trie-based algorithms, Bloom filter based al-
gorithms, range-based algorithms, TCAM-based algorithms,
FPGA-based algorithms, GPU-based algorithms, and multi-
FIB lookup algorithms.

Trie-based Algorithms: Trie-based algorithms use the
trie structure directly as the lookup data structure or indi-
rectly as an auxiliary data structure to facilitate IP lookup
or FIB update. Example algorithms include binary trie [27],
path-compressed trie [20], k-stride multibit trie [39], full ex-
pansion/compression [31], LC-trie [38], Tree Bitmap [40],
priority trie [17], Lulea [28], DIR-24-8 [13], flashtrie [26],
shapeGraph [15], and trie-folding [12]. A comprehensive sur-
vey of trie-based algorithms is in [27].

Bloom Filter based Algorithms: Dharmapurikar et al.
proposed the PBF algorithm where they use Bloom filters
to first find the longest matching prefix length in on-chip
memory and then use hash tables in off-chip memory to find
the next hop [36]. Lim et al. proposed to use one bloom filter
to find the longest matching prefix length [22]. These Bloom
filter based IP lookup algorithms cannot achieve constant
lookup time because of false positives and hash collisions.
Furthermore, to keep the same false positive rate, their on-

chip memory sizes grow linearly with the increase of FIB
size.

Range-based Algorithms: Range-based algorithms are
based on the observation that each prefix can be mapped
into a range in level 32 of the trie. Example such algorithms
are binary search on prefix lengths [24], binary range search
[27], multiway range trees [32], and range search using many
cores [25].

TCAM-based Algorithms: TCAM can compare an in-
coming IP address with all stored prefixes in parallel in hard-
ware using one cycle, and thus can achieve constant lookup
time. However, TCAM has very limited size (typically a few
Mbs like on-chip memory sizes), consumes a huge amount
of power due to the parallel search capability, generates a
lot of heat, is very expensive, and difficult to update. Some
schemes have been proposed to reduce power consumption
by enabling only a few TCAM banks to participate in each
lookup [11]. Some schemes use multiple TCAM chips to im-
prove lookup speed [19, 29, 34]. Devavrat et al. proposed to
reduce the movement of prefixes for fast updating [8].

FPGA-based Algorithms: There are two main issues
to address for FPGA-based IP lookup algorithms: (1) how to
store the whole FIB in on-chip memory, and (2) how to con-
struct pipeline stages. Some early FPGA-based algorithms
proposed to construct compact data structures in on-chip
memory [23, 33]; however, these compact data structures
make the lookup process complex and therefore increase the
complexity of FPGA logics. For FPGA in general, the more
complex the logics are, the lower the clock frequency will
be. To improve lookup speed, Hamid et al. proposed to only
store a part of data structure in on-chip memory using hash-
ing [14]. To balance stage sizes, some schemes have been pro-
posed to adjust the trie structure by rotating some branches
or exchanging some bits of the prefixes [7, 10,16].

GPU-based Algorithms: Leveraging the massive par-
allel processing capability of GPU, some schemes have been
proposed to use GPU to accelerate IP lookup [35,42].

Multi-FIB Lookup Algorithms: The virtual router ca-
pability has been widely supported by commercial routers. A
key issue in virtual routers is to perform IP lookup with mul-
tiple FIBs using limited on-chip memory. Several schemes
have been proposed to compress multiple FIBs [18,21,37].

3. SAIL BASICS
In this section, we present the basic version of our SAIL

algorithms. In the next section, we will present some opti-
mization techniques. Table 1 lists the symbols used through-
out this paper.

3.1 Splitting Lookup Process
We now describe how we split the lookup process for a

given IP address into the two steps of finding its longest
matching prefix length and finding the next hop. Given a
FIB table, we first construct a trie. An example trie is in
Figure 2(b). Based on whether a node represents a prefix in
the FIB, there are two types of nodes: solid nodes and empty
nodes. A node is solid if and only if the prefix represented
by the node is in the FIB. That is, a node is solid if and only
if it has the next hop. A node is an empty node if and only
if it has no next hop. Each solid node has a label denoting
the next hop of the prefix represented by the node. For any
node, its distance to the root is called its level. The level of
a node locates a node vertically. Any trie constructed from

Table 1: Symbols used in the paper
Symbol Description

Bi bit map array for level i
Ni next hop array for level i
Ci chunk ID array for level i
BNi combined array of Bi and Ni

BCNi combined array of Bi, Ci and Ni

a IP address
v trie node
p prefix
|p| value of the binary string in prefix p
p(v) prefix represented by node v
n(v) next hop of solid node v
l trie level

SAIL B SAIL basic algorithm
SAIL U SAIL B + updated oriented optimization
SAIL L SAIL B + lookup oriented optimization
SAIL M SAIL L extension for multiple FIBs

a(i,j)
integer value of bit string of a
from i-th bit to j-th bit

a FIB has 33 levels. For each level i, we construct a bit map
array Bi[0..2

i − 1] of length 2i, and the initial values are all
0s. At each level i (0 ≤ i ≤ 32), for each node v, let p(v)
denote its corresponding prefix and |p(v)| denote the value
of the binary string part of the prefix (e.g., |11 ∗ | = 3). If v
is solid, then we assign Bi[|p(v)|] = 1; otherwise, we assign
Bi[|p(v)|] = 0. Here |p(v)| indicates the horizontal position
of node v because if the trie is a complete binary tree then
v is the |p(v)|-th node on level i. Figure 2(c) shows the bit
maps for levels 0 to 4 of the trie in 2(b). Taking bit map B3

for level 3 as an example, for the two solid nodes correspond-
ing to prefixes 001*/3 and 111*/3, we have B3[1] = 1 and
B3[7] = 1. Given the 33 bit maps B0, B1, · · · , B32 that we
constructed from the trie for a FIB, for any given IP address
a, for i from 32 to 0, we test whether Bi[a >> (32− i)] = 1;
once we find the first i that Bi[a >> (32 − i)] = 1 holds,
we know that the longest matching prefix length is i. Here
a >> (32− i) means right shifting a by 32− i bits. For each
bit map Bi, we construct a next hop array Ni[0..2

i − 1],
whose initial values are all 0s. At each level i, for each prefix
p of length i in the FIB, denoting the next hop of prefix p
by n(p), we assign Ni[|p|] = n(p). Thus, for any given IP
address a, once we find its longest matching prefix length i,
then we know its next hop is Ni[a >> (32− i)].

prefix next-
hop

*/0 6

1*/1 4

01*/2 3

001*/3 3

FIB

111*/3 7

0011*/4 1

1110*/4 8

11100*/5 2

3

3

1

9

4

7

8

2

6 1

0 1

0 1 0 0

0 1 0 0 0 0 0 1

0 0 1 1 0 0 01

level 0

level 1

level 2

3 8

A B C

001011*/6 9

D EF

G

H

88

Trie Bit maps

0 3 0 0 0 0 0 7

B0

B1

B2

B3

B4

N3

(a) (b) (c)

O

0 0 0 1 0 0 00N4
3

level 3

Figure 2: Basic SAIL Algorithm.

3.2 Splitting Prefix Length
Based on our observation that almost all the traffic of

backbone routers has the longest matching prefix length
≤ 24, we split all prefixes in the given FIB into prefixes
of length ≤ 24, which we call short prefixes and prefixes of
length ≥ 25, which we call long prefixes. By this splitting,
we want to store the bit maps of prefixes of length ≤ 24 in
on-chip memory. However, given an IP address, because it
may match a long prefix, it seems that we need to search
among both short and long prefixes, which makes this split-
ting not much useful. In this paper, we propose a technique
called pivot pushing to address this issue. Our basic strategy
is that for a given IP address, we first test its longest match-
ing prefix length is within [0, 24] or [25, 32]; thus, after this
testing, we continue to search among either short prefixes or
long prefixes, but not both. We call level 24 the pivot level.

Given a trie and a pivot level, the basic idea of pivot push-
ing is two-fold. First, for each internal solid node on the pivot
level, we push its label (i.e., the next hop) to a level below
the pivot level. Second, for each internal empty nodes on
the pivot level, we let it inherit the label of its nearest solid
ancestor node, i.e., the next hop of the first solid node along
the path from this empty node to the root, and then push
this inherited label to a level below the pivot level. In this
paper, we assume that the root always has a label, which is
the default next hop. Thus, for any internal empty nodes on
the pivot level, it always can inherit a label.

Given a trie and an IP address a, traversing a from the
root of the trie downward, for any internal or leaf node v
that the traversal passes, we say a passes v. Based on the
above concepts, we introduce Theorem 3.1.

Theorem 3.1. Given a trie constructed from a FIB, after
pivot pushing, for any IP address a, a passes a node on the
pivot level if and only if its longest matching prefix is on the
pivot level or below.

Proof. Given a trie and an IP address a that passes a
node v on the pivot level, there are two cases: (1) v is a
leaf node, and (2) v is an internal node. For the first case
where v is a leaf node, then a’s longest matching prefix is
p(v) (i.e., the prefix represented by node v) and thus a’s
longest matching prefix is on the pivot level. For the second
case where v is an internal node, because of pivot pushing,
a must pass a solid node on a level below the pivot level,
which means that a’s longest matching prefix is below the
pivot level.

Based on Theorem 3.1, we construct the bit map for the
pivot level l as follows: for any node v on level l, we assign
Bl[|p(v)|] = 1; in other words, Bl[i] = 0 if and only if there
is no node on level l that corresponds to the prefix denoted
by i. Thus, given an IP address a, Bl[a >> (32 − l)] = 1 if
and only if its longest matching prefix is on the pivot level
or below. In SAIL, we choose level 24 to be the pivot level.
By checking whether B24[a >> 8] = 1, we know whether the
longest matching prefix length is ≤ 23 or ≥ 24, which will
guide us to search either up or down. Consider the example
in Figure 2(b), taking level 4 as the pivot level, node C on
level 4 is an internal solid node, pushing C to level 5 results
in a new leaf solid node H with the same next hop as C. Note
that after pushing node C down, node C becomes empty.

Given a pivot pushed trie, we build a bit map array and a
next hop array for each level of 0 to 24 as above. Note that for

any i (0 ≤ i ≤ 23) and any j (0 ≤ j ≤ 2i−1), Bi[j] = 1 if and
only if there is a solid node on level i that corresponds to the
prefix denoted by j; for level 24 and any j (0 ≤ j ≤ 224−1),
B24[j] = 1 if and only if there is a node, no matter solid or
empty, on level 24 that corresponds to the prefix denoted by
j. Note that B24[j] = 1 and N24[j] > 0 if and only if there is
a leaf node on level 24 that corresponds to the prefix denoted
by j, which means that the longest matching prefix length is
24. Note that B24[j] = 1 and N24[j] = 0 if and only if there
is an empty node on level that corresponds to the prefix
denoted by j, which means that the longest matching prefix
length is ≥ 25. Thus, given an IP address a, if B24[a >>
8] = 0, then we further check whether B23[a >> 9] = 1,
B22[a >> 10] = 1, · · · , B0[a >> 32] = 1 until we find
the first 1; if B24[a >> 8] = 1, then we know a’s longest
matching prefix length is ≥ 24 and further lookup its next
hop in off-chip memory. It is easy to compute that the on-
chip memory usage is fixed as

∑24
i=0 2

i = 4MB. Consider the
example in Figure 2. Given an address 001010, as the pivot
level is 4, since B4[001010 >> 2] = B4[0010] = B4[2] = 1
and N4[001010 >> 2] = N4[0010] = N4[2] = 0, then we
know that the longest matching prefix length is longer than
4 and we will continue the search on levels below 4.

The pseudocode for the above SAIL Basic, denoted by
SAIL B, is shown in Algorithm 1.

Algorithm 1: SAIL B

Input: Bit map arrays: B0, B1, · · · , B24

Input: Next hop arrays: N0, N1, · · · , N24

Input: a: an IP address
Output: next hop of the longest matched prefix

1 if B24[a >> 8]=0 then
2 for j = 23; j > 0; j −− do
3 if Bj [a >> (32− j)]=1 then
4 return Nj [a >> (32− j)]
5 end

6 end

7 end
8 else if N24[a >> 8]>0 then
9 return N24[a >> 8];

10 end
11 else
12 lookup on levels 25∼32;
13 end

There are multiple ways to handle prefixes of length ≥
25. Below we give one simple implementation using next
hop arrays. Let the number of internal nodes on level 24
be n. We can push all solid nodes on levels 25∼31 to level
32. Afterwards, the number of nodes on level 32 is 256 ∗
n because each internal node on level 24 has a complete
subtree with 256 leaf nodes, each of which is called a chunk.
As typically 256 ∗ n is much smaller than 232 based on our
experimental results on real FIBs, constructing a next hop
array of size 232 wastes too much memory; thus, we construct
a next hop array N32 of size 256 ∗ n for level 32. As we
push all solid nodes on levels from 25 to 31 to level 32,
we do not need bit maps B25, B26, · · · , B32. Now consider
the nodes on level 24. For each leaf node, its corresponding
entry in bit map B24 is 1 and its corresponding entry in

next hop array N24 is the next hop of this node. For each
internal node, its corresponding entry in bit map B24 is 1
and its corresponding entry in next hop array N24 is the
chunk ID in N32, multiplying which by 256 plus the last 8
bits of the given IP address locates the next hop in N32. To
distinguish these two cases, we let the next hop be a positive
number and the chunk ID to be a negative number whose
absolute value is the real chunk ID value. To have negative
values, chunk IDs are named starting from 1. With our pivot
pushing technique, looking up an IP address a is simple: if
B24[a >> 8] = 0, then we know the longest matching prefix
length is within [0, 23] and further test whether B23[a >>
8] = 1; if B24[a >> 8] = 1∧N24[a >> 8] > 0, then we know
that the longest matching prefix length is 24 and the next
hop is N24[a >> 8]; if B24[a >> 8] = 1 ∧N24[a >> 8] < 0,
then we know that the longest matching prefix length is
longer than 24 and the next hop is N32[(|N24[a >> 8]|−1)∗
256 + (a&255)].

3.3 FIB Update for SAIL Basic
We now discuss how to adjust the lookup data structures

when the given FIB changes. Note that the FIB update per-
formance for levels 25∼32 is less critical than that for levels
0∼24. As most traffic hits levels 0∼24, when the lookup
data structures for levels 0∼24 in on-chip memory change,
no lookup can be performed before changes are finished and
therefore may cause packet losses. For the lookup data struc-
tures in off-chip memory, one possible solution is to store
two copies of the lookup data structures in two memory
chips so that while one copy is being updated, the other
copy can be used to perform lookups. Furthermore, many
IP lookup schemes that can handle prefixes of length ≥ 25
can be plugged into SAIL B. Different IP lookup schemes
have different FIB update algorithms. Therefore, in this pa-
per, we focus on the update of data structures in on-chip
memory.

For SAIL B, updating the on-chip lookup data structures
is simple: given an update prefix p with length of l, whose
next hop is denoted by h where h = 0 means to withdraw
prefix p and h > 0 means to announce prefix p, if l < 24,
we assign Bl[|p|] = (h > 0) (i.e., if h > 0, then we assign
Bl[|p|] = 1; otherwise, we assign Bl[|p|] = 0). If l = 24, for
the same update, we first locate the node in the trie, if it
is an internal node, then B24 is kept unchanged; otherwise,
we assign B24[|p|] = (h > 0). Note that for one FIB up-
date, we may need to update both the on-chip and off-chip
lookup data structures. A router typically maintains the trie
data structure on the control plane and uses it to compute
the changes that need to be made to off-chip lookup data
structures. Because little traffic hits the off-chip lookup da-
ta structures for levels 25∼32, updating the off-chip lookup
data structures often can be performed in parallel with IP
lookups on the on-chip data structures.

4. SAIL OPTIMIZATION
In this section, we first present two optimization tech-

niques of our SAIL algorithms, which favors the performance
of FIB update and IP lookup, respectively. We use SAIL U
to denote SAIL B with update oriented optimization, and
SAIL L to denote SAIL B with lookup oriented optimiza-
tion. Then, we extend SAIL L to handle multiple FIBs.

4.1 Update Oriented Optimization
Data Structures & Lookup Process: In this optimiza-

tion, by prefix expansion, we push all solid nodes on levels
0 ∼ 5 to level 6, all solid nodes on levels 7 ∼ 11 to level 12,
all solid nodes on levels 13 ∼ 17 to level 18, and all solid
nodes on levels 19 ∼ 23 to level 24. With this 4-level push-
ing, looking up an IP address a is the same as without this
pushing, except that if B24[a >> 8] = 0, then we further
check whether B18[a >> 14] = 1, B12[a >> 20] = 1, and
B6[a >> 26] = 1 till we get the first 1. This 4-level push-
ing brings two benefits to IP lookup. First, it reduces the
maximum number of array lookups in on-chip memory from
24 to 4. Second, it reduces the on-chip memory usage by
49.2% because we do not need to store B0 ∼ B5, B7 ∼ B11,
B13 ∼ B17, and B19 ∼ B23.
FIB Update: While improving lookup speed and reduc-

ing on-chip memory usage, this pushing incurs no extra cost
to the update of on-chip data structures. With this pushing,
we still achieve one on-chip memory access per FIB update
because of three reasons. First, for any FIB update, it at
most affects 26 = 64 bits due to the above pushing. Second,
typically by each memory access we can read/write 64 bits
using a 64-bit processor. Third, as the lengths of the four
bit maps B6, B12, B18, and B24 are dividable by 64, the 64
bits that any FIB update needs to modify align well with
word boundaries in on-chip memory. We implement each of
these four bit maps as an array of 64-bit unsigned integers;
thus, for any FIB update, we only need to modify one such
integer in one memory access.

4.2 Lookup Oriented Optimization
Data Structures: In SAIL B and SAIL U, the maximum

numbers of on-chip memory accesses are 24 and 4, respec-
tively. To further improve lookup speed, we need to push
nodes to fewer number of levels. On one hand, the fewer
number of levels means the fewer numbers of on-chip mem-
ory accesses, which means faster lookup. On the other hand,
pushing levels 0 ∼ 23 to 24 incurs too large on-chip memory.
To trade-off between the number of on-chip memory access-
es and the data structure size at each level, we choose two
levels: one is between 0∼23, and the other one is 24. In our
experiments, the two levels are 16 and 24. In this optimiza-
tion, by prefix expansion, we first push all solid nodes on lev-
els 0 ∼ 15 to level 16; second, we push all internal nodes on
level 16 and all solid nodes on levels 17∼23 to level 24; third,
we push all internal nodes on level 24 and all solid nodes on
levels 25 ∼ 31 to level 32. We call this 3-level pushing. For
level 16, our data structure has three arrays: bit map array
B16[0..2

16−1], next hop array N16[0..2
16−1], and chunk ID

array C16[0..2
16 − 1], where the chunk ID starts from 1. For

level 24, our data structure has three arrays: bit map array
B24, next hop array N24, and chunk ID array C24, where the
size of each array is the number of internal nodes on level 16
times 28. For level 32, our data structure has one array: next
hop array N32, whose size is the number of internal nodes
on level 24 times 28.

Lookup Process: Given an IP address a, using a(i,j) to
denote the integer value of the bit string of a from the i-th bit
to the j-th bit, we first check whether B16[a(0,15)] = 1; if yes,
then the a(0,15)-th node on level 16 is a solid node and thus
the next hop for a is N16[a(0,15)]; otherwise, then the a(0,15)-
th node on level 16 is an empty node and thus we need to
continue the search on level 24, where the index is computed

as (C16[a(0,15)] − 1) ∗ 28 + a(16,23). On level 24, denoting

(C16[a(0,15)] − 1) ∗ 28 + a(16,23) by i, the search process is
similar to level 16: we first check whether B24[i] = 1, if yes,
then the i-th node on level 24 is a solid node and thus the
next hop for a is N24[i]; otherwise, the i-th node on level 24
is an empty node and thus the next hop must be on level 32,
to be more precise, the next hop is (C24[i]−1)∗28+a(24,31).
Figure 3 illustrates the above data structures and IP lookup
process where the three pushed levels are 2, 4, and 6. The
pseudocode for the lookup process of SAIL L is in Algorithm
2, where we use the bit maps, next hop arrays, and the chunk
ID arrays as separate arrays for generality and simplicity.

0 0

6

1 1 0 1 1 1 10

3 3 3 2 2 8 8

A B C

D E

F G H I J K L M

Trie

B4

(a) (b)

4

46 6 4 7

2

9

8

3

0 1

7

3

44

6 6 0 1 4 4 70N4

0 3 4 0N2

3 3 3 9 2N6 2 8 8

0 0 1 0 0 0 02C4

1 0 0 2C2

0 1 1 0B2

88

66

level 6

level 4

level 2

11 10 01

22222
+

00000

(2-1)*4

2

22222

00

1

+(2-1)*4

2222

Figure 3: Example data structure of SAIL L.

Algorithm 2: SAIL L

Input: Bit map arrays: B16, B24

Input: Next hop arrays: N16, N24, N32

Input: Chunk ID arrays: C16, C24

Input: a: an IP address
Output: the next hop of the longest matched prefix.

1 if B16[a >> 16]=1 then
2 return N16[a >> 16]
3 end
4 else if

B24[(C16[a >> 16]− 1) << 8 + (a << 16 >> 24)] then
5 return

N24[(C16[a >> 16]− 1) << 8 + (a << 16 >> 24)]
6 end
7 else
8 return N32[(C24[a >> 8]− 1) << 8 + (a&255)]
9 end

Two-dimensional Splitting: The key difference be-
tween SAIL L and prior IP lookup algorithms lies in its
two-dimensional splitting. According to our two-dimensional
splitting methodology, we should store the three arrays B16,
C16, and B24 in on-chip memory and the other four arrays
N16, N24, C24, and N32 in off-chip memory as shown in Fig-
ure 4. We observe that for 0 ≤ i ≤ 216 − 1, B16[i] = 0 if
and only if N16[i] = 0, which holds if and only if C16[i] �= 0.
Thus, the three arrays of B16, C16, and N16 can be combined
into one array denoted by BCN , where for 0 ≤ i ≤ 216 − 1,
BCN [i](0,0) = 1 indicates that BCN [i](1,15) = N16[i] and

BCN [i](0,0) = 0 indicates that BCN [i](1,15) = C16[i]. Al-

though in theory for 0 ≤ i ≤ 216 − 1, C16[i] needs 16 bit-
s, practically, based on measurement from our real FIB-
s of backbone routers, 15 bits are enough for C16[i] and
8 bits for next hop; thus, BCN [i] will be 16 bits exact-
ly. For FPGA/ASIC platforms, we store BCN and B24

in on-chip memory and others in off-chip memory. For
CPU/GPU/many-core platforms, because most lookups ac-
cess both B24 and N24, we do combine B24 and N24 to BN24

so as to improve caching behavior. BN24[i] = 0 indicates
that B24[i] = 0, and we need to find the next hop in level 32;
BN24[i] > 0 indicates that the next hop is BN24[i] = N24[i].

B16 , C16, B24

Finding prefix length

Prefix length 0~24

Prefix length 25~32 C24

N16, N24

N32

Finding next hop

Figure 4: Memory management for SAIL L.

FIB Update: Given a FIB update of insert-
ing/deleting/modifying a prefix, we first modify the
trie that the router maintains on the control plane to make
the trie equivalent to the updated FIB. Note that this trie
is the one after the above 3-level pushing. Further note that
FIB update messages are sent/received on the control plane
where the pushed trie is maintained. Second, we perform
the above 3-level pushing on the updated trie for the nodes
affected by the update. Third, we modify the lookup data
structures on the data plane to reflect the change of the
pushed trie.

SAIL L can perform FIB updates efficiently because of
two reasons, although one FIB update may affect many trie
nodes in the worst case. First, prior studies have shown that
most FIB updates require only updates on a leaf node [41].
Second, the modification on the lookup arrays (namely the
bit map arrays, next hop arrays, and the chunk ID arrays) is
mostly continuous, i.e., a block of a lookup array is modified.
We can use the memcpy function to efficiently write 64 bits
in one memory access on a 64-bit processor.

4.3 SAIL for Multiple FIBs
We now present our SAIL M algorithm for handling multi-

ple FIBs in virtual routers, which is an extension of SAIL L.
A router with virtual router capability (such as Cisco CRS-
1/16) can be configured to run multiple routing instances
where each instance has a FIB. If we build independent data
structures for different FIBs, it will cost too much memory.
Our goal in dealing with multiple FIBs is to build one data
structure so that we can perform IP lookup on it for each
FIB. Note that our method below can be used to extend
SAIL B and SAIL U to handle multiple FIBs as well, al-
though for these two algorithms, the FIB update cost is no
longer constant for the number of on-chip memory accesses.

Data Structures: Given m FIBs F0, F1, · · · , Fm−1, first,
for each Fi (0 ≤ i ≤ m − 1), for each prefix p in Fi, we
change its next hop ni(p) to a pair (i, ni(p)). Let F

′
0, F

′
1, · · · ,

and F ′
m−1 denote the resulting FIBs. Second, we build a

trie for F ′
0 ∪ F ′

1 ∪ · · · ∪ F ′
m−1, the union of all FIBs. Note

that in this trie, a solid node may have multiple (FIB ID,
next hop) pairs. Third, we perform leaf pushing on this trie.

Leaf pushing means to push each solid node to some leaf
nodes [39]. After leaf pushing, every internal node is empty
and has two children nodes; furthermore, each leaf node v
corresponding to a prefix p is solid and has m (FIB ID,
next hop) pairs: (0, n0(p)), (1, n1(p)), · · · , (m− 1, nm−1(p)),
which can be represented as an array N where N[i] = ni(p)
for 0 ≤ i ≤ m − 1. Intuitively, we overlay all individual
tries constructed from the m FIBs, stretch all tries to have
the same structure, and then perform leaf pushing on all
tries. Based on the overlay trie, we run the SAIL L lookup
algorithm. Note that in the resulting data structure, in each
next hop array N16, N24, or N32, each element is further an
array of size m. Figure 5 shows two individual tries and the
overlay trie.

A: 00*
C: 10*
G: 110*

A:00*
C:10*
E:100*

Trie 1 Trie 2 Overlay Trie A: 00*
B: 01*
E: 100*
F: 101*
G: 110*
H: 111*

A AC D C

G

C

E F G

B

H

E

A

+
D

(a) (b) (c)

Figure 5: Example of SAIL for multiple FIBs.

Lookup Process: Regarding the IP lookup process for
multiple FIBs, given an IP address a and a FIB ID i, we
first use SAIL L to find the next hop array N for a. Then,
the next hop for IP address a and a FIB ID i is N[i].

Two-dimensional Splitting: Regarding memory man-
agement, SAIL M exactly follows the two-dimensional split-
ting strategy illustrated in Figure 4. We store BC16, which
is the combination of B16 and C16, and B24 in on-chip mem-
ory, and store the rest four arrays N16, N24, C24, and N32 in
off-chip memory. The key feature of our scheme for dealing
with multiple FIBs is that the total on-chip memory need-
ed is bounded to 216 ∗ 17 + 224 = 2.13MB regardless of the
sizes, characteristics and number of FIBs. The reason that
we store BC16 and B24 in on-chip memory is that given an
IP address a, BC16 and B24 can tell us on which exact level,
16, 24, or 32 that we can find the longest matching prefix
for a. If it is on level 16 or 24, then we need 1 off-chip mem-
ory access as we only need to access N16 or N24. If it is on
level 32, then we need 2 off-chip memory access as we need
to access C24 and N32. Thus, the lookup process requires 2
on-chip memory accesses (which are on BC16 and B24) and
at most 2 off-chip memory accesses.

FIB Update: Given a FIB update of insert-
ing/deleting/modifying a prefix, we first modify the
overlay trie that the router maintains on the control plane
to make the resulting overlay trie equivalent to the updated
FIBs. Second, we modify the lookup data structures in the
data plane to reflect the change of the overlay trie.

5. SAIL IMPLEMENTATION
In this section, we discuss the implementation of SAIL al-

gorithms on four platforms: FPGA, CPU, GPU, and many-
core.

5.1 FPGA Implementation
We simulated SAIL B, SAIL U, and SAIL L using Xilinx

ISE 13.2 IDE. We did not simulate SAIL M because its on-
chip memory lookup process is similar to SAIL L. In our FP-
GA simulation of each algorithm, to speed up IP lookup, we
build one pipeline stage for the data structure corresponding
to each level.

We use Xilinx Virtex 7 device (model XC7VX1140T) as
the target platform. This device has 1,880 block RAMs
where each block has 36 Kb, thus the total amount of on-
chip memory is 8.26MB [1]. As this on-chip memory size is
large enough, we implement the three algorithms of SAIL B,
SAIL U, and SAIL L on this platform.

5.2 CPU Implementation
We implemented SAIL L and SAIL M on CPU platforms

because their data structures have less number of levels as
compared to SAIL B and SAIL U, and thus are suitable for
CPU platform. For our algorithms on CPU platforms, the
less number of levels means the less CPU processing steps. In
contrast, in FPGA platforms, because we build one pipeline
stage per level, the numbers of levels in our algorithms do
not have direct impact on IP lookup throughput.

Our CPU experiments were carried out on an Intel(R)
Core(TM) i7-3520M. It has two cores with four threads, each
core works at 2.9 GHz. It has a 64KB L1 code cache, a 64KB
L1 data cache, a 512KB L2 cache, and a 4MB L3 cache.
The DRAM size of our computer is 8GB. The actual CPU
frequency that we observe in our programs is 2.82GHz.

To obtain the number of CPU cycles of SAIL L and
SAIL M, we reverse engineering our C++ code. The as-
sembly code is shown in Table 2. This table shows that for
SAIL L, given an IP address a, if the next hop of a can be
found on level 16, then the lookup needs only 3 CPU in-
structions; if the next hop of a can be found on level 24,
then the lookup needs only 10 CPU instructions. Note that
CPU could complete more than one instruction in one cycle.
In comparison, for the Lulea algorithm, given an IP address
a, if the next hop of a can be found on level 16, then the
lookup needs at least 17 ∼ 22 CPU cycles; if the next hop of
a can be found on level 24, then the lookup needs 148 CPU
cycles. This explains why our algorithm is much faster than
Lulea.

Table 2: The disassembling code of lookup.

if((H=0−BCN16[a � 16])>0);

000000013F32589C movzx ecx,ax

000000013F32589F movzx ebx,byte ptr[r10+rcx*2]

000000013F3258A4 neg bl

000000013F3258A6 jne sailtest+147h(013F3258D7h)

else if(H=BN24[(BCN [a � 16] � 8) + (a � 16 � 24)]);

000000013F3258A8 movsx ecx,word ptr[r10+rcx*2]

000000013F3258AD shl ecx,8

000000013F3258B0 movzx eax,byte ptr [rdi+rdx*4+1]

000000013F3258B5 add ecx,eax

000000013F3258B7 movzx ebx,byte ptr [rcx+r9]

000000013F3258BC test bl,bl

000000013F3258BE jne sailtest+147h(013F3258D7h)

5.3 GPU Implementation
We implemented SAIL L in GPU platforms based on N-

VDIA’s CUDA architecture [30]. In our GPU implementa-
tion, we store all data structures in GPU memory. Execut-
ing tasks on a GPU consists of three steps: (1) copy data
from the CPU to the GPU, (2) execute multiple threads for
the task, (3) copy the computing results back to the CPU;
these three steps are denoted by H2D, kernel execution, and
D2H, respectively. Thus, there is a natural communication
bottleneck between the CPU and the GPU. To address this
limitation, the common strategy is batch processing; that
is, the CPU transfers a batch of independent requests to
the GPU, and then the GPU processes them in parallel us-
ing many cores. In our GPU implementation, when packets
arrive, the CPU first buffers them; when the buffer is full,
the CPU transfers all their destination IP addresses to the
GPU; when the GPU finishes all lookups, it transfers all
lookup results back to the CPU. For our GPU based SAIL
implementation, the data copied from the CPU to the GPU
are IP addresses, and the computing results copied from the
GPU to the CPU are the next hops for these IP addresses.
In our GPU implementation, we employed two optimization
techniques to speed up IP lookup performance: memory co-
alesce and multi-streaming.

The basic idea of memory coalesce is to let threads with
continuous IDs read memory of continuous locations because
GPU schedules its threads to access the main memory in
the unit of 32 threads. In our GPU implementation, after
the CPU transfers a batch of 32 ∗ n IP addresses to the
GPU’s memory denoted as an array A[0..32 ∗ n − 1], if we
assign threads t0, t1, · · · , t32∗n−1 to process the IP addresses
A[0], A[1], · · · , A[32∗n−1], respectively, then all these 32∗n
IP addresses can be read in n memory transitions by the
GPU, instead of 32 ∗ n memory accesses.

The basic idea of multi-streaming, which is available on
INVIDA Fermi GPU architecture, is to pipeline the three
steps of H2D, kernel execution, and D2H. According to
the CUDA computing model, data transfers (i.e., H2D and
D2H) and kernel executions within different streams can be
parallelized via page-locked memory. A stream is a sequence
of threads that must be executed in order. In our GPU im-
plementation, we assign each 32 ∗ k (k ≥ 1) threads to a
unique stream. Thus, different streams of 32 ∗ k threads can
be pipelined, i.e., while one stream of 32 ∗ k threads are
transferring data from the CPU to the GPU, one stream of
32 ∗ k threads are executing their kernel function, and an-
other stream of 32∗k threads are transferring data from the
GPU to the CPU.

5.4 Many-core Implementation
We implemented SAIL L on the many-core platform Tel-

era TLR4-03680 [5], which has 36 cores and each core has
a 256K L2 cache. Our experiments were carried out on a
64-bit operation system CentOS 5.9. One L2 cache access
needs 9 cycles. In our many-core implementation, we let one
core to serve as the main thread and all other cores to serve
as lookup threads, where each lookup thread performs all
steps for an IP address lookup.

6. EXPERIMENTAL RESULTS
In this section, we present the experimental results of our

algorithms on the four platforms of FPGA, CPU, GPU, and
many-core.

6.1 Experimental Setup
To obtain real FIBs, we used a server to establish a peer

relationship with a tier-1 router in China so that the server
can receive FIB updates from the tier-1 router but does not
announce new prefixes to the tier-1 router; thus, gradually,
the server obtained the whole FIB from the tier-1 router.
Note that it is not practically feasible to dump the FIB of a
tier-1 router to hard disk because of the unbearable overhead
incurred on the router. On the server, we use the open source
Quagga to dump the FIB every hour [2]. We captured real
traffic in one of the tier-1 router’s interfaces at the interval of
10 minutes per hour between October 22nd 08:00 AM 2013
to October 23rd 21:00 PM.

In addition, we downloaded 18 real FIBs from www.

ripe.net. Six of them were downloaded at every 8:00
AM on January 1st of each year from 2008 to 2013, de-
noted by FIB2008, F IB2009, · · · , F IB2013. Twelve of them
were downloaded from 12 routers on 08:00 AM August 8
2013, respectively, denoted by rrc00, rrc01, rrc03, · · · rrc07,
rrc10, · · · , rrc15. We also generated 37 synthetic traffic
traces. The first 25 traces contain packets with randomly
chosen destinations. The other 12 traces were obtained by
generating traffic evenly for each prefix in the 12 FIBs down-
loaded from the 12 routers on 08:00 AM August 8 2013; thus,
we guarantee that each prefix has the same opportunity to
be hit by the synthetic traffic. We call such traffic prefix-
based synthetic traffic.
We evaluated our algorithms on four metrics: lookup speed

in terms of pps (# of packets per second), on-chip memory
size in terms of MB, lookup latency in terms of microsecond,
and update speed in terms of the total number of memory
accesses per update. For on-chip memory sizes, we are only
able to evaluate the FPGA implementation of SAIL algo-
rithms. For lookup latency, we evaluated our GPU imple-
mentation because the batch processing incurs more latency.

We compared our algorithms with four well-known IP
lookup algorithms: PBF [36], LC-trie [38], Tree Bitmap [40],
and Lulea [28]. We implemented our algorithms and these
four prior algorithms using C++. We validated the correct-
ness of all algorithms through exhaustive search: we first
construct an exhaustive 232 = 4G lookup table where the
next hop of an IP address a is the a-th entry in this table;
second, for each IP address, we compare the lookup result
with the result of this exhaustive table lookup, and all our
implementations pass this validation.

6.2 Performance on FPGA
We evaluated the performance of our algorithm on FPGA

platforms in comparison with PBF, which is best suitable
for FPGA platforms among the four well known algorithms,
because the other four algorithms did not separate their data
structures for on-chip and off-chip memory.

We first evaluate SAIL L for on-chip memory consump-
tion in comparison with PBF. Note that PBF stores its
Bloom filters in on-chip memory. We compute the on-chip
memory usage of PBF as follows. In [36], it says that PBF
needs 1.003 off-chip hash probes per lookup on average, giv-
en a routing table size of 116, 819. To achieve 1.003 off-chip
memory accesses per lookup assuming the best scenario of
one memory access per hash probe, the overall false posi-
tive rate of the filters should be 0.003. Thus, each Bloom
filter should have a false positive rate of 0.003/(32 − 8) s-
ince PBF uses 24 filters. Assuming that these Bloom fil-

ters always achieve the optimal false positive, then from
0.003/(32−8) = (0.5)k, we obtain k = 13 andm/n = 18.755,
where m is the total size of all Bloom filters and n is the
number of elements stored in the filter. Thus, given a FIB
with n prefixes, the total on-chip memory usage of PBF is
18.755 ∗ n.

Our experimental results on on-chip memory usage show
that within the upper bound of 2.13MB, the on-chip mem-
ory usage of SAIL L grows slowly and the growth rate is
slower than PBF, and that the on-chip memory usage of
SAIL L is smaller than PBF. For on-chip memory usage,
the fundamental difference between SAIL L and PBF is
that the on-chip memory usage of SAIL L has an upper
bound but that of PBF grows with the number of prefixes
in the FIB linearly without a practical upper bound. Fig-
ure 6 shows the evolution of the on-chip memory usage for
both SAIL L and PBF over the past 6 years based on our
results on the 6 FIBs: FIB2008, F IB2009, · · · , and FIB2013.
Figure 7 shows the on-chip memory usage of the 12 FIBs
rrc00, rrc01, rrc03, · · · rrc07, rrc10, · · · , rrc15. Taking FIB
rrc00 with 476,311 prefixes as an example, SAIL L needs
only 0.759MB on-chip memory.

2008 2009 2010 2011 2012 2013
0.0B

200.0kB

400.0kB

600.0kB

800.0kB

1.0MB

1.2MB

O
n-

ch
ip

 m
em

or
y

us
ag

e

Year

 SAIL_L
 PBF

Figure 6: On-chip memory usage over 6 years.

rrc00rrc01rrc03rrc04rrc05rrc06rrc07rrc10rrc11rrc12rrc13rrc14rrc15
0.0B

200.0kB

400.0kB

600.0kB

800.0kB

1.0MB

1.2MB

O
n-

ch
ip

 m
em

or
y

us
ag

e

FIB

 SAIL_L PBF

Figure 7: On-chip memory usage of 12 FIBs.

We next evaluate SAIL L for lookup speed on FPGA plat-
form Xilinx Virtex 7. We did not compare with PBF be-
cause [36] does not provide implementation details for its
FPGA implementation. We focus on measuring the lookup
speed on the data structures stored in on-chip memory be-
cause off-chip memory lookups are out of the FPGA chip. As
we implement the lookup at each level as one pipeline stage,
SAIL B, SAIL U, SAIL L have 24, 4, 2 pipeline stages, re-
spectively. The more stages our algorithms have, the more
complex of the FPGA logics are, and the slower the FP-
GA clock frequency will be. Our experimental results show
that SAIL B, SAIL U, SAIL L have clock frequencies of
351MHz, 405MHz, and 479MHz, respectively. As each of our

pipeline stage requires only one clock cycle, the lookup speed
of SAIL B, SAIL U, SAIL L are 351Mpps, 405Mpps, and
479Mpps, respectively.

Let us have a deeper comparison of SAIL L with PBF.
The PBF algorithm without pushing requires 25 ∗ k hash
computations and memory accesses in the worst case be-
cause it builds 25 Bloom filters, each of which needs k hash
functions. With pushing, PBF needs to build at least 1
Bloom filter because the minimum number of levels is 1 (by
pushing all nodes to level 32), although which is impractical.
Further we assume that PBF uses the Kirsch and Mitzen-
macher’s double hashing scheme based Bloom filters, which
uses two hash functions to simulate multiple hash function-
s [6]. Although using the double hashing technique increases
false positives, we assume it does not. Furthermore, suppose
the input of hashing is 2 bytes, suppose PBF uses the well
known CRC32 hash function, which requires 6.9 clock cy-
cles per input byte. With these unrealistic assumptions, the
number of cycles that PBF requires for searching on its on-
chip data structures is 6.9 × 2 × 2. In comparison, SAIL L
requires only 3∼10 instructions as discussed in Section 5.2
and needs only 4.08 cycles per lookup based on Figure 8.
In summary, even with many unrealistic assumptions that
favor PBF, SAIL L still performs better.

6.3 Performance on CPU
We evaluate the performance of our algorithm on CPU

platforms in comparison with LC-trie, Tree Bitmap, and
Lulea algorithms. We exclude PBF because it is not suit-
able for CPU implementation due to the many hashing op-
erations.

Our experimental results show that SAIL L is several
times faster than LC-trie, Tree Bitmap, and Lulea algo-
rithms. For real traffic, SAIL L achieves a lookup speed of
673.22∼708.71 Mpps, which is 34.53∼58.88, 29.56∼31.44,
and 6.62∼7.66 times faster than LC-trie, Tree Bitmap,
and Lulea, respectively. For prefix-based synthetic traffic,
SAIL L achieves a lookup speed of 589.08∼624.65 Mpps,
which is 56.58∼68.46, 26.68∼23.79, and 7.61∼7.27 times
faster than LC-trie, Tree Bitmap, and Lulea, respective-
ly. For random traffic, SAIL L achieves a lookup speed
of 231.47∼236.08 Mpps, which is 46.22∼54.86, 6.73∼6.95,
and 4.24∼4.81 times faster than LC-trie, Tree Bitmap, and
Lulea, respectively. Figure 8 shows the lookup speed of these
4 algorithms with real traffic on real FIBs. The 12 FIBs are
the 12 FIB instances of the same router during the first 12
hours period starting from October 22nd 08:00 AM 2013.
For each FIB instance at a particular hour, the real traffic
that we experimented is the 10 minutes of real traffic that
we captured during that hour. Figure 9 shows the lookup
speed of these 4 algorithms with prefix-based synthetic traf-
fic on the 12 FIBs downloaded from www.ripe.net. Figure 10
shows the lookup speed of these 4 algorithms with random
traffic on FIB2013. From these figures, we further observe
that for each of these 4 algorithms, its lookup speed on re-
al traffic is faster than that on prefix-based traffic, which is
further faster than that on random traffic. This is because
real traffic has the best IP locality, which results in the best
CPU caching behavior, and random traffic has the worst IP
locality, which results in the worst CPU caching behavior.

We now evaluate the FIB update performance of SAIL L
on the data plane. Figure 11 shows the variation of the num-
ber of memory accesses per update for 3 FIBs (rrc00, rrc01,

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700

800

Lo
ok

up
 s

pe
ed

 (M
pp

s)

FIB

 LC-trie TreeBitmap Lulea SAIL_L

Figure 8: Lookup speed with real traffic and FIBs.

rrc00rrc01rrc03rrc04rrc05rrc06rrc07rrc10rrc11rrc12rrc13rrc14rrc15
0

100

200

300

400

500

600

700

800

Lo
ok

up
 s

pe
ed

 (M
pp

s)

FIB

 LC-trie TreeBitmap Lulea SAIL_L

Figure 9: Lookup speed with prefix-based traffic on
12 FIBs.

and rrc03) during a period with 319∗500 updates. The aver-
age numbers of memory accesses per update for these three
FIBs are 1.854, 2.253 and 1.807, respectively. The observed
worst case is 7.88 memory accesses per update.

We now evaluate the lookup speed of SAIL M for virtual
routers. Figure 12 shows the lookup speed of SAIL M al-
gorithm as the number of FIBs grows, where x FIBs means
the first x FIBs in the 12 FIBs rrc00, rrc01, rrc03, · · · rrc07,
rrc10, · · · , rrc15, for both prefix-based traffic and random
traffic. This figure shows that on average SAIL M achieves
132 Mpps for random traffic and 366 Mpps for prefix-based
traffic.

6.4 Evaluation on GPU
We evaluate SAIL L on GPU platform with CUDA 5.0.

We carry out these experiments on a DELL T620 server
with an Intel CPU (Xeon E5-2630, 2.30 GHz, 6 Cores) and

2 4 6 8 10 12 14 16 18 20 22 24
0.0

50.0

100.0

150.0

200.0

250.0

Lo
ok

up
 s

pe
ed

 (M
pp

s)

Traffic file

 LC-trie TreeBitmap Lulea SAIL_L

Figure 10: Lookup speed with random traffic on
FIB2013.

9 19 29 39 49 59 69 79 89 99 10
9

11
9

12
9

13
9

14
9

15
9

16
9

17
9

18
9

19
9

20
9

21
9

22
9

23
9

24
9

25
9

26
9

27
9

28
9

29
9

30
9

31
9

0

2

4

6

8

10

12

14

#
of
m
em
or
y
ac
ce
ss
es
pe
ru
pd
at
e

of updates (*500)

rrc00
average of rrc00
rrc01
average of rrc01
rrc03
average of rrc03

Figure 11: # memory accesses per update.

2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

Lo
ok
up
sp
ee
d
(M
pp
s)

of FIBs

Prefix-based traffic
Random Trace

Figure 12: Lookup speed of SAIL M for 12 FIBs us-
ing prefix-based and random traffic.

an NVIDIA GPU (Tesla C2075, 1147 MHz, 5376 MB de-
vice memory, 448 CUDA cores). These experiments use the
12 FIBs rrc00, rrc01, rrc03, · · · rrc07, rrc10, · · · , rrc15. We
measure the lookup speed and latency with a range of CU-
DA configurations: the number of streams (1, 2, · · · , 24), the
number of blocks per stream (64, 96, · · · , 512), and the num-
ber of threads per block (128, 256, · · · , 1024). The lookup
speed is calculated as the total number IP lookup requests
divided by the total lookup time. We use the Nvidia Visual
Profiler tool to measure the lookup latency.

We evaluated the IP lookup speed versus traffic size (i.e.,
the number of IP addresses in one batch of data sent from
the CPU to the GPU). We generate 3 traffic traces of 3 differ-
ent sizes 30K, 60K, 90K. Figure 13 shows our experimental
results, from which we observe that larger traffic sizes lead
to higher lookup speed. For the traffic size of 30K, SAIL L
achieves a lookup speed of 257∼322 Mpps. For the traffic
size of 60K, SAIL L achieves a lookup speed of 405∼447
Mpps. For the traffic size of 90K, SAIL L achieves a lookup
speed of 442∼547 Mpps.
We evaluated the IP lookup latency versus traffic size.

Figure 14 shows our experimental results, from which we
observe that larger traffic sizes lead to higher lookup latency.
For the traffic size of 30K, SAIL L has a lookup latency of
90∼124 μs. For the traffic size of 60K, SAIL L has a lookup
latency of 110∼152 μs. For the traffic size of 90K, SAIL L
has a lookup latency of 122∼185 μs.

6.5 Evaluation on Many-core Platform
We evaluated the lookup speed of SAIL L versus the num-

ber of cores. We conducted our experiments on the many-
core platform Telera TLR4-03680.

rrc00 rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc10 rrc11 rrc12 rrc13 rrc14 rrc15
0

50
100
150
200
250
300
350
400
450
500
550
600
650

Lo
ok

up
 s

pe
ed

 (
M

pp
s)

FIB

 30
 60
 90

Figure 13: Lookup speed VS. traffic size.

rrc00 rrc01 rrc03 rrc04 rrc05 rrc06 rrc07 rrc10 rrc11 rrc12 rrc13 rrc14 rrc15
0

20
40
60
80

100
120
140
160
180
200
220
240

La
te

nc
y

 (m
icr

os
ec

on
d)

FIB

 30
 60
 90

Figure 14: Lookup latency VS. traffic size.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
0

100M

200M

300M

400M

500M

600M

700M

Lo
ok

up
 s

pe
ed

 (p
ps

)

of cores

Figure 15: Lookup speed VS. # of cores.

Our experimental results show that the lookup rate increas-
es linearly as the number of cores grows. Note that we only
have the results of 35 cores, because one core is responsible
for traffic distribution and results collection. Figure 15 shows
the results on FIB rrc00 using prefix-based traffic. We have
observed similar results for other FIBs.

7. DISCUSSION
Our SAIL framework is mainly proposed for IPv4 lookup;

however, it can be extended for IPv6 lookup as well. An IPv6
address has 128 bits, the first 64 bits represent the network
address and the rest 64 bits represent the host address. An
IPv6 prefix has 64 bits. The real IPv6 FIBs in backbone
routers from www.ripe.net only has around 14,000 entries,
which are much smaller than IPv4 FIBs. To deal with IPv6
FIBs, we can push trie nodes to 6 levels of 16, 24, 32, 40, 48,
and 64. To split along the dimension of prefix lengths, we
perform the splitting on level 48. In other words, we store the
bit map and chunk ID arrays of levels 16, 24, 32, 40, and bit
map array of level 48 in on-chip memory. Our experimental
results show that the on-chip memory for an IPv6 FIB is

about 2.2MB. Although the on-chip memory usage for IPv6
is much larger than that for IPv4 in the worst case because
IPv6 prefix length are much longer than IPv4, as IPv6 FIB
sizes are orders of magnitude smaller than IPv4 FIB sizes,
the one-chip memory usage for IPv6 is similar to that for
IPv4.

8. CONCLUSION
We make three key contributions in this paper. First, we

propose a two-dimensional splitting approach to IP lookup.
The key benefit of such splitting is that we can solve the
sub-problem of finding the prefix length ≤ 24 in on-chip
memory of bounded small size. Second, we propose a suite
of algorithms for IP lookup based on our SAIL framework.
One key feature of our algorithms is that we achieve con-
stant, yet small, IP lookup time and on-chip memory usage.
Another key feature is that our algorithms are cross plat-
form as the data structures are all arrays and only require
four operations of ADD, SUBTRACTION, SHIFT, and log-
ical AND. Note that SAIL is a general framework where
different solutions to the sub-problems can be adopted. The
algorithms proposed in this paper represent particular in-
stantiations of our SAIL framework. Third, we implemented
our algorithms on four platforms (namely FPGA, CPU, G-
PU, and many-core) and conducted extensive experiments
to evaluate our algorithms using real FIBs and traffic from
a major ISP in China. Our experimental results show that
our SAIL algorithms are several times or even two orders of
magnitude faster than the well known IP lookup algorithms.
Furthermore, we have open sourced our SAIL L algorithm
and three well known IP lookup algorithms (namely LC-trie,
Tree Bitmap, and Lulea) that we implemented in [4].

9. ACKNOWLEDGEMENTS
We would like to thank Peng He for implementing the Tree

Bitmap algorithm and Chunjing Han, Qinghua Wu and Tai-
hua He for their valuable suggestions. We also would like
to thank the anonymous reviewers and our shepherd, An-
drew Moore, for their thoughtful suggestions. This work was
supported in part by National Basic Research Program of
China with Grant 2012CB315801, by National Natural Sci-
ence Foundation of China (NSFC) with Grants (61133015,
61202489), and by Strategic Priority Research Program of
CAS with Grant XDA06010303.

10. REFERENCES
[1] FPGA data sheet [on line]. Available:

http://www.xilinx.com.

[2] Quagga routing suite [on line]. Available:
http://www.nongnu.org/quagga/.

[3] RIPE network coordination centre [on line]. Available:
http://www.ripe.net.

[4] SAIL webpage.
http://fi.ict.ac.cn/firg.php?n=PublicationsAmpTalks
.OpenSource.

[5] Tilera datasheet [on line]. Available:
http://www.tilera.com/sites/default/
files/productbriefs/TILE-Gx8036 PB033-02 web.pdf.

[6] K. Adam and M. Michael. Less hashing, same
performance: Building a better bloom filter. In
Algorithms–ESA 2006, pages 456–467. Springer, 2006.

[7] P. Derek, L. Ziyan, and P. Hang. IP address lookup
using bit-shuffled trie. IEEE Computer
Communications, 2014.

[8] S. Devavrat and G. Pankaj. Fast incremental updates
on ternary-cams for routing lookups and packet
classification. In Proc. Hot Interconnects, 2000.

[9] W. Feng and H. Mounir. Matching the speed gap
between sram and dram. In Proc. IEEE HSPR, pages
104–109, 2008.

[10] B. Florin, T. Dean, R. Grigore, and S. Sumeet. A tree
based router search engine architecture with single
port memories. In Proc. IEEE ISCA, 2005.

[11] Z. Francis, N. Girija, and B. Anindya. Coolcams:
Power-efficient tcams for forwarding engines. In Proc.
IEEE INFOCOM, pages 42–52, 2003.

[12] R. Gábor, T. János, A. Korósi, A. Majdán, and
Z. Heszberger. Compressing IP forwarding tables:
Towards entropy bounds and beyond. In Proc. ACM
SIGCOMM, 2013.

[13] P. Gupta, S. Lin, and N. McKeown. Routing lookups
in hardware at memory access speeds. In Proc. IEEE
INFOCOM, pages 1240–1247, 1998.

[14] F. Hamid, Z. M. Saheb, and S. Masoud. A novel
reconfigurable hardware architecture for IP address
lookup. In Proc. ACM/IEEE ANCS, pages 81–90,
2005.

[15] S. Haoyu, K. Murali, H. Fang, and L. TV. Scalable IP
lookups using shape graphs. In Proc. ACM/IEEE
ICNP, pages 73–82, 2009.

[16] L. Hoang, J. Weirong, and P. V. K. A sram-based
architecture for trie-based IP lookup using fpga. In
Proc. IEEE FCCM, pages 33–42, 2008.

[17] L. Hyesook, Y. Changhoon, and S. Earl. Priority tries
for IP address lookup. IEEE Transactions on
Computers, 59(6):784–794, 2010.

[18] F. Jing and R. Jennifer. Efficient IP-address lookup
with a shared forwarding table for multiple virtual
routers. In Proc. ACM CoNEXT. ACM, 2008.

[19] Z. Kai, H. Chengchen, L. Hongbin, and L. Bin. A
tcam-based distributed parallel IP lookup scheme and
performance analysis. IEEE/ACM Transactions on
Networking, 14(4):863–875, 2006.

[20] S. Keith. A tree-based packet routing table for
berkeley unix. In USENIX Winter, pages 93–99, 1991.

[21] L. Layong, X. Gaogang, S. Kavé, U. Steve,
M. Laurent, and X. Yingke. A trie merging approach
with incremental updates for virtual routers. In Proc.
IEEE INFOCOM, pages 1222–1230, 2013.

[22] H. Lim, K. Lim, N. Lee, and K.-H. Park. On adding
bloom filters to longest prefix matching algorithms.
IEEE Transactions on Computers (TC),
63(2):411–423, 2014.

[23] M. Mahmoud and M. Massato. A new hardware
algorithm for fast IP routing targeting programmable
routers. In Network control and engineering for Qos,
security and mobility II, pages 164–179. Springer,
2003.

[24] W. Marcel, V. George, T. Jon, and P. Bernhard.
Scalable high speed IP routing lookups. In Proc. ACM
SIGCOMM, 1997.

[25] Z. Marko, R. Luigi, and M. Miljenko. Dxr: towards a
billion routing lookups per second in software. ACM
SIGCOMM Computer Communication Review,
42(5):29–36, 2012.

[26] B. Masanori and C. H. Jonathan. Flashtrie:
hash-based prefix-compressed trie for IP route lookup
beyond 100gbps. In Proc. IEEE INFOCOM, 2010.

[27] R. Miguel, B. Ernst, and D. Walid. Survey and
taxonomy of IP address lookup algorithms. Network,
IEEE, 15(2), 2001.

[28] D. Mikael, B. Andrej, C. Svante, and P. Stephen.
Small forwarding tables for fast routing lookups. In
Proc. ACM SIGCOMM, pages 3–14, 1997.

[29] A. Mohammad, N. Mehrdad, P. Rina, and S. Samar.
A tcam-based parallel architecture for high-speed
packet forwarding. IEEE Transactions on Computers,
56(1):58–72, 2007.

[30] NVIDIA Corporation. NVIDIA CUDA C Best
Practices Guide, Version 5.0, Oct. 2012.

[31] C. Pierluigi, D. Leandro, and G. Roberto. IP address
lookupmade fast and simple. In Algorithms-ESA’99,
pages 65–76. Springer, 1999.

[32] W. Priyank, S. Subhash, and V. George. Multiway
range trees: scalable IP lookup with fast updates.
Computer Networks, 44(3):289–303, 2004.

[33] S. Rama, F. Natsuhiko, A. Srinivas, and S. Arun.
Scalable, memory efficient, high-speed IP lookup
algorithms. IEEE/ACM Transactions on Networking,
13(4):802–812, 2005.

[34] P. Rina and S. Samar. Reducing tcam power
consumption and increasing throughput. In Proc. High
Performance Interconnects, pages 107–112, 2002.

[35] H. Sangjin, J. Keon, P. KyoungSoo, and M. Sue.
Packetshader: a gpu-accelerated software router. In
Proc. ACM SIGCOMM, pages 195–206, 2010.

[36] D. Sarang, K. Praveen, and T. D. E. Longest prefix
matching using bloom filters. In Proc. ACM
SIGCOMM, pages 201–212, 2003.

[37] H. Song, M. Kodialam, F. Hao, and T. Lakshman.
Building scalable virtual routers with trie braiding. In
Proc. IEEE INFOCOM, 2010.

[38] N. Stefan and K. Gunnar. IP-address lookup using
lc-tries. Selected Areas in Communications, IEEE
Journal on, 17(6):1083–1092, 1999.

[39] S. Venkatachary and V. George. Fast address lookups
using controlled prefix expansion. ACM TOCS,
17(1):1–40, 1999.

[40] E. Will, V. George, and D. Zubin. Tree bitmap:
hardware/software IP lookups with incremental
updates. ACM SIGCOMM Computer Communication
Review, 34(2):97–122, 2004.

[41] T. Yang, Z. Mi, R. Duan, X. Guo, J. Lu, S. Zhang,
X. Sun, and B. Liu. An ultra-fast universal
incremental update algorithm for trie-based routing
lookup. In Proc. ACM/IEEE ICNP, 2012.

[42] J. Zhao, X. Zhang, X. Wang, and X. Xue. Achieving
O(1) IP lookup on gpu-based software routers. In
ACM SIGCOMM Computer Communication Review,
volume 40, pages 429–430. ACM, 2010.

