Meta-algorithms for Software-based Packet
Classification

Peng He*T, Gaogang Xie*, Kavé Salamatiant, Laurent Mathy?
*ICT, CAS, China, TUniversity of CAS, China, iUniversity of Savoie, France, §University of Liége, Belgium
{hepeng, xie}@ict.ac.cn, kave.salamatian@univ-savoie.fr, laurent.mathy @ulg.ac.be

Abstract—We observe that a same ruleset can induce very
different memory requirement, as well as varying classification
performance, when using various well known decision tree based
packet classification algorithms. Worse, two similar rulesets, in
terms of types and number of rules, can give rise to widely differ-
ing performance behaviour for a same classification algorithms.
We identify the intrinsic characteristics of rulesets that yield such
performance differences, allowing us to understand and predict
the performance behaviour of a ruleset for various modern
packet classification algorithms. Indeed, from our observations,
we are able to derive a memory consumption model and an
offline algorithm capable of quickly identifying which packet
classification is suited to a give ruleset. By splitting a large
ruleset in several subsets and using different packet classification
algorithms for different subsets, our SmartSplit algorithm is
shown to be capable of configuring a multi-component packet
classification system that exhibits up to 11 times less memory
consumption, as well as up to about 4 x faster classification speed,
than the state-of-art work [20] for large rulesets. Our AutoPC
framework obtains further performance gain by avoiding splitting
large rulesets if the memory size of the built decision tree is shown
by the memory consumption model to be small.

I. INTRODUCTION

Packet classification is a key component for network de-
vices providing advanced network services. While the area of
packet classification has been extensively researched for over
two decades, the continual growth in both traffic volumes and
classifier sizes are proving as challenging as ever. Indeed, tra-
ditional network applications and services, such as firewalling,
IDS, VPNs, amongst others, require such fine classification of
traffic that it is not uncommon to find classification rulesets
in excess of 15K rules in the wild [8]. Furthermore, the
trends are exacerbated by the emergence of large, multi-tenant
data centers which require access control, load balancing,
bandwidth sharing, traffic monitoring efc. between tens of
thousand of virtual machines [10].

Current packet classification solutions can be categorized
into two types: TCAM-based and RAM-based. RAM-based
solutions, also known as algorithmic solutions, build compact
and efficient data structures for packet classification, yielding
cheap, software-based solutions. In contrast, TCAMs guarantee
deterministic, very high performance, so these expensive and
power-hungry devices are still the de facto standard solution
adopted in network devices. Nevertheless, the recent advent
of Software-Define Networking (SDN), enabling on-demand
network infrastructure deployment based on virtual network
appliances in the cloud [14], does call for high-performance
software-based packet classification solutions, while the rate

1978-1-4799-6204-4/14$31.00 (©2014 IEEE

of growth in ruleset size may well, in some contexts such as
the cloud, outpace TCAM capacity evolution.

Algorithm Ruleset(size) Memory size Mem. accesses
HyperSplit ACL1_100K 2.12MB 32
YPErSPUL - AcL2_100K 83MB 43
N ACL1_100K 3.23MB 65
EffiCuts ACL2 100K 4.81MB 136

TABLE I: Performance comparison on different rulesets

RAM based solutions are plagued by the tradeoff between
memory size and lookup speed. Theoretical bounds states that
for checking N general rules in K dimensions (K > 3),
the best algorithm have either Og{logN) search speed at the
cost of O(NX) space, or O(log) search time at the
cost of O(N) space [11]. This means that, in general, RAM-
based solutions need large memory for fast classification speed.
Fortunately, Gupta and McKeown reported in [5] that real
rulesets have more structures, which can be exploited by
the algorithms to achieve fast classification speed with small
memory footprint. However, different algorithms are based
on different observations of rule structures. When applying
algorithms on different rulesets, a performance unpredictability
problem may occur. To illustrate this issue, we present in Table
I the performance in terms of memory size and maximum
number of memory accesses' of two state-of-art algorithms
(HyperSplit> [13] and EffiCuts [20]) on two ACL rulesets.
We can see that for two similar firewall rulesets, ACL1_100K
and ACL2_100K, containing nearly equal number of rules, the
memory size needed by HyperSplit for ACL1_100K is around
40 times larger than ACL2_100K (from 2.12MB to 83MB).
While the memory requirement of EffiCuts on ACL1_100K
and ACL2_100K are nearly equal and small, the maximum
number of memory accesses needed by EffiCuts on ACL1_-
100K is 2 times that of HyperSplit.

These wide variations in performance demonstrate how
crucial applying, in practice, the “right” algorithm to a given
ruleset, actually is. For example, recent CPUs usually contain
several Mbytes of last level cache and several GBytes of
DRAM. Therefore, the memory size of HyperSplit algorithm
on ACLI1_100K can fit in the CPU’s cache but the memory
size for ACL2_100K cannot. Generally accessing a data in
the external DRAM requires around 50 nanoseconds, while
accessing a data in cache requires only 1 ~ 5 nanoseconds,

I'The number of memory accesses is the limiting factor, and thus a direct
indicator, of classification speed.

2Here, we use an improved HyperSplit implementation, see Section VII for
details.

meaning that one should use HyperSplit algorithm on ACLI_-
100K for smaller memory size and fewer memory accesses, but
should use EffiCuts on ACL2_100K to trade more memory
accesses for fewer memory access latency. In general, for a
given ruleset, we need to select an “right” algorithm for the
memory size and the number of memory accesses trade-off.

A straightforward method to solve the problem would be to
implement various algorithms on a given ruleset and choose the
one with best performance results. However, packet processing
platforms are often resource-constrained, and such comparison
is sometimes very time consuming (e.g. The HiCuts [6] algo-
rithm may need over 24 hours to process some large rulesets
[13]), making this approach at best impractical, and at worst
infeasible in more dynamic environments, such as OpenFlow-
based networks or virtual data centers, where rulesets may
change much faster than this processing time.

In our work, we therefore seek to understand the reasons
behind these observed temporal and spacial performance varia-
tions, with a view to quickly identify the “right” classification
algorithm for a given subset. In Section II, we analyze the
characteristics of rulesets that do have a primary bearing on
both the memory footprint and classification speed and we
review three of the main state-of-the-art packet classification
algorithms.

As the memory footprint of the ruleset for a given algo-
rithm is an important factor, we present in section III a memory
consumption model, to be used as a fast memory size checker,
which helps to select for best memory-performance tradeoff.

In Section IV, we describe an offline recommendation
algorithm that analyses rulesets for the above mentioned char-
acteristics, and recommends algorithms for the given ruleset,
based on classification performance alone. With this analysis
tool, we present in Section IV a new multi-tree algorithm
SmartSplit. The SmartSplit algorithm is built on recent work
[20] that showed how to trade classification performance for
much reduction in memory consumption by splitting the ruleset
into several subsets and classifying against these subsets in
sequence. However, going beyond [20] which uses HyperCuts
[15] on every subset, SmartSplit seeks to maximize classi-
fication speed, while meeting overall memory consumption
constraints, by using different classification algorithms for the
stages of the classification sequence (e.g. for the various sub-
rulesets). We also present a packet classification framework
AutoPC in Section V. The AutoPC framework, which is based
on the memory consumption model, tries to further improve
the performance by avoiding ruleset splitting if the memory
size of rulesets is shown to be small.

Sections VI and VII present our evaluation methodology
and experimental results, respectively. Section VIII summaries
the related work, and Section IX concludes the paper.

II. BACKGROUND AND OBSERVATIONS

We first give a brief review of factors explaining why the
performance of packet classification algorithms can exhibit
wide variations from one ruleset to another. More detailed
explanations are available in [12]. A packet classification
ruleset can be considered as a collection of ranges defined
on different fields. Table II shows an example of classification

TABLE II: An example ruleset

Rule # Field 1 Field 2 Action
R1 111* * DROP
R2 110* * PERMIT
R3 * 010* DROP
R4 * o011+ PERMIT
R5 Q1% 107 DROP
R6 * * PERMIT

ruleset containing 6 rules defined over two 4-bit fields, where
“*” represents a “don’t care” value. This ruleset can be
translated into four distinct ranges on Fieldl: [14, 15] (defined
by rule R1), [12,13] (R2), [4,7] (R5), [0,15] (all rules); and
four on Field 2: [4, 5] (R3), [6,7] (R4), [8, 11] (R5), [0, 15] (all
rules).

A packet classification ruleset has a simple geometric
interpretation: packet classification rules defined on K fields
can be viewed as defining K-orthotope, i.e. hyper-rectangle
in the K -dimensional space, and rulesets define intricate and
overlapping patterns of such orthotopes. For example, rule R1
in Table II defines a rectangular band over the two dimensional
space of features, where the short side is 2 units long (from
14 to 15, along the axis defined by Field 1), and the long side
spans the whole range of the second dimension. This structure
results from the wildcard existing on the second dimension
field that generates a large range. Similarly, rule R3 defines
another rectangular region but with the short side along the
second dimension.

A. Influence on temporal performance

A node in a packet classification decision tree (DT) can be
considered as making a spatial partition of the geometric space
into non-overlapping parts. The aim of a DT is to partition
the space of features into regions that will hopefully contain
the smallest number rules. Different classification algorithms
apply different heuristics for dividing the space. In particular
two types of partitioning is applicable. The first type is the
“cut”, that consists of dividing a given range into multiple
equal-sized intervals, the second type is a “split”, consisting
in dividing an interval at a split point into two sub-intervals,
a right and a left one.

At first glance the cut-based division seems more efficient
than the split-based one. Indeed, when ranges have roughly
similar sizes and are uniformly distributed along a dimension,
equal-sized cuts can be very efficient at separating those
ranges. However, ranges observed in practice are sometimes
non-uniformly distributed (e.g. dissimilar and/or in clusters
along the dimension), in which case applying equal-sized cuts
will become inefficient as either some cuts will simply split
a rule in regions of the space where this rule has already
been isolated, and/or deeper (i.e. finer-grained) cuts will be
necessary in other regions, to isolate clustered rules. Under
such conditions, the resulting DT would be skewed, with some
branches significantly longer than others. We need to evaluate
the uniformity of ranges before applying cuts or split.

B. Influence on spacial performance

In real-world rulesets, some specific patterns are commonly
encountered that can have a bearing on the efficiency of the

2
>,
> >
| [F2 | [F2 |
R3R4 R3R4 R3IR4 &G AVA
R6 R5R6 N S L5
= z []
[| | | | | | | | | | | | | | | R3 R4
&
RIR2 RIR2 RIR2 RIR2 R2R3 R2R4 RIR3 RIR4
R6 R3IR4R6 R6 R6 R6 R5R6 R6 R6 [_Ire

(a) HiCuts

(b) HyperSplit (c) EffiCuts

Fig. 1: Decision trees built by different algorithms

splits/cuts on F2

splits/cuts on F2

|
14 uo s;noysyds

F1

1 uo s;o/syds

|
I
|
|
!
F2

(a) sparse rules (b) orthogonal structure rules

Fig. 2: Geometric View of Packet Classification Rules

corresponding DT. Such patterns include: orthogonal structures
like that resulting from rules R1, R2, R3, R4 (a more general
case is show in Figure 2(b)), and sparse structures like the one
defined by rule RS (more general case is shown in Figure 2).

A major problem occurs when orthogonal structures are
present in the ruleset. In this case, rules cannot be completely
separated into regions containing a single rule with hyperplane
divisions, and the best that can be achieved is to use divisions,
forming O(N¥) regions containing K orthogonal rules, where
N is the number of orthogonal rules and K is the dimension of
the feature space. Moreover, each division is likely to intersect
with O(N) other rules’ subregions. When this happens, each
rule that is cut has to be duplicated in the DT nodes as the cut
does not separates these rules, i.e. rules with orthogonal struc-
ture will cause a large amount of rule duplication in Decision
Tree based algorithms, creating large memory footprints.

On the other hand when the rule structure is sparse, O(V)
spatial divisions can isolate each rule without cutting through
other rules, yielding modest memory requirements.

C. Application to existing algorithms

We briefly describe three major packet classification al-
gorithms proposed in the literature — HiCuts, HyperSplit and
EffiCuts — and identify the specific factors that negatively im-
pact their performance. For illustration purposes, three decision
trees built on the example ruleset using three algorithms are
shown in Figure 1 .

1) HiCuts and HyperCuts: We first describe HiCuts [6]
and HyperCuts [15], two closely related and classical DT based

algorithms. The two algorithms work essentially by cutting the
full range of each dimension of the multi-dimensional feature
space into equal-size intervals. In Figure 1(a), we show the
decision tree generated by HiCuts algorithm where the Field
1 is cut into 4 equal-sized sub-spaces: [0,3], [4,7], [8,11],
[12,15], and Field 2 is further cut into 4 equal-sized sub-
spaces. HiCut suffers from a combination of the previous
described issues. On one hand as the distribution of ranges
is non-uniform, e.g., the ranges in Table II leaves 50% of
the full range [0, 15] uncovered, equal-sized cutting becomes
inefficient as several cuts are spurious. Moreover as orthogonal
rules are present, each spurious cuts, which intersects with
orthogonal rules result in rule duplication in several leaves
of the decision tree. As empirically up to 90% of memory
footprint of a built DT is consumed by pointers pointing
to rules, rules duplication increases the memory footprint
significantly.

HyperCuts which extends HiCuts by allowing to cut multi-
ple fields in each node of the tree, suffers from the same issues
caused by the inefficiency of equal-sized cuts when there are
non-uniform ranges.

2) HyperSplit: In order to overcome the non-uniformity
of range coverage described earlier, HyperSplit [13] adopts a
different method to separate rules. It splits the chosen field
into unequal ranges that contain nearly equal number of rules,
e.g., in Figure 1(b) the Field 1 is split into two unequal size
intervals: [0, 13] and [14, 15], which separate R1 and R2 using
a single memory access. In order to minimize the number of
comparison, HyperSplit implements a binary tree, i.e., each
node contains only one split point splitting the given range
into two regions.

By using unequal-sized splitting, HyperSplit avoids un-
needed cuts reducing the memory footprint. However the main
source of redundancy remains because splits intersect with
orthogonal rules. Moreover, the binary tree structure adopted
by HyperSplit increases the tree depth, resulting in more
memory accesses than HiCuts and HyperCuts.

3) EffiCuts: Instead of building a single decision tree for
all the rules, EffiCuts [20] builds multiple trees for one ruleset.
To do so, EffiCuts categorizes the ruleset-defined ranges into
small and large ranges. A range is labelled as large if it covers
a large enough proportion, determined by a threshold of the
full range. Otherwise, this the range is labelled as small. The

Field 1 Field 2 Field 3
00* * 01
01%* 01 *
10* * 10
11* 10 *

TABLE III: Ruleset with a lot of distinct small ranges on
Field 1

threshold is set as 0.50 for most of fields. The ruleset shown
in Table II has one large range: [0, 15] and three small ranges:
[14,15], [12,13] and [4,7] on Field 1. Based on this labeling
one can classify each rule in the ruleset into at most 2%
categories in {small,large}’ for a K dimensional classifier.
For example, for the ruleset in Table II, R1 and R2 are
classified as (small,large), R3 and R4 as (large, small), RS
as (small, small) and R6 as (large,large). EffiCuts builds
separate decision trees for rules in each category. We show in
Figure 1(c), the resulting decision trees.

By putting rules with the large label on different fields
in separate decision trees rules, EffiCuts untangles existing
“orthogonal structures” and remove completely the induced
rule duplication. This results in a dramatic reduction of the
memory size compared to HiCuts and HyperCuts. However,
one need to traverse all trees in order to find the most specific
match, resulting in a large number of memory accesses and
this reduces significantly the throughput [20].

D. Discussions

The above description of different packet classifications
gives insight for understanding classification performance is-
sues. Using the geometrical view, we observed the major
impact of “orthogonal structures” and the non-uniformity of
range sizes on memory footprint and on the performance.
A noteworthy case happens when a ruleset contains only
small ranges in at least one of its dimension, like the ruleset
in Table III. For such cases one can separate all the rules,
using a decision tree working only on the dimension with
only small ranges, as the cuts/splits on this dimension will
not intersect any “orthogonal structures” happening in other
dimensions. In this cases, using EffiCuts that would generate
two trees for the two categories (small, small,large) and
(small,large, small), will be inefficient. The above obser-
vations, and the fact that all in all the main issue is to be
able to separate subregions with a small number of memory
accesses, drive us to propose these guidelines:

1) “Orthogonal structures” should be considered, and
rules should be eventually splitted in order to untangle
these structure and avoid memory explosion.

2) When splitting a ruleset, if a dimension appears that
contain only small ranges, it should be used to
separate the rules with a single tree.

3) Equal-sized cutting becomes more efficient when
ruleset ranges are uniform, if not splitting with non-
equal sized intervals should be considered.

Indeed, these obvious observations, cannot be used by a
network operator if the structure of the ruleset is not analyzed.

We therefore propose and evaluate methods and algorithms
that analyze rulesets in order to extract metrics that will help
in deciding the best packet classifier for a given ruleset.

III. MEMORY FOOTPRINT ESTIMATION

Given a ruleset, the first concern is whether the size of built
DT can fit in the available memory (CPU cache). As we saw
in Section II-B, orthogonal structures within the ruleset are a
major cause of large memory requirements. We have therefore
to characterize these orthogonal structures in order to estimate
the DT memory footprint. The goal here is not derive a precise
estimation of the memory footprint, it is to use rulesets features
in order to achieve a rough estimate which gives an order of
magnitude of the size.

We will adopt the ruleset portioning into 2% categories
in {small,large}’ described previously in EffiCuts [20]. As
in practice, 50% ~ 90% of the cuts or splits are performed
on the IP source and destination fields [16], we will first
concentrate on these two dimensions and ignore others, without
losing much in estimation accuracy. We therefore analyze
orthogonal structures involving only the IP source and destina-
tion fields, and label rules as (small, small), (large, small),
(small,large) or (large,large) based on these fields. The
number of rule in each category is denoted respectively as ss,
ls, sl, and 1l respectively.

To simplify, for the time being, we will assume that large
range rules cover the whole span of the associated dimension,
i.e., the corresponding IP address range is a wildcard. This
will result in overestimation of the memory footprint which
we will address in the next section. We also denote the number
of distinct ranges on the source and destination IP fields as us
and ud. These two values can be calculated by a simple scan
of the ruleset. Let a = us’fu - be the proportion of distinct
source IP ranges.

The (small, small) rules can be easily separated by ei-
ther using source or destination IP ranges. We assume that
they are separated by source or destination IP field without
duplication and in proportion to o and 1 — «. The memory
needed to separating these (small, small) rules is therefore
Mss = ((1 —a) x ss+ a x $s) x PTR = ss x PTR, where
PTR is the size of a pointer (pointing to a rule).

Orthogonal structures are created by (small,large) and
(large, small) rules. When isolating the small range side of
any of these rules (i.e. when cutting in the direction of the
dimension of their large range), all large ranges along the
other dimension are cut, resulting in the need to duplicate the
corresponding rules on either side of the cut. For instance,
all the cuts (or splits) on source IP field, to separate every
(small,large) rules, will duplicate all (large, small) rules,
generating ls duplicated (large, small) rules, and similarly
for each (large,small) rule, there will be sl duplicated
(small,large) rules.

Furthermore, the ss X « rules labelled (small, small)
that have been separated using the source IP ranges, will
also duplicate each (large,small) rule, and similarly the
ss X (1 —) rules labelled (small, small), separated using
the destination IP ranges, will duplicate each (small,large)
rule.

Overall, the upper bound on the number of duplication of
(large, small) rules is thus [s x (sl+ss X «), while that for the
duplication of (small,large) rules is sl x (Is+ss x (1 —«)).
However, in practice DT algorithms stop building the DT when
there is at most a given threshold number, binth, of rules in
any leave. This means that the number of duplicates are over-
estimated by a factor of % (2 rules per leaves .vs. binth
rules per leaves) yielding:

sl+ss X «
M, = l — X PT 1
! X nyg < PTR D
Is+ss x (1 —)
My = PT 2
st SO anz - PTR @)

The last category of rules, the (large,large) one, will get
duplicated either by splitting of cutting on source or destination
IP fields. The (large,large) rules need therefore a memory
size:

sl+ ss X «
binth/2

ls+ ss x (1 —a)
binth/2

My =11 x x PTR (3)

The the total memory size is finally estimated as the sum
of the four elements: M = M, + M;, + Mgy + M.

A. Improving memory size estimation

The assumption that all orthogonal rules are duplicated
over-estimates the memory requirement, as some large ranges
might not cover the full range and therefore might not be
duplicated in all cases. Nonetheless, if we partition the feature
space into smaller subspace the assumption is more likely to
hold as the “full range” in a subspace is necessarily smaller
or equal to the full range in the “full space”.

So in order to reduce the over-estimation and improve the
quality of the memory footprint estimation, we first divide the
large feature space into n equal-sized rectangular sub-space,
and apply the memory estimation model to each one of these
subs-space separately. We will illustrate this with the ruleset
example in Figure 3. In the initial memory estimate, R1 and R4
are considered as (large, small) rules, and Cut 2 is supposed
to cause duplication of R1 and R4. However, as the R1 and
R4 are not wide enough, they are not duplicated by Cut 2.
After dividing the space into sub-space, we can witness that
any cut on the source IP field in sub-space A (.resp. C) will
surely cause the duplication of R1 and R4, but not in subspace
B. This therefore improves the memory footprint estimation.

It is noteworthy that in the process of dividing the space
into sub-spaces, some (large,large) rules may become fully
covered by more specific and higher priority rules in this
sub-space. These redundant rules must be removed before
calculating parameters [l, Is, sl and ss of the the orthogonal
structure in the subspace.

B. Limitations

The assumption that all the splits are performed only on IP
fields is also a source of the memory size over-estimation, as
splitting or cutting on other dimension can reduce the impact
of orthogonal structure (see Section II-D).

: Cut 2
f
R2 Sub-space A |
| | Apply model on the
| sub-spaces
Cut 1 :
— S e TR O — —
& Sub-space B | Sub-space C
g R4 |
<
£ |
é |
Source IP !

Fig. 3: Improved Memory Size model

However the main aim of the calculation in this section is
to obtain a rough estimate giving an order of magnitude of
the memory footprint. We will show in Section VII, software
based packet classification performances are not sensitive to
the precise memory size but roughly to its order of magnitude.
Our memory footprint estimation can therefore be used as a
fast memory size checker, especially for large rulesets.

A last limitation of the model is that we assume that
we can separate N rules with N cuts/splits. While this is
usually correct for splits, this can be incorrect for cuts due
to the inefficiency of equal-sized cutting over non-uniform
rules. We expect therefore better estimates for HyperSplit than
HiCuts/HyperCuts.

IV. CHARACTERIZING RANGE DISTRIBUTION
UNIFORMITY

As explained in the previous section the uniformity for
small range distribution (we call it coverage uniformity for
short) is an important factor for deciding to apply cuts or
splits when building the decision tree. We show in Table
IV the number of unique small ranges in large rulesets and
observe that, the number of unique small ranges on IP fields is
frequently comparable to the total number rules. Therefore, the
rulesets can be separated only by the small ranges on IP fields
and the uniformity of small ranges on IP fields is important
for choosing cut or split. In the forthcoming, we will propose
a simple variant of a centered interval tree [2] and characterize
the coverage uniformity by computing shape metrics on such
trees.

A. Interval tree

A centered interval tree [2] is a well-known tree used
to efficiently represent intervals or ranges (in the context of
packet classification). Each node of the interval tree is defined
by a centre point which is used to separate ranges: The ranges
completely to the left of the centre point (left ranges for
short), those completely to the right of the centre point (right
ranges), and those containing the centre point. The latter are
then associated with the node itself (and removed from further
consideration). A left sub-tree is then built using the left
ranges and a right sub-tree is built using the right ranges. This
procedure is repeated until all ranges have been associated with
nodes in the tree.

Ruleset unique src. unique dst. #sre/rules(%) #dst/rules
IP small range IP small range
acll_10K 4023 750 41% 7%
acl2_10K 6069 6527 64% 69%
acl3_10K 1017 1110 10% 11%
acl4_10K 918 1864 10% 19%
acl5_10K 371 1527 5% 21%
fwl_10K 3389 6665 36% 70%
fw2_10K 8309 3080 86% 32%
fw3_10K 2835 6209 31% 69%
fw4_10K 3884 6797 44% 76%
fw5_10K 3414 5327 39% 60%
ipcl_10K 1332 2768 14% 29%
ipc2_10K 4748 8923 47% 89%
acll_100K 99053 236 99% 0.2%
acl2_100K 8315 8092 11% 11%
acl3_100K 85355 86603 86% 87%
acl4_100K 88434 32766 89% 33%
acl5_100K 43089 78952 43% 80%
fwl_100K 26976 66173 30% 74%
fw2_100K 81565 30602 85% 32%
fw3_100K 15960 62993 19% 75%
fw4_100K 38076 67073 45% 80%
fw5_100K 29786 54004 35% 64%
ipcl1_100K 86210 90433 87% 91%
ipc2_100K 47228 89135 47% 89%

TABLE IV: the number of unique IP small ranges in large
rulesets

While the original centered interval tree algorithm picks
centre points to keep the tree as balanced as possible, we
use a slightly different strategy to build a tree whose shape
will reflect the degree of uniformity in the ranges. We start
with the full range, its widest possible span, for the field
under consideration and pick as centre point for the root node
the middle of this range. We then use the left (resp. right)
half range for the left (resp. right) child. Note that with this
approach, the centre point in a node depends solely on the
original full range and the position of the node in the tree.
As in practice DT algorithms stop cuttings/splittings on nodes
associated with less then binth rules, we will stop the growth
of our interval tree when the number of rules associated with
a node containing less than binth rules.

In the interval tree, the large ranges are likely to be
“absorbed” by the nodes near to the root, while the small
ranges are usually associated with leaf nodes. So the shape
of interval trees actually represents the distribution of small
ranges. The main insight into our method is that centre points
correspond to equal-sized cuts of the original full range. And
since a branch of the tree only growth if there are ranges on
either side of the corresponding centre point, a balanced tree
would indicate uniform coverage of ranges. In such a case,
an algorithm using equal-sized cuts (e.g. HiCuts/HyperCuts)
would very efficiently separate the ranges and these associated
rules and produce a very fast classifier.

In fact, each node at the kth level of the tree, with the root
being the level 0, covers a portion 2% of the full range. These
range portions can be efficiently represented by 2* equal-sized
cuts on the full range. Assume a node N resides in the kth level
of the interval tree, rules intersecting with the range portion
managed by N can be found by collecting associated rules in
the path from the root to N. These intersected rules will be
duplicated when performing 2',1 > k equal-sized cuts on the
full range. Since rules in nodes at the same level of the tree

Fig. 4: Balanced Tree Distance and Balanced Tree Depth

are non-overlapping, a node is missing in this tree means that
there is no rules on that side of the parent node, in which case,
performing any cut in this interval would be useless (separate
no rules but duplicate the intersected rules). This means that
the interval tree structure gives interesting insights into the
efficiency of using cuts. When the interval tree is balanced, or
as will explained later quasi-balanced, it is meaningful to use
cuts and there will be not any, or better said not too many,
spurious cuts. If the interval tree is un-balanced, using splits
will avoid these spurious cuts resulting in smaller duplicates.

However, a perfectly balanced interval tree may be too
strict a condition to pick equal-sized cutting. We therefore
define quasi-balanced tree as a tree where the following
condition is verified at each level of the tree:

: th
#Nod?s in the k' level > B @)
#Nodes in the (k — 1)t level

As our interval tree is a binary tree, Brq1io € (0,2]. We
will set Byqt0 = 1.5 for a good approximation of balance for
the tree. Note that since we set B,qt,, > 1, a quasi-balanced
tree contains at least 3 nodes, and the height of one quasi-
balanced tree is at least 2. This is the reason why chains of
isolated nodes do not belong to any quasi-balanced subtrees
as in Figure 4.

B. Characterizing the shape of interval trees

In practice, interval trees built from rulesets are unbalanced,
containing nodes with single child or even leaves at various
levels in the tree. These nodes break the overall tree into
several quasi-balanced subtrees (triangles) of different sizes
(see Figure 4). In order to characterize these quasi-balanced
subtrees, we define two for each node metrics: the balanced
depth BD, the height of the quasi-balanced subtree the node
belongs to, and balance tree distance, D, the number of quasi-
balanced sub-trees between a given sub-tree and the top one.

The full interval tree is characterized by D4z, the
maximum value of balance tree distance, and BD,, ., the
maximum balance depth, calculated over all quasi-balanced
subtrees. When the range coverage is non-uniform, the interval
tree contains many quasi-balanced sub-trees with small height
values, and its D,,,,, Will be large. On the other hand, a small
Do value means a more uniform coverage.

C. Algorithm decision framework

In practice, we observed that small rulesets usually exhibits
a non-uniform distribution of small ranges (non-uniform cov-
erage), and therefore HyperSplit is suited to them. However,
as the size of rulesets grows, the size of orthogonal structure,
as well as the number of uniformly distributed ranges also
grows. When our memory footprint model indicates that the
size of the built DT is too large, one need to split the ruleset
into sub-rulesets and build a single DT for each set. However,
due to the probable existence of the “coverage uniformity” in
some of the subsets, rather than using HyperSplit algorithm
on all the sub-rulesets, it is well worth checking whether one
sub-ruleset is uniform enough to warrant an attempt to use
the faster classifier (use HiCuts/HyperCuts algorithm) on each
sub-ruleset or not.

Now that we have a metric for characterizing range cover-
age uniformity we can use this metric to decide if cut based
algorithms should be used or split based one. Let us denote the
height of an interval as H and D,,x the maximum number
of quasi-balanced from top to bottom.

If the height of each of the quasi-balanced tree is

hi,hs,...,h, we have therefore
h1+h2++hn:EXDmam§H)
Dm,a:ﬂ

where h is the average height of quasi-balanced trees. As
quasi-balanced tree has a least a height of 2, we will have
h > 2, so that:

For matching a set of K non-overlapping small rules we
need at best a binary decision tree of height at least logs K.
When using the interval tree, all rules in leaves are non
overlapping and the overlapping rules are absorbed by rules
in higher levels. As explained before we stop the growth of
interval tree when there are binth rules in a node. Therefore the
height of a balanced interval tree should be close to its lower
bound that logQ(#(mnfoviﬁft’;f ing rules)) On other hand if
one wants make a partition of all rules using sPhts he will
need a decision tree of height at least log, ZX“<%, so there
is an interest in using a cut-based algorithm only if H <

log, #mtl;g This means that when an interval tree height is

between IOgQ(#(non— overlappzng rules)) < H< logg(#}E);;ﬁzé)’
there is a benefit in term of tree height or equivalently memory
access in using cut. The higher bound can be rewritten as
Diax < % log, #;; “ﬁf" We will use this last criterion to decide
to implement a DT with cut or with splits. Indeed, the closer
is the tree height from its lower bound the more balanced will

be the interval tree.

D. SmartSplit algorithm

Now we can describe the SmartSplit algorithm that build a
multiple DT similar to EffiCuts. We first categorize the rules
in the ruleset into small and large based on source and
destination IPs. We put aside (large,large) rules and build
a specific tree for them that will use HyperSplit as these rules

should be separated by port fields that have generally non-
uniform coverage.

Since (small,large), resp. (large,small), tules are
mainly separated by source IP field, resp. by destination IP
field, we build the interval tree for both source and destina-
tionIP fields, and we calculate D, . for both trees. We merge
the set of (small, small) rules with the (small,large) when
Doz (srclP) < Dypar(dstIP), and with (large, small)
rules when D, (dstIP) < Dypee(sreIP). This results
in two sub-rulesets, S1 containing (small,large) and S2
containing (large, small) rules. One of S1 or S2 will also
contains (small, small) rules.

Now, we build for each one S1 and S2 a separate DT
that will disentangle orthogonal structures. For the sub-ruleset
containing only small ranges on source IP .resp. destina-
tion IP field, we use Dyqz(srcIP) .resp. Dy (dstIP)
for algorithm recommendation using the criterion we had

1 #rules
Dmax < 51085 gy

The SmartSplit algorithm is different from the EffiCuts al-
gorithm from two perspectives. First, the SmartSplit algorithm
only considers the “orthogonal structure” on IP fields, and
separate a ruleset into 3 sub-rulesets, while EffiCuts considers
the existence of “orthogonal structure” on both IP and port
fields, resulting in 5 ~ 9 sub-rulesets. Large number of sub-
rulesets results in a large number of memory access and
therefore lower classification throughput. Second, SmartSplit
algorithm tries to maximize the classification speed by using
different algorithms on different sub-rulesets, while EffiCuts
uses only a variant of HyperCuts on all the sub-rulesets.

Besides the above points, we applied a pruning trick in
our implementation of SmartSplit. As we have multiple trees,
each should be sequentially tested in order to find the most
specific rules. However we store for each node in the decision
tree the index of the rule with minimal priority rule among
all rules managed by the node. After doing the search on
the first tree we use the matched rule number resulting from
this first search and compare it to the minimal priority rule
index stored at the node and we pursue the search if and
only if the index of minimal priority rule is less than the
already matched rule index. If not we prune the search for
the whole decision tree. As we observed that generally rules
in the (small,small) set are more specific than rules in
the (small,large) and the (large, small) set, that are more
specific than (large,large) rules, we first check the decision
tree containing the (small, small) rules, and we continue by
the remaining (small,large) or (large, small) tree and we
finish with the (large,large) DT. This pruning optimization
reduces the unnecessary memory access in multiple decision
trees, improving the look up performance significantly.

V. THE AUTOPC FRAMEWORK

Combining all the algorithms described above, we propose
AutoPC, a framework for autonomic construction of decision
trees for packet classification. For a given ruleset, AutoPC
first estimates the memory size requirements. If the estimate
is less than a pre-defined threshold M;,, a single tree will
be built using HyperSplit algorithm. Otherwise, the ruleset
will be processed with the SmartSplit algorithm. The complete
procedure of AutoPC is illustrated in Figure 5.

4

Memory Estimator

<My >M,,

HyperSplit SmartSplit

& &

Build a single tree Build multiple trees

Fig. 5: The AutoPC framework

TABLE V: Node data structure size in bytes

HiCuts 1 | header information (the dimension to cut,
leaf or internal node flag efc.)

6 | boundary information, 4 bytes are used to
store the min value of the boundary of one
dimension. 2 bytes are used to store the
number of cuts.

1 | 1 byte is used for storing the bit shift
value.

pointer to the children pointer array.

4 bytes for the split point. Other bytes for
the header information.

| =~

HyperSplit

VI. EXPERIMENTAL METHODOLOGY

In this section we will validate the analysis presented
before. For this purpose we have implemented HiCuts, Hy-
perSplit and EffiCuts algorithms in our experiments. In each
node of HiCuts tree, we have used a pointer array instead of
a bitmap to index child nodes, allowing more cuts per node
(at most 65536 cuts in our implementation). However, in this
case, each node needs 2 memory accesses (one for index array
and one for node). Our HiCuts implementation enables Range
Compaction and Node Merging optimization however
disables the Rule Move Up for node size efficiency [6].

For HyperSplit algorithm, the code from [19] is used. To
note, when calculating the memory size, the original source
code does not account for the memory of rule pointers, we
add this part of memory for a fair comparison. Each node of
HyperSplit needs only one memory access.

For EffiCuts algorithm, we obtained the implementation
from its authors and enable all its optimization techniques.
The spfac of EffiCuts is set to 8 while the spfac of HiCuts is
set to 4. The binth number is set to 16 for HiCuts, HyperSplit
and EffiCuts .

For SmartSplit algorithm, we found that the number of
(large,large) rules are usually small compared to the size
of the original ruleset, we therefore use binth = 8 for the
HyperSplit tree built over the (large, large) rules.

For all algorithms, we have stored each rule using 18
bytes [16]. Each rule needs one memory access. Note that
EffiCuts has its own way of calculating the number of memory
access (in their code, each rule needs less than one memory
accesses). For a fair comparison, we use the results directly
from the code of EffiCuts.

Table V shows the data structure of each node for HiCuts
and HyperSplit. The header size of one node in HiCuts is 12
bytes while each node of HyperSplit needs only 8 bytes. The
pointer size in all the algorithms is 4 bytes.

We use ClassBench [18] to generate synthetic rulesets.
In our experiment, we have used all available types of rules
including Accesses Control List (ACL), Firewall (FW) and
IP Chain (IPC). For each type, we have generated rulesets
containing from 1K to 100K rules.

Our experiments include performance comparison on both
memory size and memory accesses observed from the built
decision tree as well as real evaluation of classification speed
on a commodity server. The speed are measured through aver-
aging the lookup latency over a low locality traffic generated
by ClassBench; Each trace contains 1 millions of 5 tuples. All
experiments are run on Ubuntu machines, with 8 cores, Intel
17 processors, 4MB L3 Cache and 24GB of DRAM.

VII. EXPERIMENT RESULTS
A. The memory size of the improved HyperSplit algorithm

Looking at the original code of HyperSplit, we found
that the implementation [19] does not implement a simple
optimization technique, Rule Overlap, introduced by Hyper-
Cuts. HyperCuts uses this technique to remove rules that are
completely covered by another rules with higher priority in the
subregion of each node. We added this optimization technique
in the decision tree building process of HyperSplit.

The memory size of the original HyperSplit, the improved
HyperSplit and the estimate memory size are shown in the Fig-
ure 6. In Figure 6, we observe up to 1 ~ 2 orders of magnitude
memory reduction after using the Rule overlap optimization.
It is noteworthy that the memory footprint estimate is closer
to the actual memory size for the optimized HyperSplit. Since
the memory size of HyperSplit is usually 1 ~ 2 orders of
magnitude smaller than HiCuts [13], our memory consumption
model can therefore be viewed as to provide a lower bound of
both HyperSplit and HiCuts algorithms. We will use optimized
HyperSplit in the remaining experiments.

B. Memory Size and Real Performance

In order to explore the relationship between the memory
size and the real performance of packet classification on
software based platform, we run the HyperSplit algorithm on
25 example rulesets, with memory footprint ranging from less
than 10K to larger than 700MB. We measure the cache miss
rate and the average memory access latency of the HyperSplit
matching process on our experimental platform and we show
in Figure 7 the relationship of memory size and memory access
latency, and in Figure 8 the relationship of memory size and
cache miss rate.

As can be seen in Figure 7, the memory access latency
increases slowly with memory size varying from 10KB to
IMB. When the memory size becomes larger than 10MBytes,
the latency explodes. The increasing memory access latency
can be explained by the fact that the memory footprint of
the DT prohibit it to fit into the processor cache memory of
our platform (4MB of L3 cache). As shown in Figure 8, the
cache miss rate stay below 10% when the memory size is less

1E+10
o]
15409 HyperSplft
515 o |- B HyperSplit(RO)
i + BMimp
L 1E+07
2
& 1E+06
g- 2 0
o] e 1 3 Y- LE-{
§ 1E+04 N Nl
Yl SH &
1E+03 | § § §
1E+02 e R . e B S
FW
1K
Fig. 6: The memory size of HyperSplit, the improved HyperSplit and the memory size estimate
240 10'° ‘
Esof N L]
% . . 9 [
azof i 10° b]
[]
gmf . ' e —~ 108 L ° bad b 4
: Y g oo
s o o me o o,) °
s, . ; . | | >
10° 10 10° 10° 10’ 10° 10° ® 10" L ol 0,00 |
Memory Size (byte) > L J
% o o ®e
Fig. 7: Average Memory Access Latency and Memory Size $10°¢ ' 2 E
T ® o
E .
& 10° b .’o * E
L X]
50 ‘ LIRS
€ ol LI 10* b o ° il
@ 30 b 10° . L . . L .
S . 10° 10* 10° 10° 10" 10° 10° 10'°
2 201 . 7 Actual Memory (Byte)
[*]
8 1of . . ¢° *] . : 1 1)
hr o o me s e - ‘ ‘ Fig. 9: Estimated and Actual memory size with binth = 16
10° 10* 10° ° i 10° 10°

10
Memory Size (Byte)

Fig. 8: Cache Misses Rate and Memory size

than 107 Bytes, and it increases significantly to around 50%
when the memory size goes beyond 10® Bytes. Based on this
observation we set the memory threshold M, in the AutoPC
framework to 10MBytes to consider splitting rulesets when
estimated memory size is larger than 10MB.

C. Estimated and Actual Memory

We apply our memory consumption model on 60 rulesets of
various size consisting of 1K, 5K, 10K, 20K and 50K rules.
In the experiments, we first divide the source-destination IP
space into 256 equal-sized rectangular sub-space, and perform
memory size estimation in each sub-space to obtain a better
estimate. We also set the binth to different values (16 and 8) to
evaluate its impact on the memory size estimation. We present
the estimated and observed memory footprint for binth = 16
in Figure 9 and for binth = 8 in Figure 10.

Both Figure 9 and Figure 10, show that the estimated
and observed memory size remain aligned around a perfect
prediction line in logarithmic scale, meaning that the order of
magnitude of the estimated memory is correct. As mentioned
before, the memory access latency increases with the order of
magnitude of memory size increases. Therefore, our memory

12

10
0] o |
10 oo
& .
) o0
& .
S e e o &
8 10° L 4
@ o g
E .o ®e
] ° ”
= X3 o
310° > A
T ...
£ -
& J ®
o o0
4 LI
10° b .
°
102 3 ‘4 ‘5 ‘6 ‘7 ‘8 ‘9 10
10 10 10 10 10 10 10 10

Actual Memory Size (Byte)

Fig. 10: Estimated and Actual memory size with binth = 8

consumption can be used to predict better the classification
performance of a ruleset than using the number of memory
access.

We show in Figure 11 the estimated and actual number of
rulesets within the special memory size interval. We see that
our consumption model is capable of identifying the rulesets
into the right categories with small errors. In our experiment,

HyperSplit Estimate

Ruleset logo2Mem Time(s) logaMem Time(s)
acl_100K 19.7 167 21.4 0.4
acl2_100K 26.6 234 27.2 0.6
acl3_100K 28 1794 30 0.7
acl4_100K 27 1061 29 0.6
acl5_100K 19 186 18.5 0.4
ipcl_100K 30 2424 29 0.6
ipc2_100K 29 1132 28 0.6
fwl_100K 30 2124 32 1.7
fw2_100K 30 2568 29 0.8
fw3_100K 29.5 1148 32 1.9
fw4_100K 33 6413 34 10
fw5_100K 30 1891 32 2

TABLE VI: Estimated and Actual Memory size of Large
rulesets

the average memory size estimate error (mean(acetsutal)) with

binth = 16 is 2.57, and with binth = 8 the error 1s 2.79.

T
I Actual
[Estimated

40

Nubmer of Rulesets
N w
S 3
T
I

=)

o

[0, 1MB] [1MB, 10MB]

[10MB, 10GB]

35

T
I Actual
[Estimated

30

25

20

o

Number of Rulesets
=)

o u

[0,1MB] [1MB, 10MB]

[10MB, 10GB]

Fig. 11: The estimated and actual number of rulesets for
binth = 16(top) and binth = 8(bottom)

We present the estimate and actual memory size of all the
100K rulesets with binth = 16 in Table VI. The memory
size varies from less than 1MBytes to several GBytes, and
the time for building a HyperSplit trees varies from tens of
minutes to several hours. In practice, HyperSplit algorithm has
the smaller building time than HiCuts and EffiCuts, e.g., the
HyperCuts code usually takes 1 ~ 2 hours while the EffiCuts
code usually takes 5 ~ 9 hours to build a Decision tree.

Table VI shows that our memory consumption model is
able to detect in less than one second that the large ruleset
(acll_100K and acl5_100K) which has small memory footprint
avoiding the application of SmartSplit and enabling fast clas-
sification with small memory size and few memory accesses.

D. Comparing SmartSplit and EffiCuts

In this section we compare EffiCuts and SmartSplit that
both use multiple trees. Figure 12 shows the memory size

w
o

N
a

SEffiCuts
B SmartSplit

nN
o

Memory Size (MB)
=
o v

v

o L
& & &

\} ’\o> >/ b}Q %}Q \QQ \QQ \QQ \QQ '\QQ \QQ \QB \QQ '\QQ \QQ
Q@ Q@& TGP RPN TR SR 2 S T DA A -
R T I S SR S ST AN

=
Y
o o

REffiCuts
B SmartSplit

2R
SIS
S o

Memroy Accesses
[o]
o o

NS
S o

Rulesets

Fig. 12: Memory and Accesses for EffiCuts and SmartSplit

Dpaz mem. acc. EffiCuts

Ruleset srcclP dstlP S, Ss % loga ﬁ:ﬁi 2 tree num.
fwl_10K 2 1 4 7 4 9
fw2_10K 2 2 4 4 4 7
fw3_10K 2 2 4 7 4 7
fw4_10K 4 2 10 18 4 9
fw5_10K 2 1 4 6 4 7
acl2_100K 13 13 32 25 6 7
acl3_100K 10 1 8 26 6 8
acl4_100K 10 12 31 27 6 8
ipcl_100K 1 1 8 6 6 9
ipc2_100K 2 1 6 5 6 3
fwl_100K 14 6 20 28 6 9
fw2_100K 4 2 4 18 6 7
fw3_100K 14 2 7 28 6 7
fw4_100K 5 4 27 18 6 9
fw5_100K 13 4 21 29 6 7

TABLE VII: Detailed Information of Large rulesets

and number of memory accesses of EffiCuts and SmartSplit.
As shown in Figure 12, SmartSplit outperforms EffiCuts both
in memory size and in number of memory accesses. For
example for fw5_100K ruleset, EffiCuts consumes 22.46MB
of memory size, while the memory size of SmartSplit is only
1.98MB, about 11.3x smaller; for fw2_10K ruleset, the worst
number of memory accesses for EffiCuts is 75, while the
number of memory accesses for SmartSplit is only 18, about
4.1x less. These results show that using multiple algorithms
for one ruleset, improve greatly the performance. Moreover
this validate the fact that the “orthogonal structure” over IP
fields is the main cause of high memory footprint for single
decision trees. Through untangling the “orthogonal structure”,
the memory size decreases dramatically from several giga-
bytes to less than 2 mega-bytes.

Detailed information about large rulesets are shown in
Table VII. As mentioned above, the SmartSplit algorithm split

rulesets into three sub-rulesets. We use S,,, to denote the sub-
ruleset resulting from merging (small, small) rules with either
(small,large) or (large, small) rules, Sy; to denote the sub-
ruleset containing the (large, large) rules and S for the other
rules not merged with (small, small).

Among all sub-rulesets, .S;,, and S contain more than 80%
of the rules. The memory size and number of memory accesses
of the decision trees built on S,,, and S, usually contribute the
most in the total performance results. We therefore present the
performance results of S, and S5 in Table VII.

We observe in Table VII that for all the FW 10K rulesets
Doz (srcI P) and Dy, (dstIP) is very small, i.e., we have
applied the HiCuts algorithm on both S,,, and Ss. The large
number of cuts per node makes the built tree “flat”, reducing
the total number of memory accesses of .S, and S5 from 8 to
28. Among 100K-rules rulesets, the IPC rulesets have uniform
range distribution on both IP fields, therefore the total number

of memory accesses of S, and S is very small (only 11 and
14).

The FW 100K rulesets have uniform range distribution
on destination IP field and non-uniform range distribution on
source IP field, so that SmartSplit applies HyperSplit on S
resulting in small memory size, from 100KB to 400KB in our
experiments, and HiCuts on S, for fewer memory accesses.
We see the number of memory accesses of S increases to
around 30 while this value for S,, is still small. However,
since the SmartSplit algorithm only generates 3 sub-rulesets,
the total number of memory accesses remains small, while,
EffiCuts algorithm usually builds 5 ~ 9 trees on large rulesets
and yield more than 100 memory accesses.

E. Real Performance Evaluation

We implement an optimized and fast packet matching
program capable of reading the built tree data structure
from multiple algorithms into memory and performing rule
matching using the resulting DTs. We implemented HiCuts,
HyperSplit and SmartSplit in the packet matching program,
and used AutoPC framework to configure the program. We also
implement EffiCuts, but disabling the Node Co-lacation
and Equal-dense Cuts optimization tricks described in
[20] to simplify the implementation. It is noteworthy that in
Section VII-D, we compared SmartSplit with EffiCuts enabling
all the optimizations.

We first compare the real measured performance of Smart-
Split and EffiCuts on rulesets with large memory size in
Figure 13. We see that SmartSplit runs significantly faster than
EffiCuts. For all the FW 10K rulesets, SmartSplit achieves
beyond 10 Millions of Lookup Per Second (MLPS) while
EffiCuts only achieves 2 ~ 4 MPLS. For larger rulesets,
SmartSplit is usually 2 times faster than EffiCuts.

We present in Table VIII the lookup speed of AutoPC and
EffiCuts in terms of millions of lookup per second (MPLS)3.
The evaluation shows that the AutoPC framework is in average
3.8/18.9 times faster than using EffiCuts/HyperSplit solely on
different type of rulesets.

3the results marked with * means AutoPC builds a single tree on the ruleset
and - means the building program runs out of memory.

OEffiCuts
W SmartSplit

Throughput (MPLS)

S o8 S8 S S S SE 3
IS P Y T S

& UL YN N N N VAN TN P, s v
D G S O G T AR

Ruleset

Fig. 13: Comparing the mesured performance of SmartSplit
and EffiCuts

Type Size AutoPC EffiCuts speedup HyperSplit speedup
’ ‘ (MLPS) ‘ (MLPS) ‘ (MLPS) ‘
IK 11.3*% 4.5 2.4 113 1
ACL 10K 6.9% 3.1 22 6.9 1
100K 8.6* 22 3.9 8.6 1
1K 9.8%* 2.4 4.1 9.8 1
FW 10K 10.7 2.1 5.1 2.6 4.1
100K 7.4 2.5 3.0 - -
1K 12.6* 3.0 4.25 12.6 1
IPC 10K 5.3% 1.48 3.6 5.3 1
100K 9.91 1.63 6.1 0.07 141

Average Speedup: 3.8(to EffiCuts) / 18.9 (to HyperSplit)]

TABLE VIII: Real Performance Evaluation of AutoPC, Effi-
Cuts and HyperSplit

VIII. RELATED WORK

A. Packet classification algorithms

Previous packet classification algorithms can be classi-
fied into three categories: hash-based, decomposition based,
decision-tree based. Tuple Space Search [17] groups rules by
the prefix lengths on multiple dimensions, and constructs one
hash table for each group. For each incoming packet, the
hash-tables are searched in parallel, and the matched rules are
pruned by the priority. However the number of hash-tables
varies for different type of rulesets, resulting in the same
performance unpredictability issue.

Decomposition based algorithms, such as Cross-producting
[5]1, REC [5], and ABV [1], perform parallel per-dimension
look-up and combine the results using cross-product tables
or bit vectors. These algorithms, while fast, are restricted for
small rulesets because 1) the size of crossproduct tables grows
rapidly with the size of rulesets. 2) It is difficult to implement
wide bit vectors in hardware required by large rulesets.

This paper has discussed the decision-tree based algorithms
HiCuts/HyperCuts, HyperSplit and EffiCuts. Another work,
Adaptive Binary Cutting(ABC) [16], performs cutting adapted
to the skewness of prefixes distribution of the rulesets. Al-
though it overcomes the inefficiency of equal-sized cutting,
it still suffers from high memory footprint when processing
the FW rulesets [16]. Modular packet classification [21] bins
rules by indexes formed by selected bits from different di-
mensions, and builds decision-trees for the rules in each bin.
According to [16], ABC is more efficient than Modular packet
classification both in memory size and the number of memory
accesses. ParaSplit [4] proposed a simulated annealing method
to partition the ruleset into sub-rulesets, however, it needs tens
of thousand iterations to achieve an optimal partitioning.

B. Software based packet classification systems

Recent advance in multi-core technology gives rise to a
wide research interest in building high performance packet pro-
cessing system on commodity servers. Yadi Ma [9] leverages
the parallelism of multi-core and build a software based packet
classification system which achieves 15Gbps of throughput.
Other work, such as RouteBricks [3], PacketShader [7],
CuckooSwitch [22], all achieves tens of gigabits per second
throughput on the commodity hardware. This paper studies the
performance of software based packet classification from the
algorithmic perspective. The proposed algorithms can therefore
be used on these systems to achieve higher throughput.

IX. CONCLUSION

In this work, we identify the intrinsic characteristics of
rulesets that yield the performance unpredictability issue in
the decision-tree based algorithms. Based on these observa-
tions, we propose a memory consumption model, a “coverage
uniformity” analysis algorithm and an framework capable
of identifying which algorithm is suited for a given ruleset
through combining the model and the analysis algorithm.

The experimental results show that our method is effective
and efficient. Our SmartSplit algorithm is significantly faster
and more memory efficient than the state-of-art work, and our
AutoPC framework can automatically perform memory size
and accesses tradeoff according to the given ruleset. In the
experiments, compare to EffiCuts, the SmartSplit algorithm has
achieved up to 11 times less memory consumption as well as
up to 4 times few memory accesses. The real performance
evaluation shows that SmartSplit is usually 2 ~ 4 times faster
than EffiCuts. The AutoPC framework achieves in average
3.8 times faster classification performance than using EffiCuts
solely on all the rulesets.

Besides these performance improvement, we believe that
the observations in this paper provide a new perspective to
understand the connection between ruleset features and the
performance of various decision-tree based algorithms.

ACKNOWLEDGEMENT

This work was supported by the National Basic Re-
search Program of China with Grant 2012CB315801, the
NSF of China (NSFC) with Grants 61133015 and 61202411,
the National High-tech R&D Program of China with Grant
2013AA013501 and DNSLAB, China Internet Network Infor-
mation Center, Beijing 100190.

REFERENCES

[1] F. Baboescu and G. Varghese. Scalable packet classification. In ACM
SIGCOMM Computer Communication Review, volume 31, pages 199—
210. ACM, 2001.

[2] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[3] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In ACM SOSP, volume 9. Citeseer,
2009.

[4] 1. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang. Parasplit: A scalable archi-
tecture on fpga for terabit packet classification. In High-Performance
Interconnects (HOTI), 2012 IEEE 20th Annual Symposium on, pages
1-8. IEEE, 2012.

(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

P. Gupta and N. McKeown. Packet classification on multiple fields. In
ACM SIGCOMM Computer Communication Review, volume 29, pages
147-160. ACM, 1999.

P. Gupta and N. McKeown. Packet classification using hierarchical
intelligent cuttings. In Hot Interconnects VII, pages 34—41, 1999.

S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a gpu-accelerated
software router. In ACM SIGCOMM Computer Communication Review,
volume 40, pages 195-206. ACM, 2010.

Y. Ma and S. Banerjee. A smart pre-classifier to reduce power
consumption of tcams for multi-dimensional packet classification. In
Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication,
pages 335-346. ACM, 2012.

Y. Ma, S. Banerjee, S. Lu, and C. Estan. Leveraging parallelism for
multi-dimensional packetclassification on software routers. In ACM
SIGMETRICS Performance Evaluation Review, volume 38, pages 227—
238. ACM, 2010.

M. Moshref, M. Yu, A. Sharma, and R. Govindan. vcrib: virtualized
rule management in the cloud. In Proceedings of the 4th USENIX
conference on Hot Topics in Cloud Ccomputing, pages 23-23. USENIX
Association, 2012.

M. H. Overmars and F. A. van der Stappen. Range searching and point
location among fat objects. Journal of Algorithms, 21(3):629-656, 1996.

H. Peng, G. Hongtao, L. Mathy, K. Salamatian, and X. Gaogang.
Toward predictable performance in decision tree based packet classifi-
cation algorithms. In The 19th IEEE LANMAN Workshop. 1IEEE, 2013.

Y. Qi, L. Xu, B. Yang, Y. Xue, and J. Li. Packet classification
algorithms: From theory to practice. In INFOCOM 2009, IEEE, pages
648-656. IEEE, 2009.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: Network pro-
cessing as a cloud service. ACM SIGCOMM Computer Communication
Review, 42(4):13-24, 2012.

S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification
using multidimensional cutting. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 213-224. ACM, 2003.

H. Song and J. Turner.
dimensional packet classification.
NETWORKING, 2012.

V. Srinivasan, S. Suri, and G. Varghese. Packet classification using tuple
space search. In ACM SIGCOMM Computer Communication Review,
volume 29, pages 135-146. ACM, 1999.

D. Taylor and J. Turner. Classbench: A packet classification bench-
mark. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE, volume 3,
pages 2068-2079. IEEE, 2005.

Hypersplit source code.
http://security.riit.tsinghua.edu.cn/share/index.html.

Abc: Adaptive binary cuttings for multi-
IEEE/ACM TRANSACTIONS ON

B. Vamanan, G. Voskuilen, and T. Vijaykumar. Efficuts: optimizing
packet classification for memory and throughput. In ACM SIGCOMM
Computer Communication Review, volume 40, pages 207-218. ACM,
2010.

T. Woo. A modular approach to packet classification: Algorithms and
results. In INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 3, pages 1213-1222. IEEE, 2000.

D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen. Scalable,
high performance ethernet forwarding with cuckooswitch. In Proceed-

ings of the ninth ACM conference on Emerging networking experiments
and technologies, pages 97-108. ACM, 2013.

