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Swordfish (Xiphias gladius L., 1758) is an apex predator, highly migratory meso-pelagic fish widely distributed in
the Atlantic Ocean and Mediterranean. As top predators, this fish may be the end reservoir of the
bioaccumulation of trace elements in a food chain because they occupy higher trophic levels and are an
important food source, causing them to be potentially hazardous to consume. This study aims to investigate the
concentration of 18 trace elements of Swordfish, caught in the Mediterranean Sea and to discuss human exposure

risks. The mean element levels in the fish muscles were clearly below the maximum allowable concentrations
established by International food safety regulations. The data suggested that the risk is minor and acceptable for
human health. The findings of this study amplify the scarce database on contaminants available, especially new
data on “emerging elements”, for this species from the Mediterranean Sea.

Trace elements (TE) are natural trace components of the marine
environment, but their levels have increased due to domestic, indus-
trial, mining and agricultural activities (Bakan and Biiyiikgiingor,
2000). TE are generally classified as essential (e.g. copper, zinc, iron,
manganese), probably essential (e.g. nickel, vanadium, cobalt) and
potentially toxic (e.g. arsenic, cadmium, lead, mercury) (Munoz-Olivas
and Camara, 2001). At low levels, some TE are essential for enzymatic
activity and many biological processes (Bat et al., 2012). The main roles
of these essential elements can be described as functional (a catalyzing
role) and structural (integrators of the organic compounds) (Mendil
et al., 2010). TE become toxic when their intake is excessive or when
ingested over a long time period and even potentially carcinogenic to
humans (Uluozlu et al., 2007). TE can be bioaccumulated by marine
organisms through a variety of pathways, including respiration, ad-
sorption and ingestion (Tiirkmen et al., 2008). These elements can be
biomagnified via the food chain and finally be assimilated by human
marine food consumers involving health risks (Baeyens et al., 2005).
The presence of trace element from anthropogenic origin in marine
ecosystems has been a serious problem for the environment and human
health (Aratjo and Cedeno-Macias, 2016). Their intake can lead to
adverse health effects like renal dysfunction, lung disease, liver failure,
dysfunctions in the kidneys, chronic damage to the central and
peripheral nervous system (Dadar et al., 2016). TE pollution of the

sea is less visible and direct than other types of marine pollution (e.g.
Macro-waste) but its effects on marine ecosystems and humans are
intense and very extensive (Erkan et al., 2009). Among the wide range
of toxic substances contaminating the marine environment, a major
concern has been focused on specific trace element (Castro-Gonzalez
and Méndez-Armenta, 2008).

Fish represents a powerful model for risk-benefit assessment (Di
Bella et al., 2015). In the last years, the health benefits related with
seafood consumption have been extensively publicized (Mendil et al.,
2010). The world consumption of fish has increased simultaneously
with the growing concern of their nutritional and therapeutic benefits
(El-Moselhy et al., 2014). In addition to its important source of protein,
fish typically have rich contents of essential minerals, vitamins and
unsaturated fatty acids (Medeiros et al., 2012). However, the content of
toxic TE in fish can counteract their beneficial effects (Castro-Gonzéalez
and Méndez-Armenta, 2008). As recently pointed out, high concentra-
tions of these elements are found in the Mediterranean Sea in many
types of commercially important fish (Demirak et al., 2006; Kalay et al.,
1999; Papetti and Rossi, 2009a).

Swordfish (Xiphias gladius L., 1758) is an apex predator, highly
migratory meso-pelagic fish widely distributed in the Atlantic Ocean
and Mediterranean (Macias et al., 2005). It is a large species of high
commercial value, reaching a maximum length of 445 cm, weighing up
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to 540 kg and it can live for 25 years (Nakamura, 1985). Swordfish are
opportunistic predators that feed primarily on pelagic fishes and
invertebrates, particularly squid (Hernandez-Garcia, 1995). Swordfish
typically forage in deep water during the day and stay in the mixed
layer at night (Abascal et al., 2010). Based on stomach contents from X.
gladius, it is most likely true that the swordfish uses its sword to kill
some of its prey, as is shown by the slashes on the bodies of prey found
in swordfish stomachs (B. Collette et al., 2016). Genetic studies suggest
that all Mediterranean swordfish form a unique stock that is reproduc-
tively isolated from the Atlantic stock, indicating little genetic exchange
occurring between the two (Kotoulas et al., 1995). Life history
differences (e.g. growth and sexual maturity) have been noted between
Mediterranean and Atlantic swordfish (Macias et al., 2005). In the
Mediterranean a large, socio-economically important fishery targets
this species (Alicli and Oray, 2001), reported catch for 2015 was to
9.966t (Alicli and Oray, 2001; Neves dos Santos et al., 2016).
Swordfish is a much sought-after table fish and consumer demand is
increasing. The Mediterranean population of Swordfish was therefore
regionally assessed as Near Threatened (NT) in an overview of the
conservation status of Mediterranean fishes (Malak, 2011). This stock is
not considered to be well-managed. In addition, the majority of the
catch includes juveniles (below 90 cm Lower Jaw-Fork Length). This
pauperization of Mediterranean swordfish population is due to a
number of reasons, including overfishing and pollution (Damiano
et al., 2011). Quota have now been instaured for 2017 onwards in
order to protect this overharvested population. The limit was set at
10,500 t for 2017 at a meeting of the International Commission for the
Conservation of Atlantic Tunas (ICCAT) in Vilamoura, Portugal. It will
be lowered by 3% per year from 2018 to 2022.

Studies of anthropogenic contaminants in large, long-lived preda-
tory fish such as swordfish are important for several reasons. As top
predators, this fish may be the end reservoir of the bioaccumulation of
trace elements in a food chain because they occupy higher trophic
levels and are an important food source, causing them to be potentially
hazardous to consume (Mansour and Sidky, 2002). Trace elements
accumulation in fish is dependent on numerous factors, and the
accumulation pattern is the result of physiological uptake and elimina-
tion rates (Guven et al., 1999). Absorption of these elements may occur
directly from the water, through the gills, but the main route seems to
be the gastrointestinal absorption of those elements present in food
(Olsson et al., 1998). Furthermore, because these species are apex
predators, they carry out very intense metabolic activities that require a
continuous supply of energy (Kojadinovic et al., 2007). As a result, their
rate of predation and food consumption is extremely high, a property
which contributes notably to the accumulation of pollutants (M.M.
Storelli et al., 2005). As a consequence, TE concentration in the muscle
of top predatory organisms, will reflect the environment in which they
live (Szefer et al., 2003). Thus, fish tissues such as swordfish can be
used as biomonitors for levels of TE compounds in the Mediterranean
Sea.

As a result, the present study aims (i) to determine the levels of ten
essential or probably essential metal elements (Co, Cr, Cu, Fe, Mn, Mo,
Ni, Se, V and Zi) and the eight non-essential ones (Ag, Al, Be, Bi, Cd, Pb,
Sb, Sn) in the muscle of swordfish caught in the Mediterranean Sea, (ii)
to compare the relationships between elements concentrations and the
correlations existing among them (iii) to estimate the weekly intake of
these trace metals, comparing them with the Provisional Tolerable
Weekly Intake (PTWI) (iv) to discuss human exposure risks with regards
to International food safety regulations.

Thirty-three specimens of swordfish were obtained by fishing
vessels from two sites (Bastia, Saint-Florent, Est and West coast,
respectively) around Corsica Island (Mediterranean Sea) between
December 2011 and August 2012. Samples and data were carefully
collected by fishermen and scientific observers. Fishing location, length
measurement to the nearest cm (Total Length - TL) and weight (kg)
were recorded for each fish. A sample of around 10 g (wet weight, ww)
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Table 1
Some morphometric and biological characteristics (mean *= SD) of mediterranean
swordfish, values in parentheses indicate minimum-maximum values.

Number of Total length (cm) Body weight range Data collection
individual (kg) (years)
33(23 ¢, 10 114 = 31 (70-160) 18 = 7 (4-30) 2011-2012

)

was then taken from the dorsal white muscle. The tissues were frozen at
—20°C until analysis in the laboratory. The biological data of the
specimens are shown in Table 1.

Before the analysis, samples were thawed and cleaned with ultra-
pure water. Samples were mineralized in Teflon digestion vessels, in a
closed microwave digestion labstation (Ethos D, Milestone Inc.), using
nitric acid and hydrogen peroxide as reagents (suprapur grade, Merck).
Analyses of 18 trace elements (Be, Al, V, Mn, Co, As, Se, Mo, Ag, Sn, Sb,
Bi, Cr, Fe, Ni, Cu, Pb, Cd) were determined by Inductively Coupled
Plasma Mass Spectrometry using Dynamic Reaction Cell technology
(ICP-MS ELAN DRC II, PerkinElmer ®©).

In order to check the purity of the chemicals used, a number of
chemical blanks were run; there was no evidence of any contamination
in these blanks. Analytical quality control was achieved using Certified
Reference Materials (CRM), DOLT-3: dogfish liver, NIST 1566b: oyster
tissue, NIST 1577c: bovine liver and NIST 2976: mussel tissue. The
results obtained on the Certified Reference Materials showing good
agreement with the certified values for all TE (global mean recovery
was 92 * 16%), noticing that for Be and Bi no certified values were
reported. For each TE, detection decision (LC), detection limit (LD) and
quantification limit (LQ) were calculated, depending on their specific
blank distribution (Currie, 1999). The results are expressed in milli-
grams of element per kilogram of body weight wet (mg kg™ ! ww).

All data were checked, beforehand, for goodness of fit to a normal
distribution with Kolmogorov-Smirnov's test and homogeneity of
variance using a Bartlett test. To better meet the assumptions of
standard parametric statistical tests, to reduce the effect of outliers on
skewing the data distribution and to bring elemental concentrations
within the same range, the data were natural-log transformed. TE
concentrations that were found to be below their analytical LD were
considered as half of the LD value during data statistical treatment.

Multivariate analysis of variance (MANOVA) was used to test the
effect of localities (Bastia/Saint-Florent), and sex (Male/Female) on
eighteen element traces concentrations. Pearson rank correlations test
were used to investigate the relationship between the trace metal levels
between them (inter-elementary correlations) as well as the relation-
ship with the biological data (weight). The correlation coefficient (r)
was calculated together with p-values to determine the significance and
strength of each correlation. A p value of < 0.05 was considered to
indicate statistical significance.

Risk of TE intake on a weekly basis was estimated by calculating the
respective levels found in X. gladius, for a person weighing 70 kg and
with a weekly consumption rate of 427 g (defined for European
population) (FAO, 2016). The Estimated Weekly Intake (EWI,
mg kg™ 1), was determined using the following equation:

EWI = (Cy*IR,)/BW

C,, represents the TE concentration in fish (mgkg™!), IR, the
weekly ingestion rate (kg) and BW the body weight (kg). To assess the
public health risks, these weekly intake were compared with the
Provisional Tolerable Weekly Intake (PTWI), recommended by the
Joint FAO/WHO Expert Committee on Food Additives (JECFA). This
index shows appropriate safe exposure levels and is used to estimate the
amount of contaminants, ingested over a lifetime without appreciable
risk (Chamannejadian et al., 2013). The European Food Safety Autority
(EFSA) has established regulatory guidelines, the PTWI of Cd and Pb
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Table 2
Mean ( + standard deviation; SD) and range of trace elements concentrations
(mg kg~ 'ww) in the muscle of mediterranean swordfish caught in Corsica.

Element Mean ( + SD) Min Max
Ag 0.005 ( + 0.001) 0,000 0,023
Al 0.943 ( = 0.089) 0,311 2527
Be 0.023 ( + 0.003) 0,000 0,070
Bi 0.000 ( + 0.000) 0,000 0,002
Ccd 0.033 ( = 0.009) 0,003 0,290
Co 0.008 ( + 0.003) 0,001 0,060
Cr 0.043 ( = 0.020) 0,003 0,542
Cu 0.349 ( = 0.029) 0,122 0,769
Fe 4.808 ( + 0.706) 1340 18,406
Mn 0.072 ( + 0.014) 0,018 0,374
Mo 0.009 ( + 0.003) 0,001 0,094
Ni 0.271 ( £ 0.124) 0,003 3191
Pb 0.084 ( + 0.066) 0,001 2196
Sb 0.008 ( + 0.001) 0,001 0,024
Se 0.552 ( £ 0.072) 0,181 2513
Sn 0.003 ( + 0.001) 0,000 0,026
A 0.003 ( + 0.001) 0,000 0,017
Zn 30.275 ( = 9.529) 4120 331,015

was 7 and 25 ug kg~ ! week ™!, respectively. Therefore, PTWI of Cd and

Pb for a 70kg person is 490 and 1750 g week ™!, respectively.
Furthermore, a selection of essential group of TE (Cr, Cu, Fe, Ni, Zn)
and their PTWI values were calculated and compared.

Trace elements concentrations (mean, standard deviation, minimum
and maximum) in the muscle tissues of swordfish are shown in Table 2.
The mean concentrations of trace elements are quite variable (Fig. 1)
such as, Zn (121.101 =+ 218.967), Al (3.770 = 2.056) or Cr
(0.172 * 0.449). Distribution patterns in concentration of TE follows
the sequence: Zn > Fe > Al > Se > Cu > Ni > Pb > Mn >

Cr > Cd > Be > Mo >Co Sb > Ag > Sn > V > Bi. Thus,
among the trace elements analyzed, Zn showed the highest concentra-
tion. In contrast, concentrations of Bi, V, Sn or Ag were low. Be levels

Log transformed concentration of trace elements (mg.kg-1)
o

4~ Ag Al Be Bi Cd Co Cr Cu
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Table 3

MANOVA results for testing the effects of location and sex on trace element concentra-
tions in muscle of Mediterranean swordfish caught in Corsica. f-values and p-values of the
tests used (*p < 0.05; **p < 0.01; ***p < 0.001).

Factor Location Sex
Trace element concentrations F P F P
2.671 0.284 2.670 0.278

were low in all individuals with a certain number of values under the
detection limit of the ICP-MS. European legislation (E.U, 2008)
established maximum levels for Pb and Cd, with values set at
0.3mgkg~'. For Pb and Cd the average concentrations
(0.083mgkg™ ' and 0.033mgkg™?, respectively) observed in this
study were lower than the maximum of the food safety regulations
established by WHO and European Community. For Pb in most of the
fish samples, values were below the guideline level (32/33 individuals)
and only one tested samples exceeded this limit (Max: 2.195 mg kg™ 1).

MANOVA results indicated that there were no significant differences
in accumulation patterns of trace element between the two study areas
(localities) and the males and females (sex) (Table 3).

The relationship between the fish weight and the trace element
concentrations and also inter-relationship between elements in the
muscles of the swordfish were investigated and shown in Table 4.

There was a significantly positive correlation between the weight of
the fish and the concentrations of three trace element (Pb: r = 0.35,
p < 005 V: r=0.35 p < 0.05 Zn: r = 0.60, p < 0.001). For
others trace elements, no significant correlations were detected be-
tween concentrations and weight of individuals.

Trace elements found in muscles also showed strong and moderate
correlations with one another in some cases (see Table 4).

The PTWI values recommended by the expert committee on food
additives, joint FAO/WHO Expert Committee on Food Additives (WHO,
2014) were used to compare the estimated weekly intakes of trace

FE Mn Mo Ni Pb Sb Se Sn V Zn

Fig. 1. Boxplot of the 18 trace elements in the muscle of mediterranean swordfish caught in Corsica.
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Table 4
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Pearson correlation matrix between trace element concentrations (inter-relationship) and fish weigth. in the muscle of mediterranean swordfish caught in Corsica. The data in bold are
statistically significant.

Element Weight Ag Al Be Bi cd Co Cr Cu Fe Mn Mo Ni Pb Sb Se Sn v
Ag 0.29
Al 021  0.02
Be 0.02 0.3 0.27
Bi 014 015 0.45 -0.21
cd 0.09  0.38 0.09 0.1 -0.11
Co 0.25 -0.01 025 -013 0.51 -0.09
Cr 0.19 -018 015 -0.37° 0.48° -0.16 073
Cu 0.04 -0.03 009 -023 0.34 -0.05 0.63 0.52
Fe 0.20 -016 001 -032 0.36° -0.09 056" 0.65"° 074
Mn 0.15 -014 013 -0.33 0.55" -0.29 082" 0.82°° 0.80" 0.71
Mo 027 017 013 -023 048 -—0.08 0.80" 0.80"" 0.55“ 0.62" 0.78
Ni 026  0.13 018 -0.07 0.51** 0.01  0.85" 075 0.47" 0.47°" 076" 0.89
Pb 0.35° —0.07 048 -0.14 0.62°" —025 0.46"" 0.49° 0.27  0.41°~ 0.54"* 0.44"  0.52
Sb 016  0.83 016  0.37 0.31 0.34  0.04 -014 -005 -022 -012 017 021  -0.02
Se 0.14 -0.06 012 -0.13 026 -0.07 033 027 056 078 040° 034 017 023 -0.11
Sn 0.03 -0.42° 0.35° -025 023 -024 -005 020 010 028 008 0.1 -0.14 0.32 -0.33 0.30
% 0.35°  0.03 030 -005 0.37 -0.07 0.69 0.64** 0.57* 0.57° 0.63"* 0.60"* 0.51  0.46~ 0.12  0.41° 0.14
Zn 0.60" 0.10 025 -015 0.33 -0.02 0.42° 029 057" 0.58° 0.45 0.34° 029 047 0.04  0.59° 0.26 0.51
“p < 0.05.
= p < 0.01.
= p < 0.001.
Table 5 levels in marine species. Several authors (Damiano et al., 2011; Papetti
The estimated weekly intakes for swordfish. and Rossi, 2009b; Pastor et al., 1994; M.M. Storelli et al., 2005; Storelli
) and Marcotrigiano, 2001) reported moderate to high levels of mercury
Metal PTWI® PTWI® EWI . . . . )
in swordfish caught in the Mediterrenean Sea. Swordfish, usually
cd 7 490 0.203 accumulates mercury as methyl mercury, while inorganic mercury
Cr 637 44,590 0.262 usually represents a minor proportion of the total mercury present in
Cu 3500 245,000 2129 the tissues (Vlieg et al., 1993). Methyl mercury does not occur naturally
Fe 5600 392,000 29.32 . . e . L . .
Ni 35 2450 Lesi in water, and its presence in fish muscle is due to in vivo biochemical
Pb o5 1750 0.511 transformation or by ingestion of preformed methyl mercury along the
Zn 7000 490,000 184.679 food chain (Mendez et al., 2001). Consequently, a large percentage of

@ Provisional Permissible Tolerable Weekly Intake (PTWI) in pg/week/kg body weight.
b PTWI for 70 kg adult person in pg/week/70 kg body weight. EWI. Estimated Weekly
intakes in pg/week/70 kg body weight.

elements in this study. The result from Table 5 suggests that the EWI of
Cd, Cr, Cu Fe, Ni, Pb and Zn by a 70 kg adult consuming 427 g of
swordfish/week were all below the limit set by European regulation.
The levels of TE in swordfish were determined and assessed by
comparing levels found in samples with permissible limits stipulated by
various organizations. Compared to existing international food safety
regulations and literature data, our results contribute to the identifica-
tion of risks for mediterranean population associated with fish con-
sumption. The European Union has established regulatory guidelines
regarding dietary cadmium and lead concentrations (0.3 mg kg~ *ww).
Cadmium accumulates in human body and may induce kidney dysfunc-
tion, skeletal damage, and reproductive deficiencies (Tuzen and Soylak,
2007). Impairment of hearing ability, anemia, renal failure, weakened
immune system and premature births, are the most common symptoms
of lead poisoning (Yildirim et al., 2009). The mean element levels in the
fish muscles observed in this study were clearly below the maximum
allowable concentrations established by WHO and European Commu-
nity in food. Considering those limits, only one swordfish was reported
to exceed Pb values, and all fish appeared safe for consumption
regarding Cd exposure. The data modalities considered in this study
suggested that the risk is minor and acceptable for human health.
However, it should be taken into account that Mercury (Hg) was not
measured in this study. Mercury has received much attention due to the
well-known toxic effects of this metal (Storelli and Marcotrigiano,
2001). Potential dietary exposure of Hg continues to be a subject of
research, regulation and debate (Storelli et al., 2007). Given its capacity
for biomagnification along food webs, mercury is often present at high

Hg is present as toxic MeHg in the edible portions of fish consumed by
man (Kojadinovic et al., 2007b). From a public health point of view, the
consumption of fish with high mercury content does not represent a
hazard, provided that it is not eaten on a regular basis (Mendez et al.,
2001). Despite the fact that our results do not show high concentrations
of TE and associated risks, it remains important that higher concentra-
tions could be found in particularly large and elderly individuals due to
bioaccumulation on certain elements.

Concerning the estimation of the potential public health risks, the
PTWI values were used to compare the estimated dietary intakes of
trace elements in this study. The estimated weekly intake for cadmium
and lead were far below the established PTWI values, it may be
concluded that consumption of this species is not a problem on human
health. Furthermore, the estimated intakes of chrome, copper, iron,
nickel, and zinc from weekly consumption of swordfish are lower than
the respective established PTWI for these elements and data modalities
considered in this study.

This permissible limits should be considered as a suggested value
and not an absolute one that provides a margin of safety (Onsanit et al.,
2012). The regular consumption of fish is important and increasing, due
to the nutritional values linked to fatty acids, some vitamins, minerals
and protein, and can make a positive contribution to the prevention of
cardiovascular disease and the development of the foetus (Di Bella et al.,
2015). The analyzed swordfish samples represent a good nutritional
source of essential trace elements. Thus, combining the detection of
contaminants concentrations in food and the estimated consumption
limits is of great relevance in view of assessing the balance between
benefits and risks (Copat et al., 2013).

There have been very few studies on trace elements in swordfish in
the Mediterranean Sea and around the world. But it should be noted
that fish size, trophic position, diet and the geographical areas (both
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biotic and abiotic factors) may have variable effects on the bioaccu-
mulation of trace elements in swordfish populations. Hence caution is
needed in data interpretation comparing with previous studies around
the world. The comparison of our results with published data showed
lower levels of lead (0.084 mg kg~ ') than those detected in specimens
from the Mediterranean Sea (0.970 and 1.049 mg kg™, respectively)
(Damiano et al., 2011; Papetti and Rossi, 2009a). Thus, in general lead
levels in our study were almost twelve times lower than mean lead
levels in different mediterranean swordfish (e.g. Damiano et al., 2011).
But our results are consistent with other studies conducted in the
Mediterranean reported by Storelli et al., 2005, and by Kojadinovic
et al., 2007 around the Reunion Island (0.050 and 0.030 mg kg™ !,
respectively).

In the same way, the range of cadmium in this study is quite
different (0.033 mg kg~ !) from other values reported in the literature
in the Mediterrenean Sea (e.g. respectively 0.158 and 0.005 mg kg™ ?,
Storelli et al., 2005, Damiano et al., 2011). Thus, cadmium levels in our
study were almost seven times higher than mean cadmium levels in
other mediterranean swordfish (e.g. Damiano et al., 2011). However,
cadmium levels observed are similar to other studies worldwide (e.g.
0.059 mg kg~ !, Bodin et al., 2016).

Mean values of copper found in swordfish (0.349 mg kg™ ') were
similar to concentrations recorded in the muscle from Indian Ocean,
which reached a mean of 0.342 mg kg™ 1 (Bodin et al., 2016). But these
results were slightly higher than those observed in swordfish in the
Indian Ocean and Atlantic Ocean (both 0.200 mg kg™, Kojadinovic
et al., 2007; Olmedo et al., 2013). In comparison with data reported by
other authors, mean levels of iron (4.808 mgkg™ 1) were similar to
those reported by Kojadinovic et al., 2007 and Bodin et al., 2016 in the
same species (5.90 and 4.124 mg kg™ 1, respectively). The detected
chrome and selenium levels (0.043 and 0.552 mg kg~ !, respectively)
were in good agreement with levels in sworfish in others studies (0.044
and 0.763mgkg~ ! respectively; Bodin et al., 2016). Our data
(0.072 mg kg~ 1) were in accordance with manganese concentrations
measured in fish from the Indian Ocean (0.060 mg kg~ !, Kojadinovic
et al., 2007), while lower values ranging from 0.013 to 0.036 mg kg~ *
were reported in swordfish from Atlantic Ocean and Indian Ocean
(Olmedo et al., 2013; Bodin et al., 2016). Zinc values in this study were
high (from 30.275 mg kg™ '), exceeding by far those reported in the
Atlantic Ocean and the Indian Ocean (5.637and 7.480 mg kg~ * respec-
tively (Olmedo et al., 2013; Bodin et al., 2016). But these values were
comparable with those reported by Kojadinovic et al. (2007)
(22.9 mg kg~ 1). The observed variability of TE levels in the swordfish
might be a result of ecological needs, metabolism, and feeding patterns
(Yilmaz, 2003).

The present work is the first study to examine a large range of trace
elements (18) in swordfish. As far as we know, it is the first time that
these TE (Ag, Al, Be, Bi, Co, Mo, Sb, Sn, V) were measured in this
species. This study completes the database and brings new knowledge
concerning levels of trace elements in X. gladius.

The relationship between the fish weight and the TE levels in the
muscles was investigated. There was a significantly positive correlation
between the weight and the concentrations of three TE (Pb: r = 0.35,
p < 0.05; V: r =0.35, p < 0.05; Zn: r = 0.60, p < 0.001) for X.
gladius. In addition to the high intake of contaminants due to the high
metabolic rates of the large predators, these results reflect the
biomagnification process as the contaminants move up the food chain
(Damiano et al., 2011). This process occurs because consumers feeding
at higher trophic levels eat larger preys with higher body burdens that
smaller ones (Bodin et al., 2016). Larger individuals have shown higher
TE concentrations, as was previously reported in studies in certain fish
species including swordfish (Mendez et al., 2001; Storelli and
Marcotrigiano, 2001).

Various degrees of correlations were found between the elements.
These accumulation relationships between TE could have negative
correlations where metals compete, or positive correlations where TE
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accumulate together and influence one another (Renieri et al., 2014).
For example, a significant positive correlation (p < 0.001) between Zn
and Cu, Pb and Bi, Mo and Co or Fe and Cr concentration were found. A
significant negative correlation (p < 0.05) between Ag and Sn, Cr and
Be, has been found.

Associations between these elements may reflect the biochemical
regulation of element concentration or a requirement of elements (such
as Zn and Cu) for the synthesis of detoxifying proteins enzymes (e.g.,
glutathione and dismutases) as a feedback mechanism for an increase in
toxic elements (Chang et al., 1998; Joyeux et al., 2004). These results
can also show that some elements have similar sources (e.g. feeding)
(Yilmaz et al., 2007). Thus, the correlations of TE (positive or negative)
in fish tissues observed may be related to the elemental regulation
which is affected by metabolic activity, environmental conditions and
physiological needs (Kojadinovic et al., 2007).

Despite the human fishing pressure on swordfish, there is a great
lack of knowledge on trace element levels in these fish (Kojadinovic
et al., 2007). The findings of this study amplify the scarce database on
contaminants available, especially new data on “emerging elements”,
for this species from the Mediterranean Sea. Data on TE in swordfish
have served to warn of the possible risk related to the consumption,
although the data considered in the study indicate that there is no risk
for a controlled ingestion.

Due to the increasing environmental pressure on the Mediterranean
Sea, a regular monitoring of TE levels in marine organisms is necessary
to prevent any further environmental deterioration and to assess the
human exposure. These data on contaminant levels in fish from
particular regions of the world could allow people to make informed
decisions about which fish to eat to reduce their risk from the
contaminants (Tepe, 2009).
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