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For these reasons, this measurement is often considered 
easy and reliable. However, as we will describe in this 
 review, measuring serum creatinine is not free of prob-
lems. Like every analyte, the measurement of creatinine 
in serum is prone to different types of error, interfer-
ences and imprecision  [1–4] . From a clinical perspective, 
nephrologists know too well that one important limita-
tion of this measurement is due to the fact that serum 
creatinine will vary not only with glomerular filtration 
rate (GFR) but also with muscle mass, because it is a 
product of muscle catabolism  [2, 3, 5] . This dependency 
on muscular mass will make the renal interpretation of 
creatinine results difficult in patients with extremely low 
or high muscular mass (e.g., anorexia, obesity or weight 
lifter)  [6, 7] . Probably still more important in daily clin-
ical practice is that this association with muscular mass 
explains why similar serum creatinine values will corre-
spond to different levels of GFR in patients (or subjects) 
of different age, gender or ethnicity  [2, 8, 9] . Other limi-
tations can be briefly discussed. First, creatinine is se-
creted by tubules, and this explains why creatinine clear-
ance overestimates true GFR. Still more problematic is 
that this overestimation is quite unpredictable and might 
vary in the same patient with declining GFR  [2, 10–12] . 
Drugs can also interfere with this tubular secretion, the 
most well-known being trimethoprim and cimetidine. 
This can lead to an increase in serum creatinine values 
when GFR remains constant  [12, 13] . Second, serum cre-
atinine can be influenced by diet. Meals rich in proteins 
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 Abstract 

 Measuring serum creatinine is cheap and commonly done in 
daily practice. However, interpretation of serum creatinine 
results is not always easy. In this review, we will briefly re-
mind the physiological limitations of serum creatinine due 
notably to its tubular secretion and the influence of muscular 
mass or protein intake on its concentration. We mainly focus 
on the analytical limitations of serum creatinine, insisting on 
important concept such as reference intervals, standardiza-
tion (and IDMS traceability), analytical interferences, analyti-
cal coefficient of variation (CV), biological CV and critical dif-
ference. Because the relationship between serum creatinine 
and glomerular filtration rate is hyperbolic, all these CVs will 
impact not only the precision of serum creatinine but still 
more the precision of different creatinine-based equations, 
especially in low or normal-low creatinine levels (or high or 
normal-high glomerular filtration rate range). 

 © 2017 S. Karger AG, Basel   

 Introduction 

 Serum creatinine is one of the most commonly mea-
sured products in clinical chemistry laboratories world-
wide. The analysis of this product is not expensive too. 
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such as cooked red meat can increase the serum creati-
nine. The GFR itself also increases with such food intakes 
 [2, 5, 14–16] . Third, some authors have described extra-
renal clearance of serum creatinine, possibly by intesti-
nal bacteria, which could be relevant in advanced chron-
ic kidney disease (CKD)  [17] . Finally, the production of 
creatinine, from muscular creatine, could be influenced 
negatively in severe hepatic disease and positively in 
rhabdomyolysis  [2, 18] . We can name these types of in-
teractions or sources of imprecision as “physiologic lim-
itations” of serum creatinine. In the rest of this editorial, 
we focus on analytical errors or imprecision in the cre-
atinine measurement.

  Reference Intervals for Serum Creatinine 

 As there are age and gender differences in creatinine 
generation, the determination of population-based nor-
mal reference intervals has been the subject of detailed 
studies by Pottel et al.  [8]  and Ceriotti et al.  [9] , who de-
termined age/gender-based intervals for children, ado-
lescents, adults and older adults, particularly for Cauca-
sians. Less detailed information is available for other eth-
nicities  [19] . After birth, serum creatinine rapidly 
decreases to a value of approximately 0.25 mg/dL during 
the first month of life and it then starts to increase lin-
early with age. Serum creatinine remains constant for 
the average healthy subject between 20 and 70 years of 
age, with a mean of 0.90 mg/dL and normal reference 
interval (0.63–1.16 mg/dL) for (white) men and with a 
mean of 0.70 mg/dL and normal reference interval 
(0.48–0.93 mg/dL) for (white) women. Above the age of 
70 years, serum creatinine starts to slowly increase again 
in both genders. These reference ranges may serve as a 
first tool to warn the presence of a possible kidney dys-
function. However, it has been argued that these popu-
lation-based normal reference ranges are not very useful 
for the early detection of kidney impairment due to 
nephrotoxic drugs  [20] . It was claimed that when an in-
dividual’s serum creatinine-level increases but remains 
within the population-based reference interval, it may 
still be indicative as an early warning signal for an up-
coming kidney dysfunction. Sottas et al.  [20, 21]  pro-
poses to use the percentage of change from baseline for 
each individual. The availability of longitudinal individ-
ual serum creatinine measurements (i.e., serial measure-
ments) may allow the chance to move progressively from 
population-based to patient-based reference intervals, 
allowing faster and more accurate decision-making on 

the individual’s kidney function and possible early de-
tection of kidney dysfunction and early referral to the 
nephrologist.

  Estimating GFR Equations: A Solution That 

Generates Other Issues 

 It could be considered controversial in 2017 to assert 
that the estimating GFR (eGFR) by creatinine-based 
equations does not contain more information than the 
biomarker concentration itself, even if some authors have 
already claimed this  [22, 23] . It is true that the use of eGFR 
allows one better to take into account the variation of se-
rum creatinine due to ethnicity, gender and age, these be-
ing the variables in the current eGFR equations  [24–28] . 
The relationship between serum creatinine and GFR is 
hyperbolic. Converting serum creatinine to eGFR results 
in a scale that allows for easier interpretation of the de-
cline in kidney function. As an example, in a 60-year-old 
Caucasian male subject, a serum creatinine value increas-
ing from 0.6 to 1.2 mg/dL (Δ0.6 mg/dL) will have had a 
decrease in eGFR (using the CKD-Epidemiology Collab-
oration (CKD-EPI) equation) of 109–65 mL/min/1.73 m 2  
(Δ44 mL/min/1.73 m 2 ). For the same patient with a base-
line serum creatinine of 1.2 mg/dL, the same increase of 
Δ0.6 mg/dL (to 1.8 mg/dL) will correspond to a decrease 
of eGFR of “only” Δ25 mL/min/1.73 m 2  (from 65 to 40 
mL/min/1.73 m 2 )  [29, 30] . In other words, a negative ex-
ponent (more or less close to “–1”, which corresponds to 
the “inverse”) is applied in the current recommended 
eGFR equations to better reflect the true mathematical 
association between GFR and serum creatinine. Howev-
er, this mathematical construction is not flawless. Indeed, 
this inverse relationship also has consequences for the er-
ror or imprecision in eGFR calculated from serum cre-
atinine measurements and so the variability of serum cre-
atinine has a serious impact on the variability of eGFR 
results. Recent recommended equations include only 
variables such as age, gender and ethnicity  [24–28],  
whereas previous studies also considered weight  [31] . 
Therefore, the variability in serum creatinine explains 
close to 100% of current eGFR variability in longitudinal 
studies or in studies with repeated eGFR measurements 
(on a relatively short period)  [32, 33] . Indeed, age will not 
change more than once a year, whereas change of gender 
is quite exceptional. If eGFR has some advantages, we 
must be careful and remind that eGFR can also amplify 
errors included in the serum creatinine values, as we il-
lustrate in the next paragraphs.
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  How to Measure Serum Creatinine 

 Are There Differences between Methods? Are These 
Differences Relevant? 
 Serum creatinine can be measured either by enzymat-

ic or the so-called Jaffe methods  [1–4, 34] . Both are colo-
rimetric methods. In Jaffe methods, serum creatinine re-
acts with picrate to give a yellow-orange colour that can 
be quantified. This reaction is, however, not fully spe-
cific, as picrate can also react with other components, 
known as pseudo-chromogens (acetoacetate, pyruvate, 
keto-acids, proteins, glucose, and ascorbic acid)  [2–4, 
35] . The Jaffe assays are also prone to other complex in-
teractions with bilirubin or even specific drugs  [36] . Dif-
ferent technical improvements in the last decades have 
increased the precision of the Jaffe assays (kinetic and/or 
rate-blanked assay, compensated Jaffe assay etc.). It is be-
yond the scope of the present work to describe these tech-
niques into details, but whatever the improvement, a cer-
tain degree of imprecision still remains  [4] . Enzymatic 
assays are based on different and successive enzymatic 
reactions  [3, 4] . Enzymes used will vary according to the 
manufacturer. The analytical specificity and the sensitiv-
ity of enzymatic assays are better than for Jaffe assays. 
Comparing both methods, the analytical precision (CV A  
for analytical coefficient of variation) is systematically 
better for the enzymatic assays  [36, 37] . Importantly, for 
low creatinine concentrations as may occur in children 
 [36, 38] ), the results of the serum creatinine with the Jaffe 
reaction will be higher than with the enzymatic assay. In 
terms of precision, the added value of the enzymatic as-
say is important in samples with low or normal to low 
creatinine concentrations. Therefore, enzymatic assays 
should be favoured in specific populations like in paedi-
atric patients or patients with hyperfiltration but also in 
specific situations where Jaffe assays are known to be 
subject of interferences (bilirubin, ketoacidosis etc.). The 
gain in precision (i.e., a smaller random error) with the 
enzymatic assays as compared to Jaffe assays is an intrin-
sic characteristic of the assay and is totally independent 
of the standardization procedure, which improves the 
systematic error (for both Jaffe and enzymatic assays). 
On the other hand, the added value of enzymatic assays 
compared to Jaffe assays is quite negligible in higher se-
rum creatinine ranges.

  Both for enzymatic and Jaffe methods, different assays 
are available on the market from different manufacturers. 
Before standardization, each assay had its own character-
istics and each assay was calibrated with specific material 
provided by the manufacturer. For example, different 

Jaffe assays would lead to different serum creatinine re-
sults  [39–43] . Compared to non-calibrated assays, using 
calibrated creatinine (and creatinine-based equations 
specifically developed for such standardized assays) leads 
to a modest but significantly better performance for eGFR 
 [44] . However, harmonization of creatinine measure-
ment between laboratories is especially important in pop-
ulation studies. Indeed, the lack of standardization be-
tween assays (or inter-assay variability) has significant 
consequences on our knowledge of CKD prevalence  [45–
47] . But it also has an impact on the longitudinal moni-
toring of renal function in individuals. For a specific in-
dividual, the systematic difference could reach 0.2 mg/dL, 
which is not negligible. Thus, for a 60-year-old man, a 
Jaffe assay could give a result of 1.12 mg/dL, whereas the 
same sample assayed with another Jaffe could give 
1.32 mg/dL. The corresponding eGFR results will be 71 
and 58 mL/min/1.73 m 2  (with CKD-EPI equation). Be-
cause of the hyperbolic relationship between serum cre-
atinine and GFR, the impact of such differences in the 
creatinine results will be higher for low (paediatrics), nor-
mal or close-to-normal serum creatinine values, where-
as for high serum creatinine values (low GFR levels), the 
 impact will be negligible. The same example with a 
 serum  creatinine of 3.0 mg/dL (and 3.2 mg/dL with 
the  other assay) will give CKD-EPI results of 22 and 20 
mL/min/1.73 m 2,  respectively.

  Standardization, Traceability, Bias and Precision 
 The concept of the standardization of creatinine mea-

surement may look simple. The basic idea is that all labo-
ratories calibrate their creatinine assays against calibra-
tion material provided by manufacturers for which the 
creatinine concentration has been determined with a 
higher order method, namely, tandem mass-spectrome-
try detectors coupled with liquid or gas chromatographs. 
Indeed, the measurement of serum creatinine by mass 
spectrometry is both accurate and very reproducible. 
Since the Creatinine Standardization Program has re-
quested the manufacturers to standardize their creatinine 
assays to an isotope dilution mass spectrometry (“IDMS”) 
reference measurement procedure, we can theoretically 
expect that the same sample will give the same result in 
any laboratory in the world, whatever the method (Jaffe 
or enzymatic) and manufacturer, since the calibrators 
will all be “traceable” to the higher-order method  [41, 48] .

  But several independent studies have shown that re-
sults obtained with so-called IDMS traceable methods 
(notably Jaffe assays and some dry enzymatic methods) 
still provide results that were quite far away from the 
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“true value,” as determined with a reference method  [49, 
50] . Importantly, this occurs most of the times when 
dealing with lower creatinine values, whereas, once 
again, this is the range of values with the largest impact 
on eGFR variability. To end this paragraph with a more 
optimistic view, we can assert that most enzymatic as-
says on the market in 2017 are well calibrated on IDMS 
 [51] . Enzymatic assays have reached the goal to decrease 
the inter-assay variability and thus to decrease system-
atic differences (i.e., bias) between assays  [52] . However, 
the systematic error due to the bias inherent to potential 
lack of calibration is only one part of the potential error 
linked to the serum creatinine measurement. The second 
type of error is random error, or imprecision, due to the 
intrinsic performance of the measurement. This error is 
expressed by the CV A . As already mentioned, this error 
is also lower for enzymatic assays (around 2%) than for 
Jaffe ones (around 5.5%)  [36, 42, 53] . The only way to 
reduce the CV A  of a given assay would be to perform 
tests in duplicate or triplicate and to consider the mean 
of the results. However, this is neither practical nor cost-
effective.

  Beyond Analytical Variation: The Biological Variation 
 Analytical variation is not the only source of variabil-

ity in serum creatinine measurements. Indeed, for every 
analyte, there is also biological variation expressed in an 
intra-individual CV (CV I ; within-subject variation). This 
variation is physiological, independent of the analytical 
CV and cannot be reduced  [54] . Probably, part of the bi-
ological variation in serum creatinine is due to biological 
variation in “true” measured GFR. Briefly, CV I  is deter-
mined by calculating CV on repeated measurements in 
the same conditions (fasting, same moment of the day) in 
the same “stable” patients on a relatively short period of 
time. The CV I  2  is then obtained by subtracting CV A  2  from 
the global CV 2 . The CV I  of creatinine is presented in the 
literature and is 4.3% (Ricos-Fraser)  [54, 55] , updated to 
5.95% on the Westgard blog (https://www. westgard.com/
biodatabase1.htm), resulting from the analysis of 28 dif-
ferent studies. An important concept on the variability of 
serum creatinine is the critical difference or least signifi-
cant change  [56] . The critical difference is the smallest 
change of 2 results from the same individual that cannot 
be due to chance. The critical difference is calculated from 
both CV I  and CV A  ([ = 1.414 × 1.96 × (CV A  2  + CV I  2 ] 0.5 ) 
 [30, 56] . With the Ricos CV I  (4.3%) and CV A  for Jaffe 
(5.5%) and enzymatic (2%) methods, we calculated the 
critical difference for serum creatinine as 19 and 13%, re-
spectively. Taking the same example of a 60-year old man, 

this means that for a same actual GFR, the serum creati-
nine concentration of 1.12 mg/dL actually may vary be-
tween 0.91 and 1.33 mg/dL if the Jaffe assay is used or 
between 0.97 and 1.27 mg/dL if the enzymatic assay is 
used. Using the CKD-EPI equations, this range of non-
different serum creatinine values is converted to eGFR 
values that may vary between 58 and 92 mL/min/1.73 m 2  
for Jaffe serum creatinine and between 61 and 84 mL/
min/1.73 m 2  for the enzymatic assay results. The intrinsic 
variability of creatinine is thus not so negligible when it is 
used in the eGFR equation. The relevance of this variation 
will be, once again, important in adults and especially in 
children with normal or close to normal serum creatinine 
values.

  How Could We Still Decrease the Variability in eGFR? 
 To decrease the analytical component of creatinine 

variability, a relatively simple recommendation is to use 
enzymatic assays (to decrease the random error) and 
IDMS traceable assays (to decrease the systematic error). 
This recommendation is especially simple because most 
enzymatic methods have shown to be effectively calibrat-
ed to IDMS  [37, 51] . However, even with the lowest pos-
sible CV A  (around 2% for usual assays), the error due to 
CV I  still remains. To overcome this problem, a possible 
solution could be to use other biomarkers than serum cre-
atinine. Cystatin C and beta-trace protein are 2 possible 
alternatives  [57–60] . However, these 2 markers have their 
own variability. For cystatin C, large efforts both from 
experts and manufacturers have led to a better standard-
ization of the measurement (with the development of an 
international certified reference material ERM-DA471/
IFCC provided by the International Federation for Clini-
cal Chemistry and Laboratory Medicine to manufactur-
ers  [61]  or the development of mass spectrometry method 
to measure cystatin C  [62, 63] )  [63, 64] . Such standardiza-
tion between assays does not exist for beta-trace protein. 
 Regarding cystatin C, CV A  but also CV I  are basically not 
different from serum creatinine measured by enzymatic 
assays (with a critical difference of 13%)  [65]  and the hy-
perbolic relationship with GFR is also true for cystatin C 
 [57, 66, 67] . If we consider the same critical difference for 
creatinine and cystatin C, the effect of the variability of 
cystatin C on cystatin C-eGFR will be even slightly high-
er, as the exponent applied for cystatin C in an eGFR-
equation is even slightly higher than that used for creati-
nine. The same 60-year old man with a plasma cystatin C 
at 1 mg/L will have an eGFR of 78 mL/min/1.73 m 2  (with 
the CKD-EPI equation-based on cystatin C only  [57] ), 
but could have lab result values of 0.87–1.13 mg/L, which 
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correspond to eGFR ranging from 66 to 94 mL/min/1.73 
m 2 . More interestingly is the use of eGFR including dif-
ferent biomarkers, the most known being the equations 
using both creatinine and cystatin C  [27, 57, 66, 67] . Basi-
cally, in these equations, the exponent applied to each 
biomarker is logically lower than the exponent applied 
when a single biomarker is used, but because the bio-
markers (with their exponent) are multiplied in the com-
bined equation, the mathematical effect is more or less the 
same than for eGFR with a single biomarker. However, 
there is a lower probability that variability of both bio-
markers are simultaneously and extremely affected by the 
same analytical variability (but also by the same non-GFR 
determinants  [68] ), forcing the eGFR-prediction to drift 
away from the true GFR. In fact, there is higher chance 
that the errors inherent to each biomarker compensate 
each other. This analytical lower error is a possible expla-
nation, among others, for the better precision (i.e., lower 
random error) observed with combined equations. Tak-
ing the example of the 60-year-old man with a creatinine 
and cystatin C concentration of 1.12 mg/dL and 1.0 mg/L, 
respectively, and using a critical difference of 13% for 
both parameters, the eGFR value will be 75 mL/min/1.73 
m 2 , but the range will be between 64 and 90 mL/min/1.73 
m 2 , this range not being very different than the one ob-
served with only one biomarker-based eGFR prediction. 
However, the risk that both biomarkers randomly change 
or vary to “extreme” values (to 1.33 mg/dL for creatinine 
and to 1.13 mg/dL cystatin C) at the same time, by pure 
chance, is extremely low.

  Conclusions 

 In this editorial, we have briefly reviewed the well-
known physiological reasons that make the serum cre-
atinine an imperfect GFR biomarker. Beyond these phys-
iological reasons, there are also purely analytical reasons 
for the imprecision of serum creatinine and still more in 
the imprecision of eGFR. Enzymatic methods and the 
use of combined biomarkers are probably useful to im-
prove the precision of the eGFR equations. Several data 
have yet confirmed this point  [69–71] . But we do not 
know if the added value of both strategies (enzymatic 
and/or combined biomarkers) to estimate GFR at the in-
dividual level or in a population is sufficient enough to 
justify the higher cost of these methods or strategies 
compared to one basic Jaffe creatinine measurement. 
Such strategies could be useful in large clinical trials, es-
pecially in cohorts without measured GFR results, but 
their true added value still needs to be better character-
ized  [72] .
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