Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Pegmatite phosphates: from the field to the lab.

Prof. Frédéric Hatert

Pegmatite Workshop, 2016

<u>Contents</u>

Université de Liège

- 1. Introduction
- 2. Field observations
- 3. Petrography and geochemistry
- 4. Crystal chemistry
- 5. Hydrothermal experiments and stability
- 6. Conclusions

Intro. Field Petro. Crystallo. Stability

Fillowite + alluaudite, Kabira pegmatite, Uganda

Johnsomervilleite, Loch Quoich, Scotland

Occurrence

-Granitic pegmatites -Metamorphic rocks -Meteorites

Chladniite, GRA 95209 meteorite

The Varuträsk pegmatite

Petro.

Varuträsk Skellefteå 5 km Paleoproterozoic (ca. 1.87 - 1.66 Ga) Paleoproterozoic (ca. 1.96 - 1.86 Ga) Revsund suite Acid to intermediate intrusive rocks Varuträsk formation Skellefte group Felsic to intermediate metavolcar Metabasic volcanic rocks (amphibolite, metabasalt) (granite, granodiorite) rocks (metarhyolite, metadacite, Bothnian / Vargfors group Metasedimentary rocks metaandesite) aleoproterozoic (ca. 1.87 - 1.75 Ga) Metasedimentary carbonate rock Skellefte suite (calcitic to dolomitic marbles (metagreywackes, schists) Acid to intermediate intrusive rocks Acid to intermediate intrusive Deformation zone (granite, granodiorite) rocks (granite, granodiorite) < Sunform - Ant

Field

Intro.

Stability

Crystallo.

Percy Quensel (1881-1966)

Brian Mason (1917-2009)

The triphylite group

Field

The alluaudite group

Petro.

Crystallo.

Field

Intro.

Varulite, Na₂Mn₂Fe³⁺(PO₄)₃ Varuträsk, Sweden

François II Alluaud (1778-1866) Mayor of Limoges and mineralogist Chanteloube pegmatite Alluaudite, NaMnFe³⁺₂(PO₄)₃

Stability

Augustin-Alexis Damour (1808-1902)

Genesis of alluaudites

Petro.

Field

Intro.

Crystallo.

Stability

Oxidation mechanism

Na₂MnFe²⁺Fe³⁺(PO₄)₃ \implies []NaMnFe³⁺₂(PO₄)₃ Na⁺ + Fe²⁺ \implies [] + Fe³⁺

Secondary originPrimary origin

Alluaudite, Kibingo pegmatite, Rwanda

Intro.

Field

Petro.

Crystallo.

Stability

Let's go to the field!

Simon Philippo (MHNL) Maxime Baijot (Ulg) Jacques Cassedanne (Rio)

Encar Roda-Robles (Bilbao) Miguel Galliski (Mendoza)

Argentina

Stability

Pegmatite zoning

MINERALOGY AND GEOCHEMISTRY OF PHOSPHATES AND SILICATES IN THE SAPUCAIA PEGMATITE, MINAS GERAIS, BRAZIL: GENETIC IMPLICATIONS

MAXIME BAIJOT AND FRÉDÉRIC HATERT[§]

Laboratoire de Minéralogie, B18, Université de Liège, B-4000 Liège, Belgium

SIMON PHILIPPO

Section Minéralogie, Musée national d'histoire naturelle, Rue Münster 25, L–2160 Luxembourg, Grand-Duché de Luxembourg

Petro.

Crystallo.

Stability

Buranga pegmatite, Rwanda

Field

Intro.

Sapucaia pegmatite, Brazil

Crystallo.

Stability

Back to the lab...

Fe-Mn phosphates

Petrography

Al phosphates

The triphylite + sarcopside assemblage

Crystallo.

Stability

Intercroissances et inclusions dans les associations graftonite-sarcopside-triphylite

Petro.

par ANDRÉ-MATHIEU FRANSOLET, Institut de Minéralogie, Université de Liège (¹).

Field

Intro.

Sarcopside (Fe,Mn)₃(PO₄)₂

The alluaudite + fillowite assemblage

Crystallo.

Stability

Petro.

Intro.

Field

Alluaudite + fillowite, Kabira, Uganda

Stability

The triphylite + alluaudite assemblage

PETROGRAPHIC EVIDENCE FOR PRIMARY HAGENDORFITE IN AN UNUSUAL ASSEMBLAGE OF PHOSPHATE MINERALS, **KIBINGO GRANITIC PEGMATITE, RWANDA**

ANDRÉ-MATHIEU FRANSOLET AND FRÉDÉRIC HATERT

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgique

Laboratoire de Minéralogie, Université Paul-Sabatier de Toulouse, 39, Allées Jules-Guesde, F-31000 Toulouse, France

Hagendorfite, alluaudite, and heterosite, Kibingo pegmatite, Rwanda

Complex assemblages from Sapucaia

Petro.

Intro.

Field

Crystallo.

Stability

et le groupe des minéraux à structure de triphylite

par FRANÇOIS FONTAN *, PAUL HUVELIN **, MARCEL ORLIAC * et FRANÇOIS PERMINGEAT *.

1976

This oxidation is not a continuus process!

Heterosite may contain up to 0.21 wt. % Li₂O, and ferrisicklerite may show a low Li-content of 1.31 wt. % Li₂O

Stability

Sample from the Altaï Mountains, China

Oxidation of sicklerite

The transition from lithiophilite to sicklerite is progressive
The change in colour is due to the presence of Mn³⁺

1: Li _{0.93} (Fe ²⁺ 0.03Fe ³⁺ 0.13Mn ²⁺ 0.8	₃₀)(PO ₄)
2: Li _{0.96} (Fe ²⁺ 0.08Fe ³⁺ 0.08Mn ²⁺ 0.8	₃₁)(PO ₄)
3: Li _{0.88} (Fe ³⁺ _{0.16} Mn ²⁺ 0.80 ^{Mn³⁺0.}	(PO ₄)
4: Li _{0.82} (Fe ³⁺ 0.16Mn ²⁺ 0.75Mn ³⁺ 0.	(PO ₄)
5: Li _{0.69} (Fe ³⁺ _{0.16} Mn ²⁺ _{0.62} Mn ³⁺ ₀	<mark>19</mark>)(PO ₄)

Field

Intro.

Petro.

X-ray powder diffraction

Crystallo.

Stability

Université de Liège

Sample preparation

Powder pattern

Sample holder

Powder diffractometer

Petro.

Crystallo. Stability

Single-crystal X-ray diffraction

4-circle diffractometer

Field

Intro.

Diffraction spots

Structure determination

Crystallo.

Karenwebberite, a new mineral...

American Mineralogist, Volume 98, pages 767-772, 2013

Karenwebberite, Na(Fe²⁺,Mn²⁺)PO₄, a new member of the triphylite group from the Malpensata pegmatite, Lecco Province, Italy

PIETRO VIGNOLA,¹ Frédéric Hatert,^{2,*} André-Mathieu Fransolet,² Olaf Medenbach,³ Valeria Diella,¹ and Sergio Andò⁴

NaFe²⁺PO₄

a = 4.882(1), b = 10.387(2), c = 6.091(1) Å Pbnm

Karen Louise Webber

Malpensata pegmatite, Italy

Field

Stability

Zavalíaite, a new mineral...

ZAVALÍAITE, (Mn²⁺,Fe²⁺,Mg)₃(PO₄)₂, A NEW MEMBER OF THE SARCOPSIDE GROUP FROM THE LA EMPLEADA PEGMATITE, SAN LUIS PROVINCE, ARGENTINA

FRÉDÉRIC HATERT§

Laboratoire de Minéralogie, Département de Géologie, Université de Liège, Bâtiment B18, Sart Tilman, B-4000 Liège, Belgium

ENCARNACIÓN RODA-ROBLES

Departimento de Mineralogía y Petrología, Universidad del País Vasco/EHU, Apdo. 644, E-48080 Bilbao, Spain

a = 6.088(1) Å b = 4.814(1) Å c = 10.484(2) Å $\beta = 89.42(3)^{\circ}$ S.G. $P2_1/c$

$Mn_3(PO_4)_2$

Florencia Márquez Zavalía

The alluaudite structure

Petro.

Field

Intro.

A(2)': gable disphenoidA(1): distorted cubeM(1): very distorted octahedronM(2): distorted octahedron

Crystallo.

Stability

 $[A(2)A(2)'][A(1)A(1)'A(1)''2]M(1)M(2)_2(PO_4)_3$

Intro.

Stability

Crystal chemistry of natural alluaudites

Moore & Ito (1979)

 $\begin{array}{l} A(2)' \Rightarrow \operatorname{Na^{+}}, \, {}^{\bullet} \operatorname{K^{+}} \\ A(1) \Rightarrow \operatorname{Na^{+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Ca^{2+}}, \, {}^{\bullet} \\ M(1) \Rightarrow \operatorname{Mn^{2+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Ca^{2+}}, \, \operatorname{Mg^{2+}} \\ M(2) \Rightarrow \operatorname{Fe^{3+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Mg^{2+}}, \, \operatorname{Li^{+}} \end{array}$

Fransolet et al. (1985, 1986, 2004)

Oxidation mechanism:

Na⁺ + Fe²⁺ ⇒ •+ Fe³⁺

 $Na_{2}MnFe^{2+}Fe^{3+}(PO_{4})_{3} \Rightarrow NaMnFe^{3+}_{2}(PO_{4})_{3}$ $Na_{2}Fe^{2+}_{2}Fe^{3+}(PO_{4})_{3} \Rightarrow NaFe^{2+}Fe^{3+}_{2}(PO_{4})_{3}$

<u>Crystal chemistry of synthetic</u> <u>alluaudite-type compounds</u>

Petro.

Crystallo.

Stability

Solid state synthesis in air

Field

- T = 800-950 °C
- P = 1 bar

Intro.

Na-Mn-Fe³⁺ (+ PO₄) system
 Role of Li⁺
 Role of Cd²⁺ and Zn²⁺
 Role of In³⁺ and Ga³⁺

Experimental

- Hydrothermal synthesis
- Tuttle-type cold-seal bombs
- T = 400-800 °C
- P = 1-5 kbar

- Na-Mn-Fe²⁺-Fe³⁺ (+ PO₄) system

American Mineralogist, Volume 90, pages 653-662, 2005

Crystal chemistry of the hydrothermally synthesized $Na_2(Mn_{1-x}Fe_x^{2+})_2Fe^{3+}(PO_4)_3$ alluaudite-type solid solution

FRÉDÉRIC HATERT,^{1,2,*} LEILA REBBOUH,³ RAPHAËL P. HERMANN,³ ANDRÉ-MATHIEU FRANSOLET,¹ GARY J. LONG,⁴ AND FERNANDE GRANDJEAN³ **Cationic distribution**

Aq⁺	[VI]			Site		
Aq⁺			A(2)'	A(1)	<i>M</i> (1)	<i>M</i> (2)
	1.15	1.28	Х	Х		
Na⁺	1.02	1.18	X	X	Х	
Cu⁺	0.77	-	р	р		
Li*	0.76	0.92	p	р		
Ca ²⁺	1.00	1.12	р	р	р	
Cd ²⁺	0.95	1.10	·	p	X	р
Mn ²⁺	0.830	0.96	р	p	Х	X
Fe ²⁺	0.780	0.92	-	-	Х	Х
Co ²⁺	0.745	0.90			Х	Х
Zn ²⁺	0.740	0.90			Х	Ρ
Cu ²⁺	0.73	-		р		
Mg ²⁺	0.720	0.89			Х	Х
In³⁺	0.800	0.92			р	Х
Fe ³⁺	0.645	0.78		р	•	Х
Ga³⁺	0.620	-		-		р
Cr ³⁺	0.615	-				p
Al ³⁺	0.535	-				p_
						(

p : Partial occupancy of the site

Solid-state synthesis and hydrothermal experiments

> X-ray structure refinements

Crystal chemistry of the divalent cation in alluaudite-type phosphates: A structural and infrared spectral study of the Na_{1.5}(Mn_{1-x} M_x^{2+})_{1.5}Fe_{1.5}(PO₄)₃ solid solutions (x = 0 to 1, $M^{2+} = Cd^{2+}$, Zn²⁺)

Frédéric Hatert *

Laboratoire de Minéralogie, Université de Liège, Bâtiment B18, B-4000 Liège, Belgium

Petro.

Field

Hydrothermal lab

Intro.

Gold tubes

Stability

Crystallo.

Hydrothermal bomb

Intro.

Field F

Petro.

Stability

Crystallo.

Oxidation to ferrisicklerite

- First hydrothermal synthesis of ferrisicklerite
- At very low temperature
- Under a very high fO_2

Ferrisicklerite is a low temperature metasomatic alteration mineral (?)

Decrease of the Li content

Petro.

Field

Intro.

Crystallo.

Stability

Sharp contact between triphylite and ferrisicklerite!

Calculation of crystallisation temperatures for natural assemblages

Petro.

Crystallo.

Stability

Intro.

Field

Fe/(Fe+Mn) ratio of natural triphylites and sarcopsides close to 0.800

Phase diagram for the LiMn_{0.5}Fe²⁺₂(PO₄)₃ starting composition

Cañada 35 % sarcopside and 65 % triphylite T ~ 500°C

Tsoabismund 15 % sarcopside and 85 % triphylite T ~ 350°C

The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2-2xFe1+2x)(PO4)3 system

550-600°C

Frédéric Hatert · André-Mathieu Fransolet · Walter V. Maresch

No maricite in pegmatites

Alluaudite + triphylite assemblage stable up to 500-600°C

Bu = Buranga, Rwanda Ha = Hagendorf-Süd, Germany Ki = Kibingo, Rwanda

The Na-in-triphylite geothermometer

Petro.

Crystallo.

Stability

Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

Frederic Hatert · Luisa Ottolini · Peter Schmid-Beurmann

Intro.

Field

In triphylite, Na can
reach 0.08 *a.p.u.f.* at
800°C

•In maricite, Li can reach 0.10 *a.p.u.f.* at 700°C

•No partitioning below ca. 550°C

Geothermometer!

<u>Conclusions</u>

Enjoy phosphates, and....

Let's have a beer!