

CUBESATS ACTIVITIES AT THE UNIVERSITY OF LIÈGE

Xavier Werner

Space Structures and Systems Lab. Aerospace & Mechanical Engineering Dept. University of Liège

Valéry Broun, Sebastien De Dijcker, Serge Habraken, Gaëtan Kerschen, Jacques Verly

OUFTI-1

Orbital Utility For Telecommunication Innovation-1

OUFTI-1, Belgium's first nanosatellite, launched 25 April 2016 on Soyuz Flight VS14 under 1st FYS programme

OUFTI-1 heard all over the world!

> 500 Beacon messages received from HAM operators

OUFTI-2

Orbital Utility For Telecommunication Innovation-2

OUFTI-2 missions

Primary

• **D-STAR**: Provide D-STAR amateur radio communication repeater in space

Secondary

- RAD: Test two different types of shields to protect electronics from space ionizing radiations
- IMU: Estimate attitude of satellite using inertial & magnetic measurements (conceived & built by high-school students)

What is D-STAR?

- Digital-Smart Technology for Amateur Radio
- Digital communication protocol
- Voice & data transmission
- Radio & internet (roaming)
- Radio transmissions on VHF, UHF, and L bands
- Data: 1200 bps Voice: 3600 bps (AMBE encoding)
- GMSK modulation

How amateur-radio operators will use OUFTI-2 (1)

How amateur-radio operators will use OUFTI-2 (2)

Complete OUFTI-2 system: space & ground segments

Space segment

OUFTI-2: hardware architecture

— Radio link

- Power link
- Data link

Let's take a photo tour of OUFTI-2 CubeSat !

On-board computer (OBC): OBC1 & OBC2

Communication (COMM): AX.25, D-STAR, RF-IN/OUT

Communication (COMM): BCN

Batteries

Structure (STRU) & solar panels

Mechanical systems (MECH): antennas deployment system -8

First secondary payload: RAD

Ground segment

Let's take a photo tour of OUFTI-2 ground segment!

Ground segment: control room

Ground segment: rooftop

Satellite tracking antenna

D-STAR repeater antenna

29

OUFTI-NEXT

Orbital Utility for Thermal Imaging (TBC)

Mission concept

- Smart irrigation strategy of agricultural fields
- \rightarrow Possibility to detect lack of water by monitoring the leaf surface temperature
- 69% of water used for agriculture
- 40% of the fields are irrigated
- \rightarrow high potential applications

Mission specification

Long term goal:

- 50m resolution •
- Daily revisit (constellation) ۲
- Mid-wave IR

Atmospheric transmission (%)

Preliminary feasibility study

Feasibility study of an in-orbit demonstrator:

- 100m ground resolution
- CubeSat standard
- Fast development (<2 years)
- Collaboration between FSC, CSL and FS.

Time t₂

and the second

 $q_1 + q_2$

Time t₃

q1 + q2 + q3

Time t₁

Charge transfer Object movement

Charge

TDI

scanning

Payload

- Developed by CSL
- Mid-wave IR telescope
- Time Delayed Integration (TDI) linear scan

Payload

MWIR cooled detector

Neutrino™	
Thermal Imager	640 x 512, (15µm pitch) MWIR InSb
FPA / Digital Video Display Format	640 x 512
Analog Video Display Format	640 x 512 (PAL), 640 x 480 NTSC
Spectral Band	3.4 - 5.1µm Standard
Full Frame Rates	30 Hz (NTSC), 25 Hz (PAL)
Sensitivity (NEdT)	<25mK
Time to Image	<6 min room temp, <10 min at 71°C

- Three Mirrors Anastigmat by Amos
- Visible camera (TBC)

Platform

Platform

Body mounted solar panels

Thanks for your keen interest!

