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Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid
phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the
different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulat-
ing tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has
thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then
review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms

supporting their metastatic competence. Developmental Dynamics 000:000-000, 2017. © 2017 Wiley Periodicals, Inc.
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Introduction

The hematogenous metastatic spread of epithelial tumors is a
complex process involving the liberation of circulating tumor
cells (CTCs) in the bloodstream, their survival in the circulation,
the colonization of secondary organs as disseminated tumor cells
(DTCs) and finally, after an eventual period of dormancy, growth
at secondary sites and overt metastasis development.

Being easily accessible in the bloodstream, CTCs have attracted
enormous attention for their potential clinical significance (Toss
et al., 2014; Joosse et al., 2015; McInnes et al., 2015; Yu et al.,
2015; Alix-Panabieres and Pantel, 2016; Lee et al., 2016; Masuda
et al., 2016; Wang et al., 2017b). Detecting, enumerating, character-
izing and understanding CTC biology may indeed help identify
metastasis-predicting factors, guiding treatment decisions before
the detection of overt metastases and assessing therapeutic efficacy
(Krebs et al., 2014; Joosse et al., 2015; McInnes et al., 2015; Pantel
and Speicher, 2015; Alix-Panabieres et al., 2017). CTCs are also
considered as potential cellular therapeutic targets (Li and King,
2012; Liet al., 2015a, 2016).

The comprehension that CTCs constitute a genetically and phe-
notypically very heterogeneous population has further stimulated
studies aiming to characterize the metastatic founders within the
CTC population. It has thus become a major cancer research axis
to phenotype CTCs, to identify premetastatic subsets and to

*Correspondence to: Christine Gilles, Laboratory of Tumor and
Development Biology (LBTD), GIGA-Cancer, Pathology Tower, B23, CHU
Sart-Tilman, University of Liege, Liege 4000, Belgium.

E-mail: cgilles@ulg.ac.be

unravel the molecular mechanisms enabling some of them to
accomplish the early steps of the metastatic colonization (i.e.,
survival in the bloodstream and early seeding in colonized
organs) (Nadal et al., 2013; Krebs et al., 2014; Pantel and
Speicher, 2015).

We have reviewed here literature data on how epithelial-mes-
enchymal transitions (EMTs) may impact CTC biology by generat-
ing hybrid phenotypes with mesenchymal attributes
(mesenchymally-shifted cells) that may favor their liberation and
survival in the bloodstream, and their metastatic seeding.

Epithelial-Mesenchymal Plasticity/Epithelial-
Mesenchymal Transition

Epithelial-mesenchymal plasticity (EMP) (Thompson et al., 2005;
Thompson and Haviv, 2011; Savagner, 2015; Ye and Weinberg,
2015; Chaffer et al., 2016; Nieto et al., 2016) is today considered
a central actor of the metastatic cascade, providing tumor cells
with the ability to adapt to different microenvironments met dur-
ing their translocation to colonized organs (i.e., adjacent stroma,
blood, newly colonized organs). Timely and spatially regulated
dynamic interconversions between epithelial states and states
that are more mesenchymal indeed occur throughout the meta-
static cascade, enabling tumor cells to survive/develop in succes-
sively encountered microenvironment. Schematically (Figs. 1 and 2),
the classical view of EMP implication to the metastatic cascade
Article is online at: http:/onlinelibrary.wiley.com/do0i/10.1002/dvdy.
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Fig. 1. Hybrid phenotypes along the epithelial (E) -to-mesenchymal (M) spectrum.

" ~

CTC entry in the
circulation

CTC survival in
the circulation

CTC early
colonization

Fig. 2. Schematic nonexclusive hypotheses of epithelial-mesenchymal transition’s (EMT) contribution to the biology of CTC during the
metastatic spread. @ EMT occurs in the primary tumors providing tumor cells with enhanced invasive properties facilitating active intravasation
and the liberation of mesenchymally-shifted circulating tumor cell (CTC) phenotypes. Displaying enhanced EMT-driven survival properties (i.e.,
activation of survival pathways, activation of local coagulation, microtentacle formation, or evasion from immune checkpoints), those mesenchy-
mally-shifted CTCs are able to accomplish the early colonization phases. Among the EMT-derived CTCs that have niched in colonized organs,
those belonging to the plasticity window will then be able to revert to a more epithelial state thought to be involved in the metastatic outgrowth.
® EMT occurs in the primary tumors, EMT-derived cells intravasate, bringing with them more epithelial intermediates through a cooperative pro-
cess (which may eventually undergo a EMT within the blood stream, for instance by means of transforming growth factor-beta liberated from pla-
telets). The more epithelial CTCs expressing low survival properties are submitted to shear stress, anoikis, or cytotoxic immune attack and are
eliminated. As in scheme 1, mesenchymally-shifted CTCs survive and succeed in the early colonization phases. ® Clusters of CTC gain the cir-
culation through corrupted blood vessels, minimizing the effect of anoikis, thus promoting the survival of more epithelial phenotypes in the
bloodstream (the presence of mesenchymally-shifted cells in these clusters may further support the survival of CTCs within the clusters). Clus-
ters of CTC may_form niches, allowing those with metastatic competence to develop overt metastases. Platelets:*, Fibrin :’\/‘, Recruited
stromal cells =
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EPITHELIAL-MESENCHYMAL PLASTICITY IN CIRCULATING TUMOR CELLS 3

involves sequential EMTs followed by mesenchymal-epithelial tran-
sitions (METs) at different body locations (Tsai and Yang, 2013;
Jolly et al,, 2015a; Liu et al., 2015; Beerling et al., 2016; Celia-
Terrassa and Kang, 2016; Chaffer et al., 2016; Diepenbruck and
Christofori, 2016; Kolbl et al., 2016).

Thus, a switch toward a more mesenchymal state (EMT) is con-
sidered to contribute to the first phases of the metastatic translo-
cation, i.e., tumor invasion, intravasation, liberation of CTCs and
survival in the bloodstream, and metastatic niche formation.
Conversely, a reversed MET process has been associated with an
enhanced ability to proliferate and develop overt metastases in
secondary organs, thus contributing to the deadly late stages of
metastatic development (Gunasinghe et al., 2012). Unlike devel-
opmental EMT, tumor-associated EMT has rarely been reported to
involve a complete lineage switching, but rather the generation
of intermediate states (hybrid phenotypes) that distribute along
the epithelium (E) to mesenchymal (M) continuum (as schemati-
cally represented in Fig. 1). Phenotypic plasticity is believed to be
restricted to certain hybrid phenotypes also endowed with stem
cell characteristics [overlapping to some extent to the so-called
cancer stem cell (CSC) population] (Jolly et al., 2015a).

Importantly, EMT programs have been shown to directly
induce stem cell properties in epithelial tumor cells (Mani et al.,
2008; Morel et al., 2008; Bhat-Nakshatri et al., 2010; Ansieau,
2013; Kotiyal and Bhattacharya, 2014; Mallini et al., 2014;
Schmidt et al., 2015; Mladinich et al., 2016). Thus, EMT and CSC
characteristics have been shown to overlap to some extent both
in in vitro cell systems but also in tumors and CTCs from cancer
patients (Aktas et al., 2009; Giordano et al., 2012; Kasimir-Bauer
et al., 2012; Ksiazkiewicz et al., 2012; Barriere et al., 2014; Bock
et al., 2014; Krawczyk et al., 2014; Tinhofer et al., 2014). Some-
times referred to as “metastable” phenotypes (Klymkowsky and
Savagner, 2009; Savagner, 2015), these hybrid phenotypes with
mesenchymal attributes and CSC markers would be more efficient
for metastasis. Levine and co-workers have recently shown with
elaborate modeling that the hybrid state may be quite stable
(Jolly et al., 2015a,b, 2016).

Although the successive EMT/MET scheme of the metastatic
spread presented above is generally accepted, it is still a subject
of debate and discussions (Tsuji et al., 2009; Brabletz, 2012;
Fischer et al., 2015; Zheng et al., 2015; Diepenbruck and Christo-
fori, 2016). It indeed remains unclear if the same plastic tumor
cell is able to overcome all obstacles of the metastatic cascade
through phenotypic adaptation or whether further genetic altera-
tions occur during the metastatic cascade that empower some
tumor cells to form metastases. Whether different phenotypes
along the E to M continuum cooperate throughout the metastatic
process to protect cells with the highest ability to proliferate at
secondary site is also a possibility. Two recent studies using
transgenic models suggested that EMT is dispensable for metasta-
sis but required for chemoresistance and further revived the
debate (Fischer et al., 2015; Zheng et al., 2015). It is also very
likely that all these mechanisms may coexist to different extents,
depending on the model used or the cancer type analyzed, mak-
ing our understanding of their roles in the metastatic process and
the establishment of effective therapies more difficult.

EMP associated with metastatic progression is recognized to be
commonly regulated by molecular actors of core EMT programs,
although a full mesenchymal conversion is considered uncom-
mon. These EMT core molecular actors have been reviewed else-
where (Kalluri and Weinberg, 2009; De Craene and Berx, 2013;

Tsai and Yang, 2013; Lamouille et al., 2014; Jolly et al., 2015b;
Nieto et al., 2016) and will, therefore, not be detailed here. EMT
associated with metastasis is nevertheless clearly not a well-
defined unique molecular program driving a binary transforma-
tion from a fully epithelial cell to a mesenchymal cell, nor does it
involve the generation of well-characterized sequential hybrid
phenotypes. There is indeed a wide repertoire of epithelial plastic-
ity and a multiplicity of potential hybrid phenotypes. There is
thus a clear need to identify how specific molecular actors of
EMT programs may functionally impact on specific stages of the
metastatic cascade to further refine therapeutic strategies.
Examining the relationship between EMT and CTCs has gained
a fast-growing interest in the past decade. EMT has indeed rapidly
emerged as a process endowing tumor cells with properties that
may functionally impact CTC life cycle (Bonnomet et al., 2010;
Barriere et al., 2014; Krawczyk et al., 2014; Aceto et al., 2015;
Jolly et al., 2015a; Liu et al., 2015; McInnes et al., 2015; Pantel
and Speicher, 2015; Kolbl et al., 2016; Alix-Panabieres et al.,
2017), including invasive/motile properties (Nieto et al., 2016),
resistance to apoptosis/anoikis (Tiwari et al., 2012; Frisch et al.,
2013; Cao et al,, 2016), and stemness properties (Ombrato and
Malanchi, 2014; Ye and Weinberg, 2015; Fabregat et al., 2016).

EMT Facilitates the Entry of CTCs
into the Circulation

Because EMT has been extensively shown to confer migratory
and invasive properties to epithelial tumor cells, it is generally
considered that mesenchymally-shifted tumor cells display
enhanced ability to actively enter the circulation and thus
become CTCs (Bonnomet et al., 2010; Tsai and Yang, 2013;
Chiang et al., 2016). Accordingly several experimental settings
using transendothelial migration assays, chick chorioallantoic
membrane (CAM) assays, and intravital imaging emphasized a
contribution of EMT (mainly using cells with forced expression of
EMT transcription factors such as Snail or ZEB1) in intravasation
(Drake et al., 2009; Ota et al., 2009; Bonnomet et al., 2010). A
crucial role of EMT-induced proteases has also been identified.
Using intravital imaging on tumor cells xenografts, it has for
instance been shown that the activation of the transforming
growth factor-beta (TGF-B) pathway associates with a certain
degree of trans-differentiation, promotes single cell motility, and
enables invasion into blood vessels. The activation of the TGF-
pathway was shown to be a transient event and was not main-
tained at distant sites (Giampieri et al., 2009). This is also in
agreement with several earlier studies associating EMT with a
single-cell mode of migration (Friedl and Gilmour, 2009).

Other mechanisms of entry of tumor cells in the circulation
have also been proposed. Thus, cooperative processes by which
EMT shifted cells would “help” more epithelial tumor cell pheno-
types (suggested to be more competent for metastasis) to gain the
circulation may also occur and have also been reported in a syn-
genic tumor model (Tsuji et al., 2008, 2009). Indeed, Tsuji et al.
demonstrated that EMT negative hamster keratinocytes (HPCP-1)
were unable to metastasize after subcutaneous injection unless
co-injected with EMT-transformed counterparts (overexpressing
the downstream effector of the TGF-B pathway p12 “€P?-AP1) that
enabled intravasation of the EMT-negative cells. Another study
similarly reported a cooperation between EMT- and EMT + cells
for metastasis in xenograft models of human prostate and
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bladder cancer cell lines in which the expression of Snail was
modulated (Celia-Terrassa et al., 2012).

In line with the observation of corrupted blood vessels in
tumors, a passive mode of entry of tumor cells in the circulation,
that could thus be EMT-dependent or EMT-independent, has also
been suggested (Alpaugh et al., 2002; Bockhorn et al., 2007;
Bednarz-Knoll et al., 2012). Such a passive mode of entry has
been more particularly advocated to explain the detection of
clusters of CTCs in the blood of cancer patients, although a col-
lective migration process during intravasation cannot be
excluded (Giampieri et al., 2010; Aceto et al., 2015). Clusters of
CTCs had actually been observed as early as in the 1970s (Fidler,
1973; Liotta et al., 1976). The possibility that these clusters might
actually form during the processing of the blood samples during
the CTC assay has been debated (Bednarz-Knoll et al., 2012),
although they are much less prevalent than isolated CTCs. These
clusters are today recognized as functional entities and have been
detected in various types of cancers including breast, lung, pan-
creas, prostate, or kidney cancers (Molnar et al., 2001; Stott et al.,
2010; Cho et al., 2012; Hou et al., 2012; Krebs et al., 2012; Yu
et al.,, 2013; Aceto et al., 2014; Mu et al., 2015; Paoletti et al.,
2015; Wang et al., 2017a).

Adding to this, a shift toward a more mesenchymal phenotype
may also be gained within the circulation. For instance, Labelle
et al. suggested that TGF-$ liberated from activated platelets may
enhance EMT in TGF-B-responsive tumor cells and promote metas-
tasis formation (Labelle et al., 2011; Pantel and Speicher, 2015).

CTCs may thus enter the circulation either as mesenchymally-
shifted cells or not but may also acquire mesenchymal attributes
within the circulation (Fig. 2). Reflecting the likelihood of coexist-
ing mechanisms used by tumor cells to enter the bloodstream, and
adding genomic heterogeneity, CTCs are indeed a phenotypically
heterogeneous population. Although the active contribution of
EMT implication to the different processes of entry of CTCs in the
circulation may vary, the repetitive observation of CTCs expressing
mesenchymal attributes both in the blood of tumor animal models
or in the blood of cancer patients (Table 1) clearly support a contri-
bution of EMT to CTC phenotypical heterogeneity (Bednarz-Knoll
et al.,, 2012; Krawczyk et al., 2014; Liu et al., 2015; Pantel and
Speicher, 2015; Kolbl et al., 2016; Alix-Panabieres et al., 2017).

Regarding animal models, Rhim and coworkers detected CTCs
expressing the EMT transcription factor ZEB2 at the premalignant
stage of tumor progression in a K-Ras-driven mouse pancreatic
tumor model (Rhim et al., 2012). Using a transgenic mouse model
expressing Twist under an inducible keratin 5 promoter, Tsai and
colleagues showed that Twist induction increased the number of
CTCs and that these CTCs presented an EMT phenotype with a
loss of E-cadherin and a gain of vimentin expression (Tsai et al.,
2012). Using a xenograft system of human breast tumor MDA-
MB-468 cells, we also reported dynamic EMT changes in the pri-
mary tumors and the liberation of CTCs expressing EMT markers,
including Snail, Slug, and vimentin (Bonnomet et al., 2012). In
these different studies, the liberation of EMT-shifted CTCs corre-
lated with the appearance of metastatic lesions, supporting the
idea that these CTCs expressing mesenchymal traits could be met-
astatic founders.

Similarly, CTCs expressing common EMT actors such as EMT
transcription factors (ZEB1, Twist, Snail, or Slug), vimentin, or N-
cadherin have been observed in different types of cancers and
particularly in breast cancer patients but EMT-shifted CTCs were

also identified in patients with lung, colorectal, prostate, bladder,
or endometrial cancers (Table 1).

In light of these observations, it has been proposed that exam-
ining mesenchymal markers should be more systematically
included in the detection of CTCs (Bednarz-Knoll et al., 2012;
Barriere et al., 2014; Bulfoni et al., 2016b). Although CTC isola-
tion techniques have been extensively reviewed elsewhere and
will not be detailed here, it is important to perceive that the
potential contribution of EMT to CTC biology largely complicates
their purification and characterization (Bednarz-Knoll et al.,
2012; Alix-Panabieres and Pantel, 2014; Joosse et al., 2015; Pan-
tel and Speicher, 2015; Hyun et al., 2016; Alix-Panabieres et al.,
2017). Indeed, CTC isolation and identification techniques are
most commonly based on the detection of epithelial markers (i.e.,
EpCAM is frequently used in antibody-based purification proce-
dure and cytokeratins are often examined to discriminate epithe-
lial CTCs from blood cells). It has thus been recognized that
certain mesenchymally-shifted CTCs could be excluded from dif-
ferent CTC assays. This has stimulated the development of tech-
nologies to include the detection of EMT-shifted CTCs and their
more systematic examination (Bednarz-Knoll et al., 2012; Bar-
riere et al., 2014; Bulfoni et al., 2016b). Strategies, essentially
based on physical properties of CTCs (mostly size-based technolo-
gies) and using filtration or microfluidic device, and/or negative
selection of blood cells, are thus being developed that do not rely
on epithelial marker for CTC isolation, thus enriching untagged
CTCs (Aceto et al., 2015; Alix-Panabieres et al., 2017).

EMT Enhances CTC Metastatic Competence

Considering that CTCs expressing mesenchymal attributes are
commonly found in cancer patients in the light of the pro-
metastatic properties provided by EMT programs, it has been sug-
gested that these cells exhibiting hybrid phenotypes within the
CTC population might be metastatic founders, so called MICs
(metastasis initiating cells).

In accordance with this hypothesis, the presence of mesenchy-
mally-shifted CTCs has been associated with poor clinical param-
eters in several studies as detailed in Table 1. Among the most
frequently examined EMT markers in CTCs are EMT transcription
factors (Twist, ZEB1, Snail, or Slug), vimentin, fibronectin, N-
cadherin, PAI-1 (plasminogen activator inhibitor-1), c-MET (HGF
receptor), or molecular actors of survival pathways (epidermal
growth factor receptor [EGFR], Akt, PI3K). Regarding epithelial
markers, E-cadherin and cytokeratins are commonly investigated.
In the light of the finding that EMT features often correlate or
even induce the expression of stem cell markers, CD44, ALDH1 or
CD133 (promin 1) are also frequently examined. Thus, it was for
instance shown that CTCs expressing the functional stem cell
marker ALDH1A1 together with the EMT transcription factor
Twist were more frequently detected in patients with metastatic
breast cancer (Papadaki et al., 2014). Another study identified
Plastin 3 as a good marker of EMT-shifted CTCs, which were
shown to harbor a prognostic relevance (Yokobori et al., 2013).
Bulfoni and coworkers also associated EMT traits in CTCs with
poor prognosis in metastatic breast cancer patients (Bulfoni et al.,
2016a).

The prevalence of mesenchymally-shifted CTCs is, however,
hard to establish, varying with the tumor type, the stage of the
disease and the markers analyzed. In an elegant study, Yu et al.
(2013), examined several epithelial (Keratins 5, 7, 8, 18, 19,
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Fig. 3. Main epithelial-mesenchymal transitions (EMT)-driven properties that likely contribute to circulating tumor cells (CTC) biology. Those
properties providing CTC with enhanced survival potential are more particularly discussed in the text.

EpCAM, E-cadherin) and mesenchymal (N-cadherin, fibronectin,
PAI-1) markers as probe pools in CTCs from breast cancer
patients. They provided evidence of EMT both in rare cells within
primary tumors and more abundantly in CTCs and further
arranged CTC phenotypes along the E to M spectrum into five
categories. In 17 breast cancer patients analyzed, 12 displayed
more than 50% of CTCs with mesenchymal attributes. Only 4
patients had a higher percentage of epithelial CTCs than mesen-
chymal CTCs. The percentage of mesenchymal CTCs was the
highest (between 80 and 100%) in the aggressive triple negative
subtype of breast cancers. Serial monitoring of 11 patients also
revealed an increase in the percentage of mesenchymal CTCs,
leading the authors to suggest an association between these CTCs
and disease progression. Comparing blood samples performed in
cancer patients before and after therapy, the authors further
revealed that patients who had progressive disease while on ther-
apy displayed an increased number of mesenchymal CTCs in the
post-treatment sample (Yu et al., 2013).

Although it is feasible that the hybrid state has become stably
encoded through genetic/epigenetic selection, it seems likely that
the frequent detection of hybrid CTC phenotypes associated with
poor clinical parameters also reflects dynamic plasticity and higher
ability of hybrid E/M phenotypes to better adapt to a selective
environmental context. In support of this, although the authors did
not specifically examine EMT markers, phenotypical interconver-
sion between HER2+ and HER2- CTC subpopulations isolated
from breast cancer patients, demonstrate the existence of a
dynamic plasticity within the CTC population (Jordan et al., 2016).

In support of these data, functional observations further suggest
that specific mesenchymal attributes may support CTC metastatic
competence. Thus, adding to EMT-driven invasive properties that
may contribute to CTC liberation from tumor masses, EMT is also
likely to enhance CTC survival in the bloodstream and in colo-
nized organs, and also to favor early metastatic niche formation.

EMT Increases CTC Survival and Early
Colonization

During translocation in the bloodstream and the initial hours of
metastatic colonization, CTCs are confronted to harsh selective

pressure: they have to resist shear stress, modifications of cell-
cell and cell-matrix contacts (inducing the specialized cell death
program anoikis), and cytotoxic immune attack (particularly
implicating natural killers, NK cells). Accordingly, several works
identified a large number of apoptotic CTCs in cancer patients
(Larson et al., 2004; Rossi et al., 2010) and, in some studies, a low
percentage of apoptotic CTCs has been associated with poorer
clinical parameters (Kallergi et al., 2013; Spiliotaki et al., 2014).
For instance, Kallergi et al. detected apoptotic CTCs in patients
with breast cancer irrespective of their clinical status, although
the incidence of detection was higher in early compared with
metastatic patients (Kallergi et al., 2013).

The mechanisms used by certain CTCs to survive in the blood-
stream and during initial metastatic colonization are being better
understood, and a role of EMT in conveying these specific proper-
ties is being recognized. EMT-associated properties endowing
CTCs with enhanced survival/early colonizing potential may
include the activation of survival pathways, the activation of the
coagulation cascade, the formation of particular cytoskeletal
structures (microtentacles), the evasion of particular immune
checkpoints and cluster formation (Fig. 3). The contribution of
EMT in supporting these mechanisms is discussed below.

Induction of Survival Pathways

An EMT-driven gain of resistance to apoptosis/anoikis has been
widely reported in many cellular tumor cell systems (Bonnomet
et al., 2010; Tiwari et al., 2012; Bonavida et al., 2013; Cao et al.,
2016). For instance, silencing or enhancing the core transcription
factors of EMT Snail, Slug, or Twist, have been shown to enhance
or reduce resistance to apoptosis induced by various means (e.g.
irradiation, cytotoxic drugs, serum deprivation,...) and in many
tumor cell types (Kajita et al., 2004; Zhang et al., 2007; Escriva
et al., 2008; Haddad et al., 2009; Kurrey et al., 2009; Vichalkovski
et al., 2010; Zhang et al., 2010; Lim et al., 2013; Mariano et al.,
2015; Roberts et al., 2016). In several studies, the positive impact
of EMT on resistance to anoikis was more particularly examined
(Onder et al., 2008; Smit et al., 2009; Howe et al., 2011; Kumar
et al,, 2011; Bao et al., 2013; Huang et al., 2013). Among others,
the observed effects of EMT-induced resistance to apoptosis/
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anoikis include the activation of the Akt survival pathway, a
diminution of caspase activity, an induction of Bcl2 and antago-
nizing of p53 activity. Along these lines, molecular actors of sur-
vival pathways (e.g., EGFR, Akt, PI3K,...) have been detected in
CTCs, sometimes in association with more classical EMT markers
such as EMT transcription factors or stem cell markers (Aktas
et al., 2009; Kallergi et al., 2011; Barriere et al., 2012a,b; Kasimir-
Bauer et al., 2012; Hanssen et al., 2016; Todenhofer et al., 2016)
(Table 1).

Expectedly and interestingly, the ability of EMT to induce
tumor resistance to chemo or targeted therapies (resistance to
EGFR inhibitors has been most often examined) has become a
major research axis and this mechanism has been demonstrated
in a variety of in vitro (Zhang et al., 2007, 2010; Haddad et al.,
2009; Lim et al., 2013; Mariano et al., 2015; Roberts et al., 2016;
Zhao et al., 2016b) and in vivo models (Fischer et al.,, 2015;
Zheng et al., 2015), and also clinically (Thomson et al., 2005;
Yauch et al., 2005; Du and Shim, 2016). More particularly, CTCs
expressing mesenchymal markers have been associated with a
resistance to chemo or targeted therapies (Mitra et al., 2015). This
has been illustrated in different animal models (Fischer et al.,
2015; Zheng et al., 2015) but also in cancer patients. For instance,
Mego et al. reported that CTCs expressing EMT transcription fac-
tors (Twistl, Snail, Slug, ZEB1, and FOXC2 were examined in
their study) in breast cancers are more resistant to neoadjuvant
therapy (Mego et al., 2011). EMT and the stem cell marker ALDH1
on CTCs might also serve as an indication for therapy resistant
tumor cell population (Aktas et al., 2009). An incremental expres-
sion of EMT-related genes in CTCs has also been associated with
metastatic castration-resistant prostate cancers (Chen et al.,
2013). It has thus been proposed that CTCs with EMT attributes
could better resist chemo- or targeted therapy and would thus be
related to relapse occurring after a period of remission.

Activation of Coagulation

Interestingly, increasing data also suggest an implication of
coagulation actors in enhancing the ability of CTCs to survive
and accomplish early metastatic colonization. The activation of
coagulation has indeed long been correlated with malignancy
and the beneficial impact of anticoagulants on cancer progres-
sion has been demonstrated in animal models and evaluated in
clinical studies (Lee, 2010; Degen and Palumbo, 2012; Gil-
Bernabe et al., 2013). The presence of CTCs has also been associ-
ated with increased risk of thromboembolism in metastatic breast
cancer (Mego et al., 2009). More specifically, tissue factor (TF), a
cell-associated activator of the coagulation cascade expressed by
a variety of tumor cells, has emerged as a central player linking
coagulation and cancer (Palumbo, 2008; Garnier et al., 2010; Ruf,
2012; Williams and Mackman, 2012; Cole and Bromberg, 2013;
Gil-Bernabe et al., 2013; Unlii and Versteeg, 2014).
Coagulation-dependent effects of TF on early survival and
early metastasis have been demonstrated by the laboratory of Pr.
Degen, who injected intravenously tumor cells modified for TF
expression in mice with genetic defects in distal hemostatic fac-
tors (prothrombin and fibrinogen). They thus revealed that TF
supports early metastasis through mechanisms dependent on
these distal hemostatic factors (Palumbo and Degen, 2007; Pal-
umbo et al., 2007; Palumbo, 2008; Degen and Palumbo, 2012).
Recently, we linked TF expression and EMT and emphasized the
importance of this regulatory axis on CTC survival (Bourcy et al.,

2016). We indeed observed that growth factor induced-EMT trig-
gers TF expression in several cell systems along with increased
coagulant properties. Another group also reported enhanced TF
expression in A431 cervical cancer cells induced to EMT through
EGFR activation or E-cadherin blockade (Milsom et al., 2008).
Further strengthening the link between EMT programs and coag-
ulation, we reported that silencing the EMT transcription factor
ZEB1 inhibited both EMT-associated TF expression and coagulant
activity. EMT-positive cells also exhibited a higher survival/per-
sistence in lungs of mice colonized 24 hrs after intravenous injec-
tion, which was diminished by silencing of TF or ZEBI.
Conversely, triggering de novo expression of Snail in MDA-MB-
468 breast tumor cells was shown to increase TF, coagulant prop-
erties and early metastasis in mice. Tumor cells that persisted and
stopped in the lungs were shown to be surrounded by fibrin and
platelets. Supportively, using three-dimensional visualization of
direct infusion of fluorescence labeled antibody to observe the
interaction of tumor cells with platelets and fibrin(ogen) in iso-
lated lung preparations, Im and co-workers also observed that
tumor cells arrested in the pulmonary vasculature were associated
with a clot composed of both platelets and fibrin(ogen) (Im et al.,
2004). Thus, EMT-driven local coagulation around EMT-positive
CTCs could thus generate a fibrin/platelet rich microclot around
these CTCs. This fibrin-rich network could constitute a protective
shield enhancing CTC survival by physically protecting the CTCs
against shear stress or NK-mediated clearance, or by providing
an anchoring matrix that would minimize anoikis.

Accordingly, a mechanism involving a protective role of fibrin
and/or platelets in NK-induced cytotoxicity against tumor cells
has been proposed based on in vitro observations and on preclini-
cal experiments in mice using a variety of mouse and human
carcinoma cell lines (Palumbo et al., 2000, 2005; Stegner et al.,
2014; Lou et al., 2015; Leblanc and Peyruchaud, 2016; Li et al,,
2016). Although platelet binding to CTCs may involve direct
interactions, fibrin has also been shown to enhance adherence
between platelets and tumor cells and to inhibit cytotoxicity
against tumor cells (Biggerstaff et al., 1999, 2008). Palumbo et al.
further showed that fibrin(ogen)-dependent and platelet-
dependent evasion of NK cell-mediated clearance of early micro-
metastases rely on TF expression by tumor cells, although they
clearly demonstrated that NK-independent mechanisms are also
involved in TF-mediated metastasis (Palumbo et al., 2007). Con-
sidering our findings linking TF expression, coagulation and EMT
with these observations, it is conceivable that EMT-shifted CTCs
may display enhanced potential to resist immune clearance.

Along these lines and providing clinical relevance for the
involvement of an EMT-driven local activation of the coagula-
tion cascade around the EMT-shifted phenotypes, our group iden-
tified a subpopulation of CTCs expressing vimentin and TF in the
blood of metastatic breast cancer patients (Bourcy et al., 2016).

Formation of Specific Protective Cytoskeletal
Structures (Microtentacles)

Another mechanism conveyed by EMT that may facilitate resis-
tance to anoikis and the initial colonization of distant organs
involves the formation of particular cytoskeletal structures
(Matrone et al., 2010). Thus, it has been proposed that free-
floating CTCs display cytoskeletal reorganization compared with
tumor cells attached to a matrix, which help them resist to shear
stress and anoikis. This mechanism involves the formation of so-
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called microtentacles. These structures are built of Glu-tubulin
(generating more stable detyrosinated microtubules) and are
enhanced by vimentin, one of the most best-known markers of
EMT (Whipple et al., 2008). Further implicating EMT in the pro-
cess, Snail and Twist were also shown to regulate these structures
in tumor cells (Whipple et al., 2010). Additionally, microtentacles
have been reported to infiltrate the junctions between endothelial
cells, suggesting that they may also facilitate early colonization
by enhancing the reattachment of CTCs to the vascular endothe-
lium (Whipple et al., 2010).

Immune Escape

The expression of programmed death-ligand 1 (PD-L1) at the sur-
face of tumor cells is considered to play a pivotal role in the abil-
ity of tumor cells to escape elimination by the immune system.
Indeed, PD-L1 and its programmed death receptor (PD-1) consti-
tute a physiological immune checkpoint system. Thus, PD-L1 is
expressed on antigen-presenting cells and PD-1 is expressed at
the surface of activated T-cells. Upon binding of the ligand to the
receptor, a strong proliferative inhibitory signal is sent to the T-
cells. By expressing PD-L1, tumor cells have been shown to
hijack this recognition mechanism to escape elimination by the
immune system. Recently, PD-L1 has been detected on the sur-
face of CTCs of breast cancer patients (Mazel et al., 2015), non
small cell lung cancer patients (Nicolazzo et al., 2016), or bladder
cancer patients (Anantharaman et al., 2016) and has been pro-
posed as a mechanism enhancing CTC immune escape and sur-
vival (Wang et al., 2016; Alix-Panabieres et al., 2017).
Independent studies have revealed that EMT pathways, such as
the miR200/ZEB1 axis or the EMT-induced PI3K/Akt pathway,
regulate PD-L1 in vitro (Chen et al., 2014; Alsuliman et al., 2015).
An association between PD-L1 expression and EMT markers has
also been observed in breast cancer or head and neck squamous
cell carcinoma (Alsuliman et al., 2015; Ock et al., 2016). It is thus
conceivable that CTCs with an EMT-shifted phenotype would be
more efficient in hijacking this PD-1/PD-L1 immune escape
system.

Although it has not been specifically examined in CTCs, it is
interesting to note that other molecular mechanisms may be used
by EMT-shifted cells to resist immune attack (Akalay et al., 2013;
Tripathi et al., 2016). For instance, a depleted repertoire of HLA
class I-bound peptides has been reported in mesenchymally-
shifted non small cell lung carcinoma cells, thereby increasing
their resistance to cytotoxic T lymphocytes (Tripathi et al., 2016).

Formation of Clusters of CTCs

The ability of CTCs to form and/or travel as homotypic or hetero-
typic (together with platelets, blood cells, or normal cells from the
primary site such as fibroblasts and/or endothelial cells,. ..) clus-
ters has also been proposed as a mechanism enhancing their met-
astatic competence (Duda et al., 2010; Aceto et al., 2015; Cheung
et al., 2016; Pothula et al., 2016), although the prevalence of
hybrid E/M phenotypes in these structures is unclear. Such aggre-
gates could indeed enhance physical protection of CTCs during
their translocation in the circulation but also facilitate the attach-
ment of CTCs to blood vessels and niche formation. Although
much less prevalent than isolated CTCs, CTC clusters have been
suggested to harbor high metastatic potential (Aceto et al., 2015).
Accordingly, their presence has been associated with a poor

prognosis in several cancer types including breast, lung, and
prostate cancers (Hou et al.,, 2012; Aceto et al., 2014; Paoletti
et al., 2015; Wang et al., 2017a).

An early report by Glinsky and co-workers (Glinsky et al.,
2003) showed in vitro, ex vivo, and in vivo that metastatic breast
and prostate carcinoma cells form multicellular homotypic aggre-
gates at the sites of their primary attachment to the endothelium.
Alternatively, a study using fluorescently tagged tumor cell
xenograft models, suggests that CTC clusters do not form within
the circulation but are derived from grouping tumor cells that
enter the circulation together (Aceto et al., 2014). These authors
also revealed that ex vivo formed clusters are highly metastatic
when injected intravenously in mice and that their metastatic
potential relies on the expression of the cell-cell adhesion mole-
cule plakoglobin. Plakoglobin was accordingly observed by these
authors in CTC clusters in metastatic breast cancer patients
(Aceto et al., 2014). Although the authors report that cell-cell
contacts are present in these clusters, the EMT status in these
entities is still underexplored (Aceto et al., 2015).

In a model of cell tracing in a MMTV-PyMT mouse back-
ground, Cheung et al. (2016) also observed polyclonal tumor cell
clusters at different stages of metastasis including circulating
tumor cell clusters. They further reported that cells in the clusters
frequently expressed the epithelial marker keratin 14 and further
demonstrated a functional role of K14 expression in metastasis.
Interestingly, transcriptomic analyses revealed that the
K14 + population not only expressed epithelial markers (several
cell-cell adhesion molecules) but was also enriched for EMT/
stemness markers such as Tenascin C or Jagged1 (Cheung et al.,
2016). Along the same lines, an in vitro study has shown that the
Notch-Jagged1 signaling pathway is involved in the formation of
clusters exhibiting a hybrid E/M phenotype (Boareto et al., 2016).

Directly supporting the idea that circulating tumor emboli are
made of cells expressing hybrid E/M phenotypes, the study of Yu
et al. (2013) identified cells expressing both epithelial (such as
EpCAM or cytokeratins) and mesenchymal markers (including
fibronectin, N-cadherin or PAI-1) in isolated CTCs but also in
CTC clusters from breast cancer patients. Vimentin expression
has also been observed in circulating tumor microemboli detected
in lung cancer patients (Hou et al., 2011). Because, as we dis-
cussed above, EMT contributes through diverse mechanisms to
enhance CTC survival (activation of survival pathway, microten-
tacles, coagulation), the presence of EMT-shifted CTCs in clusters
combined with the survival advantage of cell-cell interactions,
would very likely overall enhance the survival of the clustered
tumor cells (Aceto et al., 2015). Also, the possibility that activa-
tion of the coagulation cascade may contribute to the formation
or the survival of the clusters cannot be excluded. Supportively,
CTC clusters identified in breast cancer patients showed an abun-
dance of attached platelets (Yu et al., 2013).

EMT Supports Metastatic niche Formation

Regardless of the suspected involvement of a MET in the final
metastatic outgrowth, data suggest that CTCs expressing mesen-
chymal and cancer stem cell attributes harbor enhanced compe-
tence to accomplish the very early colonization steps and the
formation of metastatic niches. CTC homing in colonized organs
(thus becoming disseminated tumor cells, DTCs) involves interac-
tions with the endothelium and the establishment of a favorable
microenvironment, a metastatic niche, that will sustain their
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growth after a possible period of dormancy. The molecular and
cellular entities implicated, and the timing of metastatic niche
formation, are still poorly understood but are being characterized.
Although niche formation is likely to implicate a repertoire of
cellular and molecular actors varying upon the context (Descot
and Oskarsson, 2013), it is today clear that a particular matrix is
created in the niche and that host cells, including immune cells
and other stromal cells (activated fibroblasts, mesenchymal stem
cells, endothelial cells,...) are recruited and are essential to the
formation of the niche (Ombrato and Malanchi, 2014; Plaks
et al., 2015). Interactions between the CTCs/DTCs and the niche
microenvironment are determinant for the survival and the adap-
tation of the CTCs.

Thus, the EMT-associated cancer stem cell attributes and acti-
vation of the cell surviving mechanisms listed above are likely to
cooperate to sustain self-renewal, survival, possible dormancy
and therapeutic resistance of DTCs. Adding to this, some of these
mechanisms may also directly contribute to the establishment of
the niche and the recruitment of host cells. Therefore, if coagula-
tion is suspected to protect CTCs during their travel in the blood-
stream and during early hours of colonization, published
literature also implicates coagulation in early phases of niche for-
mation (Palumbo and Degen, 2007; Palumbo, 2008; Degen and
Palumbo, 2012; Gil-Bernabe et al., 2013). Thus, both fibrin(ogen)
and platelets may guide the formation of early metastatic niche
by regulating CTC interactions with the endothelial wall, and pla-
telets were also shown to enhance the recruitment of inflamma-
tory cells into the niche (Im et al., 2004; Labelle and Hynes, 2012;
Labelle et al., 2014; Lou et al., 2015; Leblanc and Peyruchaud,
2016; Tesfamariam, 2016). Importantly, TF was shown to
enhance tumor cell survival after arrest in the lung during experi-
mental lung metastasis and to stimulate metastatic niche forma-
tion by recruiting macrophages (Gil-Bernabe et al., 2012).
Although the studies mentioned above have not directly exam-
ined a potential contribution of EMT, it is conceivable that EMT,
by enhancing TF expression and the formation of microclots
around CTCs, could directly modulate these processes.

Directly evidencing the importance of specific mesenchymal
attributes of MICs in the establishment of the metastatic niche,
an EMT axis modulated by the Axl receptor tyrosine kinase
(RTK), has been shown to play a key role in the early establish-
ment of metastatic niches by activating fibroblasts in the colo-
nized organs as a result of thrombospondin 2 secretion (Ombrato
and Malanchi, 2014; Del Pozo Martin et al., 2015). The authors
demonstrated that the cancer cell acquired Axl-driven mesenchy-
mal features facilitate fibroblast activation and the first phase of
a metastatic niche formation. They then identified a second phase
of metastatic colonization in which the activated stroma modu-
lates the EMT of cancer cells toward a more epithelial state with
loss of Axl and EMT markers expression. Additionally, using a
model of MMTV-Her2 mice, Aguirre-Ghiso’s group showed that
HER2 + DTCs activate a Wnt-dependent EMT dissemination pro-
gram without the complete loss of an epithelial phenotype. They
further reported that these early disseminated cancer cells
expressing Twistl and a low level of E-cadherin are capable of
forming metastasis after a dormancy phase (Harper et al., 2016).
In agreement with other studies (Ocana et al., 2012; Tsai et al.,
2012), these findings are consistent with the concept that mesen-
chymal attributes of hybrid MIC phenotypes are required for met-
astatic niche initiation and an eventual dormancy phase while a
dynamic EMT inhibition (MET) at the secondary site occurs

within the second phase of metastatic colonization (Bednarz-
Knoll et al., 2012; Brabletz, 2012; Tsai and Yang, 2013; Ombrato
and Malanchi, 2014).

In line with these experimental observations, few reports have
analyzed EMT markers in DTC from the bone marrow of cancer
patients to examine their potential hybrid phenotype. So far, data
have been essentially collected from cell lines established from
DTCs isolated from bone marrow of cancer patients demonstrat-
ing the co-existence of epithelial (keratins, EpCAM) and mesen-
chymal/stem cell markers (vimentin, PAI-1, Twist, CD-44)
(Willipinski-Stapelfeldt et al., 2005; Balic et al., 2006; Watson
et al., 2007; Bartkowiak et al., 2009).

Functional Assays Reveal that MICs are
Present in the Blood of Cancer Patients

The data reported so far thus support the idea that CTCs display-
ing hybrid phenotypes with mesenchymal and stem cell attributes
would be those with enhanced metastatic competence. Ulti-
mately, demonstrating whether MICs are present in CTCs of can-
cer patients relies on the development of assays allowing
examination of the functional metastatic competence of CTCs
(Alix-Panabieres et al., 2016). Thus, several in vitro cultures and
assays have been developed to examine viability, proliferative, or
invasive properties of CTCs isolated from cancer patients (Gao
et al.,, 2014; Martin et al., 2014; Khoo et al., 2015, 2016; Alix-
Panabieres et al., 2016). Nevertheless, the most obvious assay
with which to examine the tumorigenic and metastatic compe-
tence of CTCs is the CTC-derived xenograft assay (CDX), consist-
ing in injecting different subpopulations of CTCs isolated from
cancer patients in immunodeficient mice (Hodgkinson et al.,
2014; Yu et al., 2014; Cayrefourcq et al., 2015; Alix-Panabieres
et al., 2016). Some authors also focused on examining CTC meta-
static competence after intravenous injection of CTCs. Another
variation consists in culturing and expanding the CTCs in vitro
before injection in the animal. Using such in vivo assays, the
presence of MICs within the CTC population of different types of
cancers has been demonstrated (Rossi et al., 2014; Sullivan et al.,
2014; Alix-Panabieres et al., 2016). Although further investiga-
tions and more extensive phenotyping are required, few studies
more particularly support a potential relationship between hybrid
E/M CTC phenotypes and metastatic competence. Thus, Zhang
et al. established cell lines from breast cancer-derived, EpCAM-
negative CTCs that expressed hybrid phenotypes with the expres-
sion of epithelial, mesenchymal and cancer stem cell markers
(cytokeratins 8 and 18, vimentin, CD44) and that displayed meta-
static competence after tail-vein or intracardiac injection (Zhang
et al., 2013). They further established a molecular signature
(HER2+/EGFR+/HPSE+/Notch1+) that accompanied enhanced
metastatic competency in the brain. Injecting CTCs isolated from
patients with metastatic breast cancer into the femur of immuno-
compromised mice, Baccelli et al. also demonstrated the existence
of MICs that gave rise to bone, lung, and liver metastases. These
MICs were found to express EpCAM, CD44, CD47, and c-MET
(HGF receptor) (Baccelli et al., 2013). Additionally, the authors
reported that the levels of CD44+/c-MET+/CD47 + CTCs, but not
bulk CTCs, correlated with lower overall survival and increased
number of metastatic sites.
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Concluding Remarks

CTCs with hybrid epithelial/mesenchymal phenotypes and
expressing stem cell markers are present in the blood of cancer
patients harboring epithelial tumors. The detection of mesenchy-
mally-shifted CTCs has further been associated with poor clinical
parameters in several studies, stimulating their more systematic
detection for predictive/prognostic perspectives. Adding to this,
literature accumulates that functionally implicates EMT in the
biology of CTCs and in the early phases of the metastatic spread.
EMT may thus contribute to the liberation of CTCs into the blood-
stream and provide CTCs with enhanced survival properties and
increased ability to initiate metastatic niches. It has been sug-
gested that the CTCs harboring mesenchymal attributes are those
with an enhanced metastatic competence, so called MICs. Never-
theless, there is a repertoire of epithelial plasticity and a multi-
plicity of potentially metastable hybrid phenotypes. There is thus
a clear need to identify specific molecular mediators of EMP that
participate functionally in specific stages of the metastatic
spread, so as to further refine therapeutic strategies.
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