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Abstract 

 

The partial pressure of CO2 (pCO2) and dissolved inorganic carbon (DIC) were 

monitored in shallow coastal waters located inside and outside giant kelp beds 

(Macrocystis pyrifera) located in the Kerguelen Archipelago (Southern Ocean). 

Photosynthesis and respiration by microplankton and kelp lead to marked pCO2 and 

DIC diel cycles. Daily variations of pCO2 and DIC are significant in the spring and 

summer, but absent in the winter, reflecting the seasonal cycle of biological activity in 

the kelp beds. If the kelp beds seem to favour the onset of phytoplankton blooms, 

most of the primary production inside the kelp beds is due to the kelp itself. The 

primary production of Macrocystis kelp beds in the Sub-Antarctic high-nutrient, low-

chlorophyll (HNLC) waters off the Kerguelen Archipelago is elevated and closely 

linked to light availability.  This production is significant from October to March and 

reaches its climax in December at the solar radiation maximum. 

 

Keywords: Primary production, Carbon dioxide, Kelp, Antarctic zone, Kerguelen, 

Macrocyctis pyrifera, 49° 27’S- 70° 03’E. 

 

1. Introduction 

 

Marine macrophytes (seagrasses and macroalgae) can be found in any 

shallow coastal aquatic system. They cover only 2 x 106 km2 worldwide (Whittaker 

and Likens, 1973), but can act as an effective carbon sink because of their large 

biomass (estimated to be about two-thirds of oceanic plant biomass) and relatively 
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long turnover time (1 year) as compared to phytoplankton (1 week) (Smith, 1981). It 

has been pointed out that macrophytes have a great potential for biomass production 

and CO2 uptake in a global context (Smith, 1981; Wilcox and North, 1988; Gao and 

McKinley, 1994; Duarte and Chiscano, 1999; Duarte et al., 2004). Nevertheless, little 

is known about the influence of macrophytes on dissolved inorganic carbon (DIC) 

dynamics, and  their quantitative significance in the global carbon and CO2 cycles 

remains poorly constrained (Gattuso et al., 1998; Duarte et al., 2004; Borges, 2005; 

Borges et al., 2005). 

Frankignoulle and Distèche (1984, 1987) and Frankignoulle and 

Bouquegneau (1987, 1990) studied the impact of Posidonia oceanica seagrass 

meadows on the partial pressure of CO2 (pCO2) and the DIC dynamics in the 

Mediterranean Sea. The Posidonia meadows exert a strong influence on the pCO2 of 

the surrounding waters, driving a diel signal of pCO2 consistent with the solar 

radiation cycle. The diel and seasonal variations of the carbon budget show two 

yearly phases, with spring and summer photosynthesis resulting in a decrease of 

CO2 and the winter decay of organic matter resulting in the release of CO2. In the 

Bay of Palma (Spain), strong decreases in pCO2 over Posidonia meadows have 

been reported due to the meadows’ higher primary productivity compared to the 

surrounding oligotrophic waters (Gazeau et al., 2005). In the same area, Barrón et al. 

(2006) highlighted the strong influence of calcification by epiphythes and calcium 

carbonate (CaCO3) dissolution on CO2 dynamics in Posidonia meadows, which is in 

agreement with observations of other seagrass ecosystems (Morse et al., 1987; Ku 

et al., 1999; Delille et al., 2000; Burdige and Zimmerman, 2002; Yates and Halley, 

2003; Yates and Halley, 2006). On the whole, Posidonia oceanica seagrass 

meadows appear to act as a sink for atmospheric CO2. In the waters surrounding the 

Kerguelen Archipelago, it has been previously reported that the DIC and pCO2 of the 
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waters above Macrocystis kelp beds are strongly influenced by the biological activity 

of the kelp, which, in turn, leads to a potential sink for atmospheric CO2 (Delille et al., 

1997; Delille et al., 2000). 

The primary production in Macrocystis kelp beds is high and generally ranges 

from 1000 to 1300 gC m-2 y-1 (Mann, 1982; Wheeler and Druehl, 1986). Jackson 

(1977) measured primary production of up to 3400 gC m-2 y-1 off of southern 

California. Surveying DIC over macrophyte beds allows us to assess the net 

ecosystem production by mass balance (Gazeau et al., 2005). This is of particular 

interest in polar areas and particularly in the Southern Ocean, where dense 

population of highly productive macroalgae are present. This production, however, 

has seldom been estimated (Dunton and Dayton, 1995). 

The purpose of the present paper is to examine the diel changes of pCO2 and 

DIC both outside and inside a Macrocystis pyrifera giant kelp bed within the shallow 

waters of the Kerguelen Archipelago in order to understand the physical and 

biological processes controlling pCO2 dynamics and to follow the seasonal evolution 

of kelp bed primary production.  

2. Material and Methods 

 
Sites and sampling. The Kerguelen Archipelago (Fig. 1) is usually cited in the 

literature as a Sub-Antarctic island. From a strictly oceanographic point of view, this 

archipelago is situated either in the Polar Frontal Zone (Sub-Antarctica) or 

Permanently Open Ocean Zone (Antarctica) depending on the position of the Polar 

Front with regards to the archipelago (e.g. Delille et al. 2000). A substantial portion of 

the coastlines of the archipelago is occupied by Macrocystis pyrifera kelp beds. 

Samples were collected from January to December 1996 at the vicinity of the 

Cimetière Island in Morbihan Bay (MB), and in Brise-Lame Bay (BB) in the northern 
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part of the Kerguelen archipelago. Located in the southeast of the archipelago, 

Morbihan Bay (about 600 km²) opens to the ocean through the Royal Pass, which is 

12 km wide and 40 m deep. The biomass (wet weight) of Macrocystis pyrifera in 

Morbihan Bay was assessed using remote sensing data as about 1100 kt, spread 

over an area of about 190 km² (Belsher and Mouchot, 1992). The average biomass 

within two-thirds of the area covered by Macrocystis kelp beds is 22.5 kg m-2 and can 

reach up to 26 kg m-2. Brise-Lame Bay has a surface area of about 12 km² and is 

widely open. However, sampling sites were chosen in the most sheltered part of the 

bay that is surrounded by Macrocystis pyrifera kelp beds.  

Two sampling stations were chosen at each site, one located inside and one outside 

the kelp beds. Surface waters were sampled at both stations every third hour for 24 

hours starting from 21:00. Analyses began aboard the R.V. La Curieuse within 15 

minutes of the sample collection. Diel surveys were numbered chronologically. As BB 

and MB denote, respectively, diel surveys were carried out in Brise-Lame Bay and at 

the Cimetière Island in Morbihan Bay. 

 

Dissolved inorganic carbon. Inorganic carbon speciation was calculated from pH and 

total alkalinity (TA) measurements. TA was measured using the classical Gran 

electrotitration method on 100 ml GF/F filtered samples. The accuracy of 

measurements was ±4 µeq kg-1.  pH was measured using a commercial combination 

electrode (Ross type, Orion®) calibrated on the U.S. National Bureau of Standards 

(NBS) scale. The precision of pH measurements was ±0.01 pH units. CO2 speciation 

was calculated with the CO2SYS Package (Pelletier et al., 1998), using the CO2 

acidity constants of Mehrbach et al. (1973) refitted by Dickson and Millero (1987), the 

CO2 solubility coefficient of Weiss (1974), and the borate acidity constant of Dickson 

(1990). The total borate molality was calculated using the Uppström (1974) ratio to 
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salinity. Taking into account uncertainties for the pH, TA, temperature, and salinity, 

the errors in pCO2 and DIC were ±14 µatm and ±9 µmol kg-1, respectively. DIC was 

normalized to a constant salinity of 33.4, denoted as DICn. Normalized pCO2 (pCO2 n) 

was computed at a constant temperature of 5°C based on normalized TA and DIC 

data at a constant salinity of 33.4. 

 

Chlorophyll a (chl a). Samples were pre-filtered through a 200 µm mesh to remove 

detritic material and larger biota, and then filtered by gentle vacuum filtration of 1 L of 

seawater through a Whatman® GF/F glass-fibber filter. The measurements of 

chlorophyll a were performed with a Perkin-Elmer® MPF 66 spectrofluorometer using 

the spectrofluorometric method developed by Neveux and Panouse (1987).  

 

Related parameters. Salinity was determined with a Guildline® induction salinometer 

with a precision of 0.003 on the practical salinity scale. Solar radiation measurements 

were provided by MétéoFrance from a station located at Port aux Français (Morbihan 

Bay). 

 

3. Results 

Sea surface temperature (SST) ranged from 1.6°C in austral winter (from June to 

August) to 8.4°C in the summer (from December to March) inside the kelp bed. In the 

winter, the diel temperature changes were small compared to the summer. On 

repeated occasions (MB3, MB8, BB1 and BB5), the diel cycle of SST is more marked 

inside the kelp beds than outside the beds (Fig. 3), with a strong increase in SST 

during the day and a rapid decrease at dusk. SST was significantly higher inside the 

kelp bed as compared to outside the bed during the summer.  
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Two phytoplanktonic blooms occurred in September and December, while chl a was 

low from February to August. Chl a concentration was larger inside the kelp beds 

than outside in September. Diurnal changes in the chl a concentration (Fig. 4) were 

on some occasions large (up to 3.0 g L-1), but they did not exhibit clear or recurrent 

patterns. 

The pCO2 ranged from 170 atm to 520 atm outside the kelp beds, and from 80 

atm to 530 atm inside the kelp beds in MB and BB (Fig. 2). Seasonal changes 

were similar at both sites in MB and LB. Values were below atmospheric equilibrium 

in the summer (January) and then increased from February to April. CO2 over-

saturation appeared in February outside the kelp beds and in March inside the kelp 

beds.  

After a maximum in April, the pCO2 decreased until July, and reached values close to 

atmospheric equilibrium during the winter. The decrease of pCO2 during spring and 

subsequent CO2 under-saturation began earlier and was more marked inside the 

kelp beds (August) than outside (September). Outside the kelp beds, the pCO2 

tended to increase during early November, while the pCO2 continued to decrease 

inside the kelp beds to reach the lowest values by the end of December. 

The magnitude of diel variations in pCO2 n were on some occasions high, reaching 

180 atm outside the kelp beds, and 270 atm inside the beds (Fig. 5). From August 

to February, the pCO2n outside the kelp beds tended to reach minimum values 

between 12:00 and 18:00. However, recurrent diel cycles were hardly 

distinguishable, especially during the winter. In contrast, diel cycles inside the kelp 

beds exhibited a clear pattern from November to April, with a strong increase in the 

pCO2n from 18:00 to 00:00 that rapidly led to the highest values between 00:00 and 

06:00. The pCO2 n started to decrease and reached its lowest values between 12:00 
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and 18:00. From May to July, no clear trends were observed in the diel changes of 

pCO2n. 

In accordance with the pCO2, the DICn exhibited marked seasonal changes ranging 

from 2.03 mmol kg-1 to 2.13 mmol kg-1 outside the kelp beds, while values as low as 

1.79 mmol kg-1 were observed inside the beds (Fig. 2). The DICn increased in late 

summer to reach a maximum in May, and decreased slightly until late August, when 

a sharp decrease in the DICn was observed. The DICn began to increase outside the 

kelp beds in November in parallel with the pCO2 n, whereas the DICn decreased 

inside the kelp beds until January. 

While no obvious recurrent pattern was apparent outside the kelp beds, the DICn 

exhibited a clear diel cycle from November to April inside the beds (Fig. 6). The DICn 

increased steadily at night, reaching a maximum between 03:00 and 09:00. Then, 

the DICn decreased during the day, reaching its lowest values between 12:00 and 

18:00. During the winter, the diel changes in the DICn were weak and did not show 

any obvious pattern, with the exception of the MB 7 cycle that exhibited a large 

decrease at 03:00 and a sharp increase at 18:00. 

 

4. Discussion 

 

 Seasonal variations 

The overall seasonal changes in the SST, pCO2 and DICn outside the kelp beds in 

BB and MB are consistent with those reported in the Port aux Français station based 

on weekly monitoring carried out the same year by Delille et al. (2000) (Fig. 2). This 

suggests that the drivers of the seasonal variations in the pCO2 and DICn are similar 

for all these sites. Planktonic photosynthesis during the spring and summer is 
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responsible for the marked decreases in both the DICn and pCO2, while the autumnal 

decay of organic matter is responsible of the sharp increase in these two measures, 

leading to a strong CO2 over-saturation. 

In the winter, cooling leads to a steady decrease in the pCO2, while air-sea 

exchanges enhanced by strong winds maintain values close to atmospheric 

equilibrium. In November and December, the pCO2 increases outside the kelp beds, 

while remaining constant inside the bed due to primary production by macroalgae 

and enhanced planktonic primary production (Delille et al., 2000).  

Kelp beds can affect phytoplankton abundance in several ways: reducing light 

availability (shadowing) or increasing it by reducing turbulence, decreasing (Delille et 

al. 1997, 2000) or increasing (Pakhomov et al. 2002) nutrient availability, or 

increasing grazing pressure (Field et al. 1980, Pakhmov et al. 2002). The large 

difference in chl a concentrations outside versus inside the kelp beds during the MB7 

cycle might indicate that the kelp bed enhances phytoplankton growth (Fig. 4). This is 

consistent with the early onset of the spring phytoplanktonic bloom inside the kelp 

bed. However, in the Sub-Antarctic Prince Edwards Archipelago, Pakhomov et al. 

(2002) reported that kelp beds have little influence on chl a concentration, while Field 

et al. (1980) reported lower chl a concentrations within kelp beds in South Africa. 

Reconciling these contrasting results requires a robust assessment of phytoplankton 

abundance by cellular counts (chl a concentration as a tracer of phytoplankton 

abundance can be biased by material of macrophyte origin) and measurement of 

primary production.  

 

Diel variations 

The amplitude of the daily changes in the pCO2 n and DICn  are consistent with 
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previous observations in the Kerguelen Archipelago (Delille et al., 1997) but higher 

than those above the Posidonia oceanica meadows (Frankignoulle and Distèche, 

1984; Frankignoulle and Bouquegneau, 1987, 1990). From spring to autumn, intense 

CO2 uptake starts generally at dawn and reaches a maximum, on average, three 

hours before dusk. In some occasions, we observed a rapid increase at dusk 

followed by a plateau throughout the night (MB1, MB8, BB2), when the expected 

effect from respiration on pCO2 n and DICn would be a steady increase from dusk to 

dawn. This could be explained by the fact that, during the daytime, the kelp bed 

reduces currents and wind stress, and acts as a black body at the surface, promoting 

an increase in SST (e.g. BB 5 cycle on figure 3) and, potentially, promoting the 

stratification of the near-surface water column. This would explain why SST can be 

1.0°C higher inside the kelp beds as compared to outside the beds during daytime. 

At dusk, as the temperature drops, a rapid destratification of the near-surface water 

column would lead to a significant and rapid increase in the pCO2 n and DICn. 

 

 DIC uptake by the Macrocystis 

 

Even if kelp beds favour the onset of the spring phytoplankton bloom, the large diel 

changes in pCO2 n and DIC n are most likely related to macroalgae primary 

production. The high chl a concentrations are only observed between November and 

January, whereas the large diel cycles of pCO2 n and DICn within the Macrocystis 

kelp beds are conspicuous from September to March (Fig. 2). Furthermore, chl a 

concentrations are similar inside and outside the kelp beds, except in September. 

Even if Macrocystis kelp beds reduce currents and decrease turbulence (Jackson 

and Winant, 1983), this positive effect on planktonic primary production is probably 

counteracted by the lower availability of light, competition for nutrients with the 
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macroalgae (Delille et al 1997, 2000), and higher grazing pressure (Pakhomov et al. 

2002). To our knowledge, no study exists which addresses the effect of kelp beds on 

pelagic primary production. We therefore made the simple assumption that 

planktonic production is similar inside and outside the kelp bed, and correlates 

linearly with the chl a concentration. 

In order to follow the seasonal changes in primary production of the kelp bed 

community, we roughly assessed the DIC uptake by the kelp bed community (DIC 

kelp) from the amplitude of the daytime DICn decrease and removed the planktonic 

daytime DIC uptake according to the following formula: 

outside

inside
outside ninside nkelp

a chl

a chl
ΔDICΔDICΔDIC  (1) 

ΔDIC inside and ΔDIC outside are the amplitude of the daytime DICn decrease inside and 

outside the kelp bed, respectively. Cha inside and Cha outside are the mean chl a 

concentrations inside and outside the kelp bed, respectively. 

This approach is prone to several errors. We made the assumption that primary 

productivity is similar inside and outside the kelp bed. Planktonic production, which 

corresponds to the last term in the equation above, accounts for typically less than 

20 percent of the overall DIC uptake. Any potential bias resulting from our 

assumption is therefore not significant in the assessment of ΔDICkelp. The air-sea 

exchange of CO2 was not considered in the calculation due to the difficulty of 

estimating the gas transfer velocity above a Macrocystis kelp bed. The dense canopy 

of the Macrocystis kelp bed covers a substantial portion of the air-sea interface, 

which prevents air-sea gas exchanges. Furthermore, the dense canopy of 

Macrocystis kelp beds conspicuously dampens waves and the effect of wind stress 

on the air-sea interface. Macrocystis also produce large amounts of biofilms that 

impede air-sea exchange. These effects are likely to decrease air-sea CO2 
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exchanges drastically. We assumed that the air-sea CO2 exchange is negligible 

compared to the changes of CO2 due to biological activity.  

Significant advection at the daily scale of waters surrounding the kelp beds can also 

affect DIC. However, it has been repeatedly reported that Macrocystis kelp beds 

reduce water currents and exchanges with surrounding waters (Jackson and Winant, 

1983; Pakhomov et al., 2002) and that the residence time of water within the kelp 

beds can reach several days (Jackson and Winant, 1983). Accordingly, the higher chl 

a concentrations inside the kelp beds observed during the MB7 cycle suggest that 

the residence time in the studied kelp beds is at least as long as the time needed for 

phytoplankton doubling. 

Keeping in mind the potential biases mentioned above, it is possible, by integrating 

ΔDICkelp over the depth of the water column, to derive the “maximum net kelp 

community production” during the day. Maximum net kelp community production 

integrates primary production and the respiration of non-planktonic organisms (mainly 

the kelp and epiphyte communities) during daytime, when gross primary production 

outweighs community respiration. This leads to positive and elevated values of 

production.  The assessment of the net primary production requires the computation 

of community respiration at night. However, the night de-stratification process 

prevents a robust computation of the respiration. Unfortunately, maximum net kelp 

community production is not readily comparable with conventional measurements 

which provide either net or gross primary production. Nevertheless, the assessment 

of ΔDICkelp allows us to consistently follow the seasonal changes of the primary 

production of the kelp.  

During the winter, ΔDIC kelp decreases in parallel with the decrease of solar radiation 

(Fig. 7). In the autumn and winter, when solar radiation is below the threshold of 10 

MJ m-2 d-1, the ΔDIC kelp is undetectable In September, the ΔDICkelp increases sharply 
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together with solar radiation, reaching a maximum in December at the time when 

solar radiation is at its maximum. On the whole, significant CO2 consumption and 

related primary production occur from September to March when solar radiation is 

above the threshold of 10 MJ m-2 d-1. 

By integrating ΔDIC kelp over the depth of the water column (5 m), we derived an 

assessment of the maximum net kelp community production of Macrocystis kelp beds 

around 15 gC m-2 d-1 (ΔDIC kelp= 250 µmol kg-1, MB9 cycle) when solar radiation is at 

its maximum. This is higher than the gross primary production of the Macrocystis 

pyrifera kelp bed in California, which ranges from 3 to 12 gC m-2 d-1 (Mc Farland and 

Prescott 1959: Towle and Pearse 1973; Jackson 1987). This difference appears even 

more significant if we take into account that gross primary production is higher that 

maximum net kelp community production as it integrates both gross primary 

production and community respiration. 

Karl et al. (2003) showed that poor time resolution surveys can significantly 

underestimate pelagic primary production. This should hold true for macroalgae 

production, since light and nutrient availability changes on a day-to-day basis. By 

integrating a total of 11 diel cycles, we captured the production of the kelp with a 

better time resolution than previous studies did (Mc Farland and Prescott 1959: 

Towle and Pearse 1973; Jackson 1987). This can explain why we observed higher 

production in the Kerguelen Archipelago compare to the California coast. In another 

way, primary production of Macrocystis kelp beds can be enhanced in the Sub-

Antarctic area as compared to the California coast. Indeed, net production of 

Macrocystis laevis Hay in the Prince Edward Islands derived from growth 

measurements was estimated to be 7.7 gC m-2 d-1 and 11.5 gC m-2 d-1 during the 

months of April and August (Attwood et al. 1990). These measurements were carried 

out while the production of the kelp was dampened by low light availability so that 
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these values are at the lower end of the annual range of net production. Hence, the 

net primary production is potentially significantly higher in the summer, and gross 

primary production of Macrocystis in the Prince Edward appears to be significantly 

higher than the measurements reported in California. 

 

5. Conclusion 

 

Nitrate concentrations in Morbihan Bay can exceed 20 µg L-1 and this nutrient is only 

briefly exhausted in the spring (Delille et al., 2000). Hence, the main limiting factor for 

Macrocystis growth in the HNLC waters of the Kerguelen Archipelago appears to be 

light availability rather than macronutrient availability, as suggested by the close link 

between primary production and light availability we report here. This is also in 

agreement with the model output of Jackson (1987) regarding Californian kelp beds.  

Estimates of production by the Macrosystis kelp bed are above the range from 0.01 

gC m-2 d-1 to 5.0 gC m-2 d-1 of the average maximum above-ground production of 29 

marine seagrass species reported by Duarte and Chiscano (1999) and in the upper 

end of the range of the benthic net production compiled by Charpy-Roubaud and 

Sournia (1990) and Gazeau et al. (2004). These comparisons should be taken with 

caution due to the potential biases because of the difference in the experimental 

approaches. Nevertheless, this highlights the significance of primary production by 

Macrocystis kelp beds, particularly in high-nutrient, low-chlorophyll (HNLC) Sub-

Antarctic regions of the Southern Ocean. 

Macrocystis kelp beds would therefore act as effective sinks for atmospheric CO2 by 

drastically decreasing DIC. However, related air-sea CO2 transfer occurs outside the 

kelp bed when surface waters flow outward, rather than within the kelp bed where 

the dense canopy dampens gas fluxes across the air-sea interface. A rigorous 
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assessment of CO2 fluxes driven by Macrocystis kelp beds would therefore require 

an extended pCO2 survey of the surrounding waters coupled with an assessment of 

water mass advection.  
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Figure captions 

 

Figure 1.  Brise-Lame Bay and Morbihan Bay in the Kerguelen Archipelago.  The 
sampling sites are indicated by stars. 

Figure 2. Mean and amplitude of diel changes in the temperature (SST), chlorophyll a 
(chl a), partial pressure of CO2 (pCO2) and dissolved inorganic carbon normalized to 
a constant salinity of 33.4 (DICn). The vertical bars indicate the range of diel change 
(maximum and minimum values). The average values from the diel cycle inside and 
outside kelp beds are represented as follows: circles - Morbihan Bay (MB), squares - 
Brise-Lame Bay (BB). Due to logistical constraints, MB measurements were not 
carried out during the autumn, while BB measurements were carried out mostly 
during the summer and autumn. The average values from both sites were merged 
into a composite annual cycle indicated by the long dashed line in order to cover one 
annual cycle satisfactorily. The dotted line is the annual cycle at the Port aux 
Français station from Delille et al. (2000). The horizontal dotted line represents the 
atmospheric pCO2 at Amsterdam Island (361 µatm, V. Kazan, personal 
communication). 

Figure 3. Diel changes in the sea surface temperature (SST) in Morbihan Bay (MB) 
and Brise-Lame Bay (BB) inside and outside the kelp beds. Daytime is indicated in 
grey on the lines. 

Figure 4. Diel changes of chlorophyll a (chl a) in Morbihan Bay (MB) and Brise-Lame 
Bay (BB) inside and outside kelp beds. Daytime is indicated in grey on the lines. 

Figure 5. Diel changes in the partial pressure of CO2 normalised to a constant 
temperature of 5°C and salinity of 33.4 (pCO2 n) in Morbihan Bay (MB) and Brise-
Lame Bay (BB) inside and outside the kelp beds. Daytime is indicated in grey on the 
lines. 

Figure 6. Diel changes in the normalized DIC at a constant salinity of 33.4 (DICn) in 
Morbihan Bay (MB) and Brise-Lame Bay (BB) inside and outside the kelp beds. 
Daytime is indicated in grey on the lines. 

Figure 7. Seasonal variations in solar radiation in Morbihan Bay and ΔDIC kelp in 
Morbihan Bay (circles) and Brise-Lame Bay (squares). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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