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Abstract—This paper develops a probabilistic decision making
framework for reliability management in the short-term opera-
tional planning context. We build upon our recent work, which
proposed a probabilistic reliability management approach and
criterion (RMAC) for the latest decision making opportunity of
real-time system operation. Here, we transpose the RMAC to the
preceding problem instance of short-term operational planning,
wherein i) risk is aggravated by the uncertainty on power
injections and weather conditions, and, ii) the problem scope
concerns choosing ‘strategic’ actions (e.g., starting additional
generating units, granting outage requests for maintenance, etc.)
to facilitate decision making during the forthcoming real-time
system operation. To anticipate on the latter, we formalize the
notion of a real-time ‘proxy’ as a simplified model of the real-time
decision making context, adequately accurate for the purpose of
operational planning decision making. Stating a first proposal for
such a proxy, we mathematically formulate the RMAC for short-
term operational planning as a multi-stage stochastic decision
making problem and demonstrate its main features by case
studies on a modified version of the single area IEEE RTS-96
system.

I. INTRODUCTION

While the modern power system is being jointly reshaped by
the societal drive for low carbon generation and the technical
advancements in control, computing & communications, the
interest in revising reliability management becomes stronger
than ever. Indeed, the potential advantages of a probabilistic
approach, explicitly taking into account both the novel threats
(e.g., wind power generation uncertainty) as well as the
novel opportunities (e.g., post-contingency corrective controls)
are by now well understood and documented [1]. With this
motivation, we recently proposed in [2] a first step towards
the construction of a globally coherent probabilistic reliability
management approach and criterion (RMAC), by focusing on
the latest decision making opportunity of real-time operation.
In the present work we complement such basis by addressing,
in a consistent manner, the context of short-term operational
planning [3].

In the context of short-term operational planning, the func-
tion of reliability management is to ensure the resources
(broadly, generation and transmission capacity as well as
operational flexibility) needed to achieve the reliable operation

of the power system within the respective planning horizon.
Doing so entails anticipating both i) the exogenous factors
forming the future operational conditions of the system, most
notably the weather dependent power injections & demands
and component failure rates, and, ii) the endogenous real-time
decision making strategy of the system operator, potentially
resulting in the application of further preventive and/or correc-
tive (i.e. post-contingency) control actions upon realization of
such operational conditions. The combination of the growing
uncertainty in the future operational conditions (due to the
developing penetration of renewable sources in the generation
sub-system, the ageing of the components of the transmission
sub-system, etc.) along with the growing complexity in the
real-time control strategy (due to the many novel technological
opportunities) sets the challenge for reliability management in
the short-term operational planning context.

A. Proposal

In response to such challenge, we propose a short-term
operational planning Reliability Management Approach and
Criterion (RMAC) composed of the three following ingredi-
ents:

1) A reliability target: it ensures that, under any an-
ticipated operational condition, the objectives of real-
time reliability management remain achievable. In other
words, it guarantees that the system shall remain operable
according to the standard set by the applicable real-time
decision making strategy.

2) A socio-economic objective: it prescribes to minimise
a socio-economic cost function composed of: i) the
direct costs associated to the application of ‘strategic’
operational planning decisions, and, ii) the aggregated
risk implied by these operational planning decisions,
expressed as the expected value of real-time operation
costs (i.e., costs of real-time preventive and/or corrective
controls as well as potential service interruption costs)
within the planning horizon.

3) A discarding principle: it allows to neglect in items
1) and 2) a subset of anticipated operational conditions
only under the condition that the implied residual risk,



expressed as the expected value of real-time operation
costs over that neglected subset, is guaranteed to be below
a fixed threshold.

Notice that our proposal explicitly acknowledges the com-
plementary functions of short-term operational planning and
real-time operation reliability management, the former serving
to facilitate the latter. In this spirit, we propose the short-term
operational planning RMAC while abstracting away from the
particular decision making strategy (e.g., the preventive N-1,
the probabilistic real-time RMAC developed in [2], or other)
followed for reliability management in real-time.

To enable such a consideration of the coupling between
short-term operational planning and real-time operation relia-
bility management, we formalize the notion of a proxy as a
simplified model of a ‘source’ reliability management context
(here, the context of real-time operation), expressed in such a
way that it may be effectively exploited in another ‘target’
reliability management context (here, the context of short-
term operational planning), while sufficiently well modeling
the considered source-decision-making process for the purpose
of the considered target-decision-making-process.

Without any loss in generality, and with an interest in
establishing the benefits of a consistent probabilistic approach
across all reliability management contexts, in this work we
adopt the probabilistic RMAC introduced in [2] for the real-
time reliability management context.

B. Related Works

Planning the secure operation of power systems in the
short-term, under the uncertainty induced by renewable power
generation remains a topic of current interest in the scientific
literature. Referring the reader to [4] for a recent extensive
documentation of the state of the art, we may distinguish three
prominent approaches to handling the short-term uncertainty
associated to power injections, namely:

i.) the robust approach [5]–[8] as well as its adaptive vari-
ants [9]–[11];

ii.) the chance-constrained approach, most notably advo-
cated in [12]–[18] under diversified problem settings and
modeling assumptions, and;

iii.) the stochastic approach pursued in [19], [20].
The robust approach [5]–[11] offers security against any

credible uncertainty realization at the expense of compromis-
ing in terms of economic efficiency. The conservativeness
can be mitigated by reducing the respective uncertainty space
[9]–[11], however doing so efficiently requires taking into
account the implications in loss of security. The chance-
constrained approach [12]–[18] incorporates the probability
distribution of uncertain parameters to reduce conservativeness
by setting a probabilistic requirement for the compliance with
constraints expressing the desired system performance. As
in the adaptive robust approach, the efficient practice of the
chance-constrained approach would also require taking into
account the consequences of any potential constraint violation.
The stochastic approach [19], [20] of seeking a trade-off
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Fig. 1. Short-term Operational Planning Context

between the costs of security and the probability weighted
consequences of insecurity appears most suitable to efficiently
address the issue. However, while from a theoretical point of
view it is more general than the former two approaches, in
practice it leads to more complex decision making problems.

In this paper we attempt to complement such related works
by introducing a novel approach to tackling uncertainty in
the operational planning context. Our approach starts from
the framework of stochastic optimization, explicitly pursuing
the trade-off between the direct (present) and probability
weighted indirect (future) socio-economic costs associated to
short-term operational planning decisions. To counteract the
involved complexity, we formalize the principle of reducing
the considered uncertainty set while guaranteeing that the risk
implied by such reduction, measured as an accuracy error
in approximating the socio-economic costs, remains tolerable.
Further, while our proposal for short-term operational planning
is formulated irrespectively of the reliability management
strategy to be followed in real-time operation, we go beyond
the current state of the art by planning for the operation of the
system as per the RMAC of [2] rather than the N-1 criterion.

II. RELIABILITY MANAGEMENT IN THE SHORT-TERM
OPERATIONAL PLANNING CONTEXT

A. Preliminaries & Compact Notation

To fix ideas, we consider the problem set-up illustrated
in Fig.1, corresponding to a single short-term operational
planning decision making point, shortly before the start of
the respective real-time instance (e.g. the hour-ahead planning
decision making point). As in [7], this set-up corresponds to
the three-stage process of choosing i) operational planning
actions, ii) real-time preventive actions, and, iii) real-time cor-
rective (i.e. post-contingency) actions. Notice that we jointly
represent the latter two decision types by a single bullet in
Fig.1 to illustrate the fact that the choice of preventive and/or
corrective actions falls within the scope of real-time operation
reliability management.



1) The Short-term Operational Planning Context: As al-
ready mentioned, the scope of short-term operational planning
is to select & apply ‘strategic’ decisions ahead of the actual
instance of real-time operation.

We shall use symbol tP to denote in time the operational
planning decision making point and tR for the respective
instance of real-time operation which is to be covered by
the operational planning decisions. Further, we shall employ
symbol uP to denote operational planning decisions, symbol
UP for the set of candidate decisions amongst which a choice
is to be made as well as function CP (uP ) to represent the
direct cost associated to the implementation of a chosen
operational planning decision.

Let us also denote by s ∈ S the set of scenarios describing
the exogenous uncertainty forming the possible operational
conditions within the real-time instance under consideration.
We focus, without loss of generality, on the uncertainty of
power injections & demands as well as of the weather, recall-
ing the effect of the latter factor on the potential realization
of contingency events (i.e., component forced outages) [21].
Assuming, to ease notation and facilitate the clarity of the
problem statement, the scenario set to be discrete, we shall
denote the realization probability of each elementary scenario
as πs,∀s ∈ S with

∑
s∈S πs = 1.

2) Proxy for real-time reliability management: Real-time
operation reliability management serves to counteract the
possible occurrence of contingency events over a limited
look-ahead horizon, and given the latest realization of power
injections, demands and weather conditions.

Let us denote a real-time candidate decision (corresponding
to the possible application of several preventive and/or correc-
tive control actions) as uR(s) ∈ UR (uP , s) and underline the
dependence of the respective set (i.e., the set of all decisions
amongst which the operator may choose in real-time) on both
the observed uncertainty realization (s) and the already chosen
short-term operational planning decisions (uP ). The purpose
of a proxy for real-time reliability management is to explicitly
model the strategy resulting in the choice of such decisions.
In our notation, we can generally express this by means of the
constraints & objective of an optimization problem.

More specifically, we begin with introducing function
CR (uR(s), s) as a minimization objective. This function
serves to replicate the order of priority amongst the real-
time candidate decisions in the set UR (uP , s). Note that
the precise expression of such cost function depends on the
applicable real time decision making strategy (again, be it
the preventive only N-1, the preventive/corrective N-1, the
RMAC of [2], etc.). Along with function CR (uR(s), s), we
shall use constraint set UC (uP , s) to express the desirable
system behavior in the real-time operation context, limiting
the admissible choice of real-time decisions to the intersection
ŨR (uP , s, 1) ≡ UR (uP , s) ∩ UC (uP , s)

1. That is, for any
given uP ∈ UP and s ∈ S, finding the decisions compliant

1We use here an auxiliary indicator variable with the value of 1 to show
that the constraints of the real-time reliability management are enforced.

with the real-time reliability management strategy amounts to
solving problem,

min
uR(s)

CR (uR(s), s) (1)

subject to,

uR(s) ∈ ŨR(uP , s, 1). (2)

We must notice here that the existence of a feasible solution
to (1,2) depends on the exogenous operational conditions (s)
as well as short-term operational planning decisions (uP ).
Acknowledging the possibility that it may turn out to be
infeasible without careful choice of up ∈ UP , we must
complete the proxy for real-time reliability management by
also modeling the way its constraints would be relaxed, only
if necessary. For simplicity of the compact notation we shall
leave the relaxation principle implicitly represented within cost
function CR (uR(s), s).

To do so, we will use the notational convention that the
upper bound of function CR (uR(s), s) within the (reliability
constrained) intersection ŨR (uP , s, 1) is always smaller than
its lower bound within the (reliability relaxed) relative comple-
ment ŨR (uP , s, 0) ≡ UR (uP , s)\UC (uP , s). In other words,
by convention, the value of cost function CR (uR(s), s) for any
real-time decision complying with constraint set UC (uP , s)
will be smaller than its value for any real-time decision not
complying with such constraints2. Hence, minimizing the real-
time cost function CR (uR(s), s) should result, if possible, in
real-time decisions compliant with the reliability management
constraints and, only if not, in real-time decisions relaxing the
reliability management constraints.

Accordingly, we compactly express the real-time proxy for
reliability management as,

min
uR(s),λ(s)

CR (uR(s), s) (3)

subject to,

uR(s) ∈ ŨR (uP , s, λ(s)) (4)
λ(s) ∈ {0; 1}. (5)

Notice that by the solution of (3-5) auxiliary indicator
variable λ(s) will take the value of one to show that the
constraints of the real-time reliability management have been
enforced, and the value of zero to indicate that they had to be
relaxed.

2Let us remark that, while we merely introduce such property of
{CR (uR(s), s) ;UC (uP , s)} as a notational convention, ideally it should
hold true for a well designed reliability criterion. That is, imposing any
reliability constraints on the power system should be justifiable by the
avoidance of the (much larger) potential socio-economic consequences of
unreliability.



3) Socio-economic impact of short-term operational plan-
ning reliability management: Combining the direct costs
incurred by short-term operational planning decisions with
the expectation of the real-time operation costs as per the
respective real-time decision making strategy (3-5), we express
the socio-economic impact of any given short-term operational
planning reliability management decision as,

CP (up)+
∑
s∈S

πs · CR (u?R(s), s) (6)

where, ∀s ∈ S,

u?R(s), λ?(s) ∈ arg min
uR(s),λ(s)

CR (uR, s) (7)

s.t.

uR(s) ∈ ŨR (uP , s, λ(s)) (8)
λ(s) ∈ {0; 1}. (9)

We underline here that the second term in (6) expresses the
risk implied by the chosen operational planning decision uP
as the expectation over all foreseeable operational conditions
of the costs associated to either i) achieving the real-time
reliability management objectives (e.g., satisfying the N-1
criterion), for the optimal value (λ?(s) = 1) in (12)-(14), or, ii)
relaxing them. Note also that we have built the socio-economic
objective of (6-14) while remaining agnostic with regards to
the precise real-time reliability management strategy. We do
so to emphasize that, from the short-term operational planning
perspective, it suffices to have and employ a proxy of such
strategy.

B. Proposed Reliability Management Approach & Criterion

Extending the ideas recently introduced in [2], we propose
a probabilistic RMAC for short-term operational planning
composed of:
Reliability target We start by formalizing the reliability
target of avoiding the realization of situations within which
the objectives of real-time reliability management are not
achievable. In other words, we seek for short-term operational
planning decisions (uP ) ensuring that, under the set of sce-
narios expressing the foreseeable operational conditions, there
exist real-time operation decisions that render the real-time
reliability management feasible, as in:

ŨR (uP , s, 1) ≡ UR (uP , s) ∩ UC (uP , s) 6= ∅,∀s ∈ S, (10)

or equivalently, ∀s ∈ S,

λ?(s) = 1, (11)

where,

u?R(s), λ?(s) ∈ arg min
uR(s),λ(s)

CR (uR, s) (12)

s.t.

uR(s) ∈ ŨR (uP , s, λ(s)) (13)
λ(s) ∈ {0; 1}. (14)

Notice that such reliability target is motivated by the close
temporal coupling between short-term operational planning
and real-time operation. Acknowledging this coupling, the pur-
pose of such a reliability target is to verify and establish that
the degree of risk-aversion sought during real-time operation
is attainable (over all foreseeable operational conditions). In
this spirit, the reliability target of the short-term operational
planning RMAC is stated independently of the approach to
reliability management followed within real-time operation.
Doing so, we maintain here the principle of formalizing the
short-term operational planning RMAC while abstracting away
from the particular specificities of the real-time reliability
management strategy.
Discarding principle. For a subset SRMAC ⊂ S and a
short-term operational planning decision uP ∈ UP , we ex-
press the residual risk associated to operational conditions
s ∈ S \ SRMAC as,

RS\SRMAC
(uP ) =

∑
s∈S\SRMAC

πs · CR (u?R(s), s) (15)

where, ∀s ∈ S \ SRMAC ,

u?R(s), λ?(s) ∈ arg min
uR(s),λ(s)

CR (uR(s), s) (16)

s.t.

uR(s) ∈ ŨR (uP , s, λ(s)) (17)
λ(s) ∈ {0; 1}. (18)

Such value essentially serves to quantify the error in approx-
imating the socio-economic impact function (6) by computing
its expectation over the subset SRMAC ⊂ S only. We thus
transpose the discarding principle initially introduced in [2]
to the short-term operational planning problem by proposing
to neglect from (6) and (10) a subset of operational planning
conditions S \ SRMAC only if it can be ascertained that, the
implied residual risk is lower than a fixed accuracy threshold
∆EP , as in,

RS\SRMAC
(u) ≤ ∆EP . (19)

In (19) we introduce the discarding threshold ∆EP as
the meta-parameter of the proposed short-term operational
planning RMAC. Larger values of such meta-parameter allow
for identifying optimal operational planning decisions against
smaller subsets SRMAC , gaining in computational simplicity
at the expense of solution accuracy and implied risk.
Socio-economic objective To complete the statement of the
RMAC for short-term operational planning, we put the socio-
economic cost function (6) as a minimization objective to-
gether with the reliability target of (10) and the discarding
principle of (19), as in,

min
uP∈UP

CP (up) +
∑

s∈SRMAC

πs · CR (u?R(s), s) (20)



subject to, ∀s ∈ SRMAC ,

ŨR (uP , s, 1) 6= ∅ (21)
u?R(s) ∈ arg min

uR(s)∈ŨR(uP ,s,1)

CR (uR(s), s) (22)

while,

RS\SRMAC
(uP ) =

∑
s∈S\SRMAC

πs · CR (ũ?R(s), s) ≤ ∆EP (23)

where, ∀s ∈ S \ SRMAC ,

ũ?R(s), λ?(s) ∈ arg min
ũR(s),λ(s)

CR (ũ?R, s) (24)

subject to,

ũR(s) ∈ ŨR (uP , s, λ(s)) (25)
λ(s) ∈ {0; 1}. (26)

We notice here the reliability target of (21) which, as already
explained, imposes the feasibility of the real-time reliability
management problem (22) over any non-discarded operational
condition s ∈ SRMAC . Accordingly, the second term in
the socio-economic objective function (20) only includes the
expectation of the function measuring the costs of achieving
the real-time decision making strategy. Contrary to this, there
is no explicit requirement on the feasibility of the real-time
reliability management problem for discarded operational con-
ditions. As such, both the real-time decision making strategy
as well as its possible relaxation appear in the statement of
the discarding principle (23-26).

III. MODELING REQUIREMENTS & IMPLEMENTATION

In this section we briefly discuss the main modeling re-
quirements of the proposed RMAC for short-term operational
planning, as well as the modeling approximations and solution
approach adopted in our prototype implementation. The for-
mulations of all the models composing our solution approach
are analytically presented in mathematical notation in the
Appendix.

A. General modeling requirements

Since the short-term operational planning RMAC anticipates
on the real-time reliability management strategy, it will in-
tegrate the models and data needed to formulate the latter.
Referring the reader to [2] for a discussion on the modeling
requirements of the real-time RMAC integrated in this work,
let us focus here on the additional requirements of the short-
term planning RMAC with respect to the models and data
exploited by the real-time variant of the RMAC. The main
additional requirements concern,
a.) forecasting models:

i. weather conditions at the spatio-temporal resolution
and precision required by those real-time models
making use of them (recall that outage probabilities,
probabilities, costs of service interruption, corrective

control failure mode probabilities are in principle
weather dependent);

ii. power injections at the nodal resolution, so as to
anticipate the electrical state of the system in real-
time;

iii. a probability model for the joint process of weather
conditions & power injections3 modeling marginal
distributions as well as the significant stochastic (tem-
poral and spatial) dependencies among the different
exogenous factors;

b.) real-time proxy models:
i. candidate real-time preventive and corrective actions,

including cost-functions, admissible ranges of control,
coupling constraints among successive real-time con-
trols and coupling constraints of these latter with the
operational planning decisions;

ii. constraints and objective(s) of the real-time reliability
management strategy;

iii. the way to relax the aforementioned constraints and/or
objective(s) if-and-only-if the real-time reliability
management strategy turns out unattainable.

B. Mathematical models adopted in this implementation

In large-scale power systems, the exact solution of the com-
plete optimization problem (20 – 26) becomes quickly out of
reach, even in the single period context of Fig. 1. Developing
scalable & tractable approximations to such problem is thus a
topic which merits considerable attention.

In our prototype implementation, we employ a discrete
set of uncertain operational conditions while representing the
randomness in the active power output of renewable generation
as well as in the weather conditions. More specifically, each
elementary scenario (s ∈ S) is assumed to jointly define the
active power injection (in MW) per each wind power generator
and the state of the weather, classified as either normal or
adverse. We associate to each elementary scenario (s ∈ S)
the respective realization probability (πs), with

∑
s∈S πs = 1.

Given such scenario set as input, we decompose the short-
term operational planning RMAC of (20 – 26) into the func-
tions of assessment, discarding and control. As represented
by the illustration in Fig. 2 and the pseudo-code in Algo. 1,
we make use of such decomposition to address the complete
problem (20 – 26) by iteratively growing the subset of non-
discarded operational conditions

(
SiRMAC

)
while updating the

corresponding optimal operational planning decisions
(
u?,ip
)
.

Initializing the sub-set of non-discarded scenarios with the
most probable operational conditions, at each iteration we use:
• the RMAC control function to update the planning deci-

sions
(
u?,ip
)

with respect to all non-discarded operational
conditions

(
s ∈ SiRMAC

)
,

• the RMAC assessment function to update
the corresponding residual risk estimation

3Notice that in principle weather conditions and power injections are not
are not mutually independent, since both renewable power generation and
(domestic) electricity demand strongly depend on the weather.
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Fig. 2. RMAC iterative decomposition approach

(
RS\Si

RMAC
(u?,ip )

)
with respect to discarded operational

conditions
(
s ∈ S \ SiRMAC

)
, and,

• the RMAC discarding function, to enlarge the
set of non-discarded operational conditions(
SiRMAC ⊂ Si+1

RMAC ⊆ S
)

if-and-only-if the residual
risk value is found to be non-negligible as per the
applicable discarding threshold value (∆EP ).

Algorithm 1 Short-term Operational Planning RMAC
1: initialise

i = 0,

RS\SRMAC
(u?,0p ) >> ∆EP ,

S1
RMAC = ŝ,

2: while RS\SRMAC
(u?,ip ) ≥ ∆EP do

3: i← i+ 1
4:
5: function RMAC CONTROL(SiRMAC )
6: � updates operational planning decisions,

u?,ip ∈ UP ,

7: function RMAC ASSESSMENT(u?,iP ,SiRMAC )
8: � updates implied residual risk,

RS\Si
RMAC

(u?,iP ),

9: function RMAC DISCARDING(RS\Si
RMAC

(u?,iP ) )
10: � updates non-discarded scenarios,

Si+1
RMAC ⊃ SiRMAC .

1) RMAC control: The RMAC control problem concerns
identifying operational planning decisions to render real-time
operation feasible for all uncertainty realizations within a given
sub-set of non-discarded operational conditions.

Casting this problem in a post market-clearing context,
we model the modification of the commitment status of
thermal generating units with respect to the market outcome,
as well as the procurement of upward and downward active
power re-dispatch flexibility (i.e., the ability to activate such
re-dispatch controls in real-time) as short-term operational
planning candidate decisions (UP ). To emphasize on the inter-
relation between short-term operational planning and real-time

operation, we restrict the set of candidate real-time recourse
decisions to the utilization of the already procured re-dispatch
flexibility, either in a preventive or in a corrective (i.e. post-
contingency) manner. In other words, the Security Constrained
Optimal Power Flow (SCOPF) problem formulation under
consideration includes three decision stages, namely,

i. short-term operational planning: procurement of re-
dispatch flexibility under uncertainty on power injections,
weather conditions, contingency occurrence and post-
contingency corrective control behavior;

ii. real-time preventive: active power re-dispatch under un-
certainty on contingency occurrence and post-contingency
corrective control behavior;

iii. real-time post-contingency corrective: active power re-
dispatch following the occurrence of a contingency.

We employ the approximation of the real-time RMAC
contingency discarding problem by means of a conservative
upper-bound on the contingency severity function (see § II.B
in [2]) to define scenario specific sub-sets of non-discarded
contingencies (CRMAC (s) ∀s ∈ SRMAC ) and the DC ap-
proximation of the power flow equations. Accordingly, for
each non-discarded operational condition (s ∈ SRMAC ), we
consider a set of linear inequality constraints expressing power
flow limits in preventive mode, as well as at the intermediate
and corrective post-contingency stages over the respective
non-discarded contingency subset (CRMAC (s)). On top of
such limitations we also impose, again per non-discarded
operational condition (s ∈ SRMAC ), the real-time RMAC
chance-constrained reliability target restricting the choice of
post-contingency corrective control actions according to their
implied failure probability. We model the failure probability
of post-contingency corrective controls as in [22]. Similarly to
[2] we penalize any such potential failure conservatively via
the scalar product of load demand and value of lost load.

Finally, we assume that any change in the commitment
status of a generating unit is to be remunerated according to a
fixed fee in monetary units. Concerning re-dispatch flexibility,
we consider a marginal reservation fee (in monetary units per
unit of re-dispatchable capacity) as payable at the operational
planning decision making point. We also consider a marginal
activation fee (in monetary units per unit of re-dispatched
energy) as payable upon the utilization of such flexibility
during real-time operation.

The above lead to a mixed-integer linear programing
(MILP) approximation of the short-term operational planning
RMAC control problem which is presented in detailed math-
ematical notation as appendix A.

2) RMAC assessment: As already mentioned, the short-
term operational planning RMAC assessment problem con-
cerns quantifying the (residual) risk implied by a given
combination of operational planning decision(s) and scenario
(sub)set. Further, doing so necessitates anticipating the control
actions to be chosen as per the real-time reliability manage-
ment strategy. More specifically, the assessment scope includes
modeling:



• the decisions resulting from the application of the real-
time RMAC per each operational condition in the con-
cerned (sub)set;

• the decisions made while relaxing the real-time RMAC,
if-and-only-if achieving its constraints & objectives is
not attainable for a certain operational condition in the
concerned (sub)set.

For our prototype implementation, we rely on analytical
decision-making proxy models to anticipate on such choice.
More specifically, we formulate the real-time variant of the
RMAC control as a SCOPF problem while employing the
same physical models and assumptions as those integrated in
the short-term planning variant of RMAC control. Appendix
B introduces such SCOPF problem formulation in detailed
mathematical notation. Further, we assume that in any in-
stance wherein the real-time RMAC problem turns out to
be infeasible, the real-time variant of the discarding principle
would have to be relaxed by reducing the set of contingency
events to be explicitly covered by preventive and/or post-
contingency corrective control actions. We treat any such
case by i.) solving the modified SCOPF problem formulation
presented in appendix C so as to identify which security
constraints should be relaxed while minimizing the respective
relaxation probability4, and, ii.) subsequently re-solving the
original real-time RMAC SCOPF formulation of appendix
B while manually relaxing the constraints corresponding to
the identified contingencies. To measure the implied risk,
we account the impact of such relaxation conservatively by
multiplying the adopted relaxation probability with the scalar
product of load demand and value of lost load.

3) RMAC discarding: The function of RMAC discarding is
to expand, at each iteration, the sub-set of non-discarded oper-
ational conditions SiRMAC so as to eventually discard a sub-set
of operational conditions which collectively imply negligible
residual risk. As illustrated in Fig. 2, this is an intermediary
function between assessment and control, exploiting the results
of the former (residual risk quantification) in order to provide
inputs to the latter (subset of scenarios to be “covered” by
operational planning decisions).

The prototype implementation of the RMAC discarding
function builds on top of the approach originally developed in
[6]. Adapting such ideas as per the purposes of the proposed
RMAC, at each iteration we expand the set of non-discarded
scenarios with the single scenario contributing the most to the
residual risk quantity and do so until the discarding principle
holds true. In other words, we keep at each iteration the
additional single scenario that implies, in expectation, the
highest cost of real-time operation reliability management, as
in,

4Notice that such relaxed SCOPF formulation may only turn out to be
infeasible in the event that, given the power injection forecast error realization,
even the pre-contingency operation of the system (without any security
constraint) is unattainable. In any such case, we regard that the monetized
impact of the concerned operational condition is equal to the socio-economic
cost of shedding the whole system load demand.

Si+1
RMAC = SiRMAC ∪ si+1 (27)

where,

si+1 ∈ arg max
s∈S\Si

RMAC

πs · CR
(
u?,iR , s

)
. (28)

Let us briefly remark that, with respect to the worst-
case scenario screening ideas originally introduced in [6] to
facilitate a robust approach to planning under uncertainty, the
RMAC discarding proposed here corresponds to a probabilistic
risk management doctrine, hence differentiates between sce-
narios on the basis of realization probability times implied cost
rather than potential degree of constraint violation. Further,
rather than seeking for all potentially “problematic” scenarios,
it seeks for those scenarios necessary to achieve the proposed
discarding principle. The latter feature may well be advan-
tageous in both i) allowing to discard a greater number of
scenarios, hence reducing the computational burden of the
operational planning SCOPF problem, and ii) allowing to
resolve situations involving conflicting scenarios, whose joint
consideration would render the operational planning SCOPF
problem infeasible, in a consistent manner.

IV. DEMONSTRATIVE CASE STUDIES

In order to demonstrate the features of our proposed ap-
proach and motivate further work related to its modeling
requirements and implementation challenges, we discuss in
this section a set of case studies based on the single area
version of the well know IEEE RTS–96 benchmark [23].

A. Set-up for case studies

The demand values used in all case studies refer to the
time interval 8 : 00 − 9 : 00 pm at the first day of the year,
for an annual peak of 3135 MW and the respective values of
lost load per demand are defined as per [24]. To facilitate a
meaningful study of our proposal we relied on the additional
assumptions and data originally developed in [25] and made
publicly available by the authors at [26]. More specifically, we
have adopted from these sources:
• the addition of 9 wind farms with a total capacity of 3900

MW, as listed in table I and illustrated in the single line
diagram of Fig. 3;

• the description of the respective power injection uncer-
tainty by means of a nodal “central forecast”, as well
as 10 scenarios of credible nodal realizations. Fig. 4
illustrate the central forecast (a) and realization scenarios
(b) for the time period in question under the favorable
wind profile and an assumed wind energy penetration
level of 35%, while table II lists the corresponding
realization probabilities;

• the reduction of long-term and emergency flow limits
of all transmission lines and transformers by 20% with
respect to the values listed in table 12 of [23];

• the modernized cost coefficients of all thermal generating
units.
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Fig. 3. Modified version of IEEE RTS-96 area A

TABLE I
WIND POWER CAPACITY ADDITION PER NODE

Node Capacity (MW) Node Capacity (MW)

2 300 19 600
14 300 20 600
16 600 21 300
17 600 22 300
18 300

In order to complete the set of uncertain operational condi-
tions S, we arbitrarily assume that the ratio of the probability
of realizing the adverse weather state to the probability of
realizing the normal weather state is equal to 0.25, unless
otherwise specified. In the absence of relevant data, we neglect
in our case study parameters the dependence of renewable
power injections on weather conditions to consider any com-
bination of the aforementioned realizations of power injections
and weather states as jointly credible. This amounts to a set
of |S| = 20 distinct scenarios for the short-term operational
planning RMAC. The first (last) ten scenarios in such set
correspond to the original ten wind power injection scenarios

Fig. 4. Wind power injections

TABLE II
WIND POWER INJECTION SCENARIO REALIZATION PROBABILITIES

Scenario Probability Scenario Probability

1 0.02 6 0.15
2 0.16 7 0.0864
3 0.1073 8 0.0009
4 0.2418 9 0.1255
5 0.1073 10 0.0009

under the realization of the normal (adverse) state of the
weather.

Concerning the uncertainties integrated within the RMAC
for real-time operation we begin by considering all single com-
ponent failures as well as the common mode failures suggested
in the original system specification [23] as credible. To model
the weather dependency of outage realization probabilities, we
follow the fundamental work of Billinton [21] while assuming,
for the benefit of demonstration, that 70% of the failures
occur under adverse weather conditions, and that the normal
(adverse) weather state would be realized during 85 % (15
%) of the hours of a typical year. We also assume that the
probability of failure of post-contingency corrective control is
weather independent and equal to 0.01.

The instance of the real-time RMAC employed in all of
our case studies has been specified according to an indicative
contingency discarding threshold of ∆ERt = 250 e and a
probabilistic reliability target εRt = 10−5. The former value
is, as per the employed pessimistic approximation, consistent
with considering the loss of any single transmission line and
cable as a non-discarded contingency upon realisation of the
normal weather state. Upon realization of adverse weather, it
implies the expansion of the non-discarded contingency subset
with 6 (common mode) double line outages, as well as with
the transformer outages.

Further, to measure the cost of the TSO reliability man-
agement decisions we define the reference commitment sta-
tus and active power dispatch of each generating unit by
simulating a single period perfectly competitive market for
electrical energy, constrained by the long-term transmission



TABLE III
REFERENCE COST VALUES (e)

Approach Planning Exp. Recourse Residual Total
Cost Cost – SCOPF Risk Cost

s-SCOPF 379.75 2981.54 0 3361.29

capacity ratings under the no-outage network state only. We
represent the wind power injections as deterministic in the
context of this market clearing problem, by means of the
aforementioned “central forecast” values. Appendix D presents
the mathematical statement of this MILP problem for the sake
of completeness.

We should finally elaborate on the numerical parameters em-
ployed in the objective function of the short-term operational
planning RMAC. We account for modifications on the com-
mitment status of any generating unit at the respective start-up
cost. The reservation of re-dispatch flexibility is accounted for
at a marginal cost (in e/MW), which we compute by dividing
the respective fixed running cost by the capacity of each unit.
For the re-dispatch utilization fee (e/MWh), we employ the
largest marginal cost coefficient amongst all segments of the
respective piece-wise linear generation cost curve.

B. Reference values on the test system

Prior to analyzing the features of the proposed probabilistic
RMAC for short term operational planning, we should estab-
lish a frame of reference on the considered test system.

We begin by summarizing in table III the results of the clas-
sical stochastic approach (s-SCOPF) to short-term operational
planning, which we obtained by solving the RMAC SCOPF
formulation (29 – 50, in appendix A) without discarding any
uncertainty realization (that is, with SRMAC ≡ S). Such an
approach would by default seek to guarantee the feasibility
of the real-time reliability management strategy under any
uncertainty realization (s ∈ S). As reported in the last
column of table III, assuming that set (S) completely describes
the uncertainty, the residual risk implied by the stochastic
approach is by default equal to zero.

Further, Fig. 5 presents reference results on the variation
of the s-SCOPF cost function with respect to the ratio of
the adverse to normal weather state probability. The left-most
point in this curve corresponds to the results in table III
and the default adverse to normal weather probability ratio
of 0.25. As anticipated, these results indicate that while the
probability of realizing the adverse weather state increases and
the probability of realizing the normal weather state decreases
symmetrically, the s-SCOPF approach would imply greater
costs of planning and securely operating the system. This
was indeed anticipated since the real-time recourse stages
corresponding to adverse weather realizations are in principle
more costly due to the tighter reliability constraints from the
adaptive contingency list of the real-time RMAC.

Finally, 6 completes the basis of reference results by plotting
the cost resulting from the application of the s-SCOPF under

Fig. 5. s-SCOPF Cost vs Adverse to Normal Weather Probability Ratio

Fig. 6. s-SCOPF Cost vs Wind Energy Penetration Level

variable levels of daily wind energy penetration in the range
[10, 65]%. Recall that the values in table III relate to a
daily wind energy penetration of 35% and thus correspond
to the middle point of x-axis in figure 6. To obtain the
remaining values, we have followed the models accompanying
the original set of data [25], [26] in scaling per scenario the
nodal wind power injection realizations according to the ratio
of the modified to the default daily wind energy penetration
level. The general trend of the s-SCOPF cost decreasing for
increasing levels of wind energy penetration relates mostly to
the availability of cheaper re-dispatch controls while wind is
displacing thermal generation in the market clearing outcome5.

C. Planning as per the proposed RMAC

We present in this subsection a set of exemplary results of
short-term operational planning as per the proposed RMAC.
First, let us concentrate on the proposed RMAC discarding
principle. To analyze its potential utility, we have selected a
range of values for the so-called discarding threshold param-
eter ∆EP and solved the corresponding RMAC assessment,
discarding & control problems.

5The analysis in [25] considering a broader version of the original dataset
reports a similar trend in a multi-period stochastic unit commitment context.



TABLE IV
RMAC COSTS vs DISCARDING THRESHOLD (e)

Discarding Planning Exp. Recourse Residual Total
Threshold Cost Cost – SCOPF Risk Cost

0 379.75 2981.54 0 3361.29
20 379.61 2963.61 18.94 3362.17
500 378.27 2541.20 434.41 3353.87
750 353.68 2458.31 586.81 3398.80

1250 265.45 1862.20 1242.71 3370.36
1750 265.45 1593.81 1511.10 3370.36

Fig. 7. RMAC Cost & Residual Risk vs Discarding threshold

In table IV we start from the s-SCOPF solution of zero
residual risk and detail the costs associated to the RMAC
application for increasing values of the discarding thresh-
old parameter. The table lists the first-stage and recourse
components of the RMAC SCOPF cost function (in the 2nd

and 3rd columns respectively) as well as a total cost value
computed by additionally accounting for the implied residual
risk. Complementary illustrations of the RMAC SCOPF cost
function, the residual risk value and the total cost value are
presented as Fig.7 (a) through (c).

As can be seen from the listed values, lower discarding
threshold values generally translate into greater cost values
for the RMAC control SCOPF problem while further lim-
iting its implied residual risk (by taking into consideration
more uncertainty realizations). In this manner, the discarding
threshold serves as a “tuning” parameter defining the level
of security implied by the application of the RMAC. We
further showcase this by presenting in table VII the total
number of non-discarded scenarios (2nd column) as well as the
composition of the non-discarded scenario subset (3rd column)
corresponding to the studied discarding threshold values. We
find that the cardinality of the non-discarded subset increases
with a reduction in the discarding threshold value.

It is also is relevant to comment on the difference in the
solutions obtained for the discarding threshold values of 1750
eand 1250 e. Table VII suggests that in the latter case the
set of non-discarded scenarios is expanded by the additional
scenario 3. Further, from table IV we deduce that such addi-

TABLE V
RMAC NON-DISCARDED SUBSETS

Discarding Cardinality CompositionThreshold (e)

0 20 1–20
20 15 1–7; 9; 12–17; 19
500 9 2–7; 9; 14; 15
750 8 2–7; 9; 14

1250 5 2–6
1750 4 2; 4–6

tional scenario necessitates no modification in the operational
planning decisions, since the changes in the expected recourse
component of the SCOPF objective and residual risk between
these two cases are symmetrical. The interpretation is that
while the already identified planning decisions result to a
feasible instance of real-time reliability management upon
occurrence of the scenario of concern, its associated economic
impact is considerably high and so it should be kept into
consideration in order to i) maintain its feasible status, and,
ii) possibly identify a better trade-off between planning and
expected operational costs (i.e, summation of the expected
recourse cost component of the SCOPF and residual risk).

Alternatively, the expansions of the non-discarded scenario
set implied by further reducing the discarding threshold pa-
rameter indeed bring about modifications in the operational
planning decisions. We notice with interest the total cost
corresponding to the discarding threshold value of 500 e. Such
total cost value is both lower than the total cost corresponding
to a discarding threshold value of 750 e, which is a solution
obtained while seeking to guarantee the feasibility of real-
time reliability management under less scenarios, and also
lower than the optimal cost value of the s-SCOPF listed in
table III, obtained while seeking to guarantee the feasibility
of real-time reliability management under more scenarios. The
former finding showcases the potential sub-optimality while
neglecting a larger part of the uncertainty set through a greater
discarding threshold value.

To clearly explain the second observation we resort to more
detailed results on the solution obtained under the 500 e
discarding threshold value. The second column of table VI lists
whether each discarded uncertainty realization corresponds
to an operational condition wherein the real-time operation
reliability management strategy is achievable or not. The third
and fourth column of this table present complementary infor-
mation on the probability and risk implied by each uncertainty
realization. We can identify that the proposed RMAC for short-
term operational planning achieves a lower total cost value
with respect to the s-SCOPF by tolerating the low risk of
having to relax the real-time reliability management strategy
upon occurrence of several low-probability weather & power
injection realizations. In contrast, any relaxation to the real-
time reliability management strategy is non-tolerable by the
s-SCOPF.

It is finally noteworthy that most realizations under which



TABLE VI
DISCARDED SCENARIOS, ∆Ep = 500 (e)

s 6∈ SRMAC Rt-RMAC Probability Risk (e)

8

feasible

0.00073 0.80
10 0.00073 1.27
18 0.00018 0.24
19 0.02509 62.79
20 0.00018 0.33

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

relaxed

0.01600 55.65
11 0.00400 31.40
12 0.03200 82.10
13 0.02145 73.09
15 0.02145 105.98
16 0.03000 92.65
17 0.01727 80.51

the relaxation of the real-time criterion is tolerated by the
short-term operational planning RMAC correspond to the
adverse weather state (scenarios 11-17 in table VI). Recalling
that for each one of these scenarios, there is also a non-
discarded scenario with the same injection pattern and the
normal weather state, the critical factor here is evidently the
relatively low likelihood of the adverse weather state. The
interpretation is that, due such relatively low likelihood, the
risk of not preparing the system to face the adverse weather
conditions (i.e., to be able to withstand more contingency
events such as common mode outages) is negligible according
to the standard of the short-term operational planning RMAC.
Motivated by this example, we discuss further the adaptability
to the uncertain weather state in the following subsection.

D. Adaptability to the uncertain weather state

In this subsection we gradually modify the ratio of the
adverse weather state to the normal weather state realization
probability so as to study the adaptability of the proposed
RMAC with regard to the uncertain weather state. Fixing
for the purposes of this analysis the discarding threshold
parameter value to ∆EP=500 e, we consider 7 different
values in the range [0.25,4].

Recalling the already introduced Fig. 6 which plots the
relevant reference result on the s-SCOPF, Fig. 8 presents the
corresponding curves obtained while applying the proposed
RMAC for operational planning. More specifically, the solid
line in Fig. 8 presents the optimal cost value of the RMAC
SCOPF problem while the dashed line corresponds to the total
cost associated to the application of the RMAC, accounting
as well for the residual risk value. As previously, the results
corresponding to the assumed default ratio of 0.25 appear in
the leftmost part of both curves. We confirm the anticipated
trend of such curves increasing with the increase in the adverse
weather realization probability, in a similar manner to the s-
SCOPF cost.

The adaptation of the RMAC to such an increase can be
clearly identified by examining the data presented in table
VII. The second column of such table lists the cardinality of
the subset of non-discarded operational conditions as per the

Fig. 8. RMAC Costs vs Adverse to Normal Weather Probability Ratio

TABLE VII
NON-DISCARDED SCENARIOS vs WEATHER STATE PROBABILITY RATIO

Adverse/Normal Non-Discarded Scenarios (#)
Probability Total Normal Weather Adverse Weather

0.25 9 7 2
0.42 10 7 3
0.66 11 7 4

1 11 5 6
1.5 12 5 7
2.33 11 3 8

4 9 2 7

RMAC for the problem instances under consideration. The
third and fourth columns further decompose such subset by
listing the amount of non-discarded scenarios corresponding
to the normal and adverse weather state respectively. We notice
the gradual increase (decrease) in the amount of non-discarded
scenarios concerning adverse (discarded scenarios concerning
normal) weather conditions as the cardinality of the non-
discarded scenario sub-set remains relatively stable. This is
due to the fact that the gradual increase in the probability
of realizing the adverse weather states progressively makes
its implied risk non-negligible. Upon such conditions, the
subset of non-discarded scenarios of the short-term operational
planning RMAC would mostly include the adverse weather
scenarios, facilitating the reliable operation of the system
in real-time. This result exemplifies again the role of the
discarding threshold as the parameter establishing the sought
degree of risk-aversion at the short-term operational planning
stage.

To complete this preliminary investigation, we focus
through Fig. 9 on the relationship between the weather state
probabilities and the expected severity associated to the poten-
tial failure of the post-contingency corrective control actions
in real-time. As seen in Fig. 9, the increase of the severity
expectation with the increase of the adverse weather state
probability is rather notable. Examining our detailed results,
we have identified that the reason behind such increase is two-
fold. Primarily, the severity expectation increases due to the
increase in the realization probability of contingency events.



Fig. 9. Expected Severity vs Adverse to Normal Weather Probability Ratio

Fig. 10. Non-discarded probability vs wind energy penetration level

Secondarily, the severity expectation is further increased due
to the fact that, in the adverse weather scenarios, post-
contingency corrective controls are more heavily relied upon
in order to effectively manage the greater and more complex
set of contingency events under consideration.

E. Adaptability to the level of wind energy penetration

Through our final set of numerical results we investigate the
adaptability of the proposed probabilistic RMAC to the level
of wind energy penetration. We do so in similar manner to
producing the reference curve of Fig.6, that is by modifying
the wind energy daily penetration level in the range [10, 65]%
and accordingly scaling the wind power injection realizations.
Moreover, we also maintain constant the discarding threshold
parameter to the value of 500 e for the purpose of this
analysis.

We begin with showcasing the functionality of the discard-
ing principle by means of the bar chart in Fig. 10. Such chart
presents the probability of the non-discarded scenario sub-set
(SRMAC ) for the varying wind energy penetration levels under
consideration, including the considered default level of 35%.
The dependence of the non-discarded probability, hence of
the cardinality and composition of the non-discarded scenario
subset, to the wind energy penetration level is evident. Fur-

Fig. 11. RMAC Cost & Residual Risk vs s-SCOPF Cost

ther, examining the leftmost against the rightmost points, we
may notice that the non-discarded probability is considerably
greater (smaller) for lower (higher) wind energy penetration
levels.

It is of relevance to recall here our reference values of Fig.6,
demonstrating a reduction of the s-SCOPF cost as increasing
wind energy penetration levels result in the availability of
more and cheaper dispatchable resources to plan and reliably
operate the system. The performance of the RMAC illustrated
in Fig. 10 is in complete accordance with such reference
results. Situations within which the operator has to resort to
more costly control actions may generally be interpreted as
corresponding to increased system stress (for instance due
to increased loading and/or reduced availability of control
means and/or unavailability of transmission elements, either
planned or unplanned, etc.). The adaptability of the proposed
RMAC for operational planning to the level of wind energy
penetration (and the implications thereof for system operation)
is prominent here, as Fig. 10 shows that its application would
imply neglecting a smaller (larger) part of the uncertainty
space accordingly. We should also observe here that the
five most costly s-SCOPF problem instances from Fig. 6
correspond to the five problem instances with the largest non-
discarded probability, Fig. 10, as per the proposed RMAC.

To conclude this analysis, we briefly turn our attention to
the costs implied by the application of the proposed RMAC.
Fig. 11 presents the additional costs implied by the RMAC
(including the associated residual risk) with respect to the
previously introduced costs of the s-SCOPF approach, both
in relative (a) and absolute (b) terms. While our analysis
merely serves the purpose of demonstrating the features of our
proposal and the findings discussed here should only be treated
as indicative, we note that the relative cost differences are
typically smaller (greater) for the problem instances wherein
the s-SCOPF costs are higher (lower). It is useful to recall here
that such cost differences arise from the fact that the RMAC
discards a part of the uncertainty space. As already showcased
in earlier our results, the uncertainty space discarded by
the RMAC should be smaller (greater) for the more (less)



TABLE VIII
RMAC COSTS vs WIND ENERGY PENETRATION

Penetration Planning Exp. Recourse Residual Total
Level (%) Cost (e) Cost (e) – SCOPF Risk (e) Cost (e)

10 1449.31 3189.48 408.61 5047.40
15 322.65 2509.86 425.52 3258.03
20 203.25 2198.89 482.54 2884.67
25 353.19 2495.23 479.04 3327.45
30 204.25 2226.11 490.96 2921.32
35 378.27 2541.20 434.41 3353.87
40 269.74 1949.75 438.00 2657.48
45 413.42 2358.14 415.79 3187.35
50 275.39 1839.12 419.60 2534.11
55 275.49 1848.43 421.44 2545.37
60 275.13 1372.14 463.08 2110.34
65 276.99 1100.55 393.65 1771.20

costly operational planning problem instances. Thus, achieving
smaller (greater) relative cost differences under the more (less)
costly problem instances should be an expected feature of the
proposed RMAC.

Finally, and for the sake of completeness, we list in table
VIII the cost-breakdown associated to the short-term opera-
tional planning RMAC application under the different studied
levels of wind energy penetration. An interesting finding from
our detailed results suggests that the ranking of the studied
problem instances as per i) the RMAC total cost, composed
of the RMAC-SCOPF costs and residual risk, ii) the RMAC-
SCOPF cost only and iii) the s-SCOPF cost remains equiva-
lent. This suggests that, provided that the discarding threshold
parameter is well-chosen, the approximation achieved by using
the proposed RMAC should remain indicative of the relative
difference in the criticality of different operational planning
problem instances.

V. CONCLUDING DISCUSSION

This section concludes with several considerations on the
proposed probabilistic approach to reliability management
through planning and operation. We begin with an overview
of the work reported here, briefly recapitulating our proposal
as well as the findings from the numerical investigations in
the context of its prototype implementation. We continue by
assessing the stakes for implementation upgrades in terms of
the employed physical models and assumptions, as well as in
terms of computational simplicity and tractability. Further, we
also introduce the broader general scope of the multiperiod
look-ahead class of operational planning problems to trace
future work pertaining to the generalization of the probabilistic
RMAC proposal.

A. Overview of motivation, proposal & main findings

Short-term operational planning serves to prepare the opera-
tion of the system by ensuring the potentially needed resources
as early as required ahead of real-time. Over the recent years,
we have witnessed the growth of uncertainties sparking the
growing interest of the scientific community on two questions,
specifically the conceptual question of (re)defining the criteria

for reliability management within a risk-aware planning per-
spective, and the dimensionality question of facing the larger
and larger uncertainty space.

We proposed in this work a probabilistic reliability manage-
ment (i.e., assessment and control) framework as an attempt to
contribute to jointly answering these two questions. Our pro-
posal concentrates on tackling the uncertainties manifested be-
tween planning and operation (e.g., power injections, weather
conditions, etc.) by relying on i) the reliability target of render-
ing real-time operation achievable as per its respective relia-
bility management strategy, and, ii) the discarding principle of
explicitly considering only a part of the uncertainty space for
decision making, provided that the residual risk implied by
those neglected realizations remains acceptably low. On top
of these fundamental building blocks, our approach adopts a
socio-economic cost function as a minimization objective in a
stochastic optimization context.

To facilitate the clear identification of the properties of
this proposal, we developed a prototype implementation and
presented demonstrative case studies on an academic bench-
mark. The results are indicative of the inherent flexibility
and adaptability in our approach. Indeed, neglecting a sub-
set of uncertainty realizations offers the flexibility not only to
simplify the decision making problem in question but also to
potentially avoid costly operational planning decisions while
tolerating low risk anticipated relaxations of the real-time
reliability criterion. Doing so in a risk-aware manner, while
limiting residual risk, offers adaptability. The reported results
exemplify such adaptability with respect to the qualitative
features of both i) the uncertainty space (see § IV-D under
variable weather state realization probabilities), and, ii) the
operational situation (see § IV-E under variable wind energy
penetration levels).

B. Beyond the proof-of-concept implementation

While the presented results serve to establish the general
soundness of the proposed RMAC for short-term operational
planning, going beyond the proof-of-concept implementation
used to facilitate this study requires further progress in terms
of modeling, as well as dedicated attention to reducing com-
putational complexity and achieving algorithmic scalability.

Starting from uncertainty modeling, we relied on a publicly
available description of wind power injections via a discretized
set of realizations, along with a discrete set of weather states
of assumed probability distribution. We have neglected any
dependence of the former random variable on the latter, as well
as other uncertainties from our case study set-up. To improve
on this basic model, the first step would be to expand the
scope of uncertainty modeling by including several weather
dependent exogenous variables (such as, but not limited to, the
load demand, the value of lost load, etc.). As soon as the un-
certainty modeling scope is well identified, considerable effort
should be anticipated to represent all such continuous random
processes as well as their spatial and temporal dependencies.
We believe such effort to be rather worthwhile, in order to



fully exploit the benefits of the proposal set forward in this
paper.

Further, we used relatively simple physical models of the
power system (involving quasi-static and linear assumptions)
to foster the interpretability of results. With the same moti-
vation, as well as with the intention to establish the interest
in the consideration of real-time proxies, the real-time relia-
bility management strategy as well as its relaxation principle
were represented analytically as SCOPF problems of mixed
integer linear type. Enhancing the practical relevance of the
modeled set-up while reducing its associated computational
burden would both be necessary to enable pursuing our
proposal further. Let us point here to the potential of using
machine learning techniques to develop real-time reliability
management proxies and exploiting such proxies within an
upgraded implementation of the RMAC for short-term oper-
ational planning. Referring the interested reader to [27] for
preliminary results on the development of real-time reliability
management proxies through machine learning, we should
further acknowledge the possibility to develop different such
proxies of the real-time for the different functions of the
operational planning RMAC.

Indeed, in the context of the operational planning RMAC
assessment function, the relevant outcome is the cost resulting
from the application of the real-time reliability management
strategy (or, if-need-be, its relaxation) upon occurrence of
any operational condition. While in the prototype implemen-
tation the RMAC assessment function also computes the real-
time feasibility indicator as well as preventive and/or post-
contingency corrective decisions corresponding to each uncer-
tainty realization, these variables have been merely treated as
by-products to facilitate the analysis and discussion of results.
It is therefore in principle admissible to further specify the
scope of a real-time proxy for short-term operational planning
RMAC assessment as limited to the estimation of the costs
implied by the real-time reliability management strategy and
thus endogenise the modeling of the respective decisions.
Such further specification may be beneficial regarding both
the accuracy and the computational performance of the proxy
model. In a similar manner, we may envision the operational
planning RMAC control function relying on a different proxy
for modeling i) the feasibility of the real-time reliability man-
agement strategy as a function of a non-discarded operational
condition and operational planning decisions, and, ii) the real-
time preventive and/or corrective control decisions.

The exploration of such ideas for upgrading the algorithmic
implementation of the proposed RMAC for short-term opera-
tional planning remains a topic for further research.

C. Towards look-ahead mode reliability management for op-
erational planning

In parallel to the aforementioned modeling progress and
algorithmic implementation upgrades, future work concerns
extending the discussed ideas to the more general class of
look-ahead mode multi-stage problems. Look-ahead mode
multi-stage operational planning concerns making, as early

in advance as required, decisions that have effects over a
prolonged temporal horizon. The respective uncertainty is
progressively resolved within the temporal horizon, giving rise
to recourse decision making opportunities. This problem class
finds much more applications in power system operational
planning, such as the week-ahead verification of planned
outages for maintenance, the determination of available trans-
mission capacities for the day-ahead market clearing, the
post-market clearing adjustments of the unit commitment and
dispatch in day-ahead, etc..

Using the day-ahead reliability management problem in-
stance as an example, planning decisions are typically being
made around 8 – 12 hours before the start of the respective
daily horizon. Such daily horizon is furtherly decompos-
able into a sequence of instances of the real-time reliability
management problem. The stakes for reliability management
in such a context are raised both by the properties of the
random processes of concern and by the sequential transitions
between the different real-time reliability management prob-
lem instances within the planning horizon. The uncertainties
pertaining to the power systems operational conditions over
a prolonged horizon are (typically) not only resolved in a
gradual manner but also temporally correlated. Moreover,
real-time reliability management decisions corresponding to
sequential problem instances are joined by the coupling con-
straints describing the existence of a feasible transition from
the anterior to the posterior problem instance. The proper
representation of both such features results in a large-scale
multi-stage stochastic decision making problem. To the best of
the authors’ knowledge, the effective resolution of such multi-
stage look-ahead reliability management problem remains
open in the relevant literature [4].

In our prospective research we shall attempt to develop the
multi-stage look-ahead variant of the RMAC for operational
planning. At the conceptual level, this implies the replacement
of the single real-time problem instance considered in this
work with the notion of a trajectory, corresponding to a
sequence of real-time problem instances spanning the temporal
horizon of concern. Accordingly, we conclude by briefly
framing the look-ahead mode: i) reliability target of ensuring
that the objectives of real-time reliability management are
achievable under any anticipated trajectory, and, ii) socio-
economic objective of minimizing the planning costs along
with the cost expectation over all anticipated trajectories, and,
iii) discarding principle of reducing the problem size by
discarding those anticipated trajectories that imply negligible
residual risk.

APPENDIX

Nomenclature
The main mathematical symbols used in this appendix are defined

as follows. Others may be defined as needed within the text.
Indices:

c Index of contingencies.
d Index of demands.
g Index of dispatchable generating units.



k Index of piece-wise linear dispatchable generation cost curve
segments.

` Index of transmission elements (i.e. lines, cables and trans-
formers).

n Index of nodes.
s Index of power injection & weather scenarios.
w Index of wind power generators.

Sets:
C Set of contingencies.
CRMAC (s) ⊆ C Subset of non-discarded RMAC contingencies (i.e.,

covered by the SCOPF formulation) under scenario
s ∈ S.

D Set of demands.
Dn ⊆ D Subset of demands connected at node n.
G Set of dispatchable generating units.
Gn ⊆ G Subset of dispatchable generating units connected

at node n.
K Set of piece-wise linear dispatchable generation

cost curve segments.
L Set of transmission elements.
N Set of nodes.
S Set of weather & wind power injection scenarios.
SRMAC ⊆ S Subset of non-discarded RMAC weather & wind

power injection scenarios (i.e., covered by the
SCOPF formulation).

W Set of wind power generators.
Wn ⊆ W Subset of wind power generators connected at node

n.
Parameters:

a`,c(s) Binary parameter taking a zero value if transmission el-
ement {` ∈ L} is unavailable under contingency c and
scenario s.

cfg Fixed running cost (in monetary units) of generating unit g.
cg,k Marginal running cost (in monetary units per unit) of

generating unit g at the segment k of its piecewise linear
cost curve.

cRg Re-dispatch flexibility reservation marginal cost (in mone-
tary units per unit) of generating unit g.

crg Re-dispatch flexibility activation marginal cost (in monetary
units per unit) of generating unit g.

c0g Startup cost (in monetary units) of generating unit g.
Pmax
g Capacity of generating unit g.
Pmin
g Minimum stable output of generating unit g.

∆P−g Ramp-down limit of generating unit g in corrective mode.
∆P+

g Ramp-up limit of generating unit g in corrective mode.
Pd Active power demand of load d.
Pw(s) Active power injection of wind generator w under scenario

s.
vd Value of lost load of demand d.
fmax
` Long-term thermal rating of transmission element `.
r` Ratio of the short-term thermal rating to the long-term

thermal rating of transmission element ` (r` ≥ 1).
X` Reactance of transmission element `.
βn,` Element of the flow incidence matrix, taking a value of one

if node n is the sending node of element `, a value of minus
one if node n is the receiving node of element `, and a zero
value otherwise.

πc(s) Probability of occurrence of contingency c under scenario
s.

πfcc Probability of failure of corrective control.
π̃(s) Probability of occurrence of scenario s.
εRt Tolerance level of the real-time reliability target.
M A large constant.

Continuous Variables:
PM
g Dispatch of generating unit g as per the market clearing.
P+
g,0(s) Preventive ramp-up of generating unit g under scenario s.

P−g,0(s) Preventive ramp-down of generating unit g under scenario
s.

P+
g,c(s) Corrective ramp-up of generating unit g following contin-

gency c under scenario s.
P−g,c(s) Corrective ramp-down of generating unit g following

contingency c under scenario s.
R+

g Upward re-dispatch flexibility provided by generating unit
g.

R−g Downward re-dispatch flexibility provided by generating
unit g.

f`,0(s) Power flowing through transmission element ` under the
pre-contingency state and scenario s.

fIS
`,c (s) Power flowing through transmission element ` at the

intermediate stage following contingency c and prior to
the application of corrective control under scenario s.

f`,c(s) Power flowing through transmission element ` following
contingency c and the successful application of corrective
control under scenario s.

θn,0(s) Voltage angle at node n under the pre-contingency state.
θISn,c(s) Voltage angle at node n at the intermediate stage following

contingency c and prior to the application of corrective
control under scenario s.

θn,c(s) Voltage angle at node n following contingency c and the
succesful application of corrective control under scenario
s.

Nb: All continuous variables are non-negative with the exception
of the transmission element flow variables, and angle variables.

Binary Variables:

ong Indicating the decision to start-up generating unit g as per
the short-term operational planning RMAC SCOPF.

offg Indicating the decision to shut-down generating unit g as per
the short-term operational planning RMAC SCOPF.

vg Indicating the commitment status of generating unit g as per
the market clearing.

ug Indicating the commitment status of generating unit g as per
the short-term operational planning RMAC SCOPF.

γc Auxiliary variable employed for the relaxation of post-
contingency constraints in the relaxation of the real-time
RMAC SCOPF.

ζc(s) Indicating the use of post-contingency corrective control
following contingency c under scenario s.

A. Short-term Operational Planning RMAC SCOPF statement

The MILP formulation of the short-term operational planning
RMAC SCOPF problem statement is as shown in (29 – 50).

N.b: Superscript (?) is used where appropriate (e.g., with the
variable corresponding to the market dispatch of generating units)
to denote a variable whose value has been fixed as per the solution
of a different problem, treated here as a parameter.

min

{∑
g∈G

[
c0g (ong + offg) + cRg

(
R+

g +R−g
)]

+
∑

s∈SRMAC

π̃s

{∑
g∈G

[
crg ·

(
P+
g,0(s) + P−g,0(s)

)]
+

∑
c∈CRMAC(s)

πc(s) ·
∑
g∈G

[
crg ·

(
P+
g,c(s) + P−g,c(s)

)]
+

∑
c∈CRMAC(s)

πc(s) · ζc(s) · πfcc ·
∑
d∈D

vd · Pd

}}
,

(29)



subject to, for all generating units g ∈ G :

ug − ong ≤ v?g , (30)
− ug − offg ≤ −v?g , (31)

R+
g − ug ·

(
Pmax
g − ·PM?

g

)
≤ 0, (32)

R−g − ug · v?g ·
(
PM?
g − Pmin

g

)
≤ 0, (33)

for all non-discarded scenarios s ∈ SRMAC :∑
c∈CRMAC(s)

ζc(s) · πc(s) · πfcc ≤ εRt, (34)

for all nodes n ∈ N & non-discarded scenarios s ∈ SRMAC :∑
g∈Gn

[
ug · PM?

g +
(
P+
g,0(s)− P−g,0(s)

)]
−

−
∑
`∈L

βn,` · f`,0(s) =
∑

d∈Dn

Pd −
∑

w∈Wn

Pw(s), (35)

for all transmission elements ` ∈ L & non-discarded scenarios s ∈
SRMAC :

f`,0(s)− 1

X`

∑
n∈Nn

βn,` · θn,0(s) = 0, (36)

f`,0(s) ≤ fmax
` , (37)

− f`,0(s) ≤ fmax
` , (38)

for all generating units g ∈ G, non-discarded contingencies c ∈
CRMAC (s) & non-discarded scenarios s ∈ SRMAC :

0 ≤
(
P+
g,0(s) + P+

g,c(s)
)
≤ R+

g , (39)

0 ≤
(
P−g,0(s) + P−g,c(s)

)
≤ R−g , (40)

0 ≤ P+
g,c(s) ≤ ζc(s) ·∆P+

g , (41)

0 ≤ P−g,c(s) ≤ ζc(s) ·∆P−g , (42)

for all nodes n ∈ N , non-discarded contingencies c ∈ CRMAC (s)
& non-discarded scenarios s ∈ SRMAC :∑

g∈Gn

[
ug · PM?

g +
(
P+
g,0(s)− P−g,0(s)

)]
−

−
∑
`∈L

βn,` · fIS
`,c (s) =

∑
d∈Dn

Pd −
∑

w∈Wn

Pw(s), (43)

∑
g∈Gn

[
ug · PM?

g +
(
P+
g,0(s)− P−g,0(s)

)
+
(
P+
g,c(s)− P−g,c(s)

)]
−

−
∑
`∈L

βn,` · f`,c(s) =
∑

d∈Dn

Pd −
∑

w∈Wn

Pw(s), (44)

for all transmission elements ` ∈ L, non-discarded contingencies
c ∈ CRMAC (s) & non-discarded scenarios s ∈ SRMAC :

fIS
`,c (s)− a`,c(s) ·

1

X`

∑
n∈Nn

βn,` · θISn,c(s) = 0, (45)

fIS
`,c (s) ≤ a`,c(s) · r` · fmax

` , (46)

− fIS
`,c (s) ≤ a`,c(s) · r` · fmax

` , (47)

f`,c(s)− a`,c(s) ·
1

X`

∑
n∈Nn

βn,` = 0, (48)

f`,c(s) ≤ a`,c(s) · fmax
` , (49)

− f`,c(s) ≤ a`,c(s) · fmax
` . (50)

The summation appearing in the first row of objective function
(29) measures, over all dispatchable generating units, the direct costs
associated to i.) modifying the commitment status of any unit, and ii.)
procuring re-dispatch flexibility to be potentially used in real-time.
The summation in the second to fourth row of objective function (29)
corresponds to the expectation of real-time reliability management
costs over the sub-set of non-discarded operational conditions. The
first component of such expectation (second row), expresses the
expected costs of re-dispatching generating units in preventive mode
while the second component (third row) corresponds to corrective
control, and is payable upon occurrence of the respective contingency.
The final term (fourth row) conservatively penalizes the potential
failure of the chosen corrective actions, at the cost of shedding the
whole system load demand. Notice that variable ζc(s) also appears
in (41–42) to indicate the use of post-contingency corrective controls.

Constraints (30 - 31) are used in order to identify and charge the
modifications imposed on the status of the dispatchable generating
units with respect to the market clearing outcome. Further, inequal-
ities (32– 33) set the upper bounds on the upward (downward) re-
dispatch flexibility positive variables as allowed by the market clear-
ing outcome and the maximum capacity (minimum stable output) of
each dispatchable unit.

For each non-discarded scenario s ∈ SRMAC , the chance-
constrained reliability target of the real-time RMAC is expressed
by (34). Recall again that variable ζc(s) denotes the use of post-
contingency corrective controls for the respective contingency, which
as mentioned may fail with probability πfcc. Notice also that the
summation is expressed over the scenario-specific, subset of non-
discarded contingencies. Expressions (35–38) are the “classical” DC
power flow equality, and flow limit inequality constraints for the
preventive stage, again per non-discarded scenario s ∈ SRMAC . The
restriction of only using the procured upward and downward re-
dispatch flexibility in pre- and post-contingency stages is expressed
by inequality constraints (39,40) respectively.

For each non-discarded scenario s ∈ SRMAC and corresponding
non-discarded contingency c ∈ CRMAC (s) inequality constraints
(41-42) are generation ramping restrictions linking the preventive
and corrective active power outputs. The group of equalities and
inequalities (43, 45–47) impose the power flow linear approximation
and active power flow limits at the intermediate stage following the
occurence of a contingency and the use of post-contingency corrective
control. Finally, the similar type of physical restrictions referring to
the post-contingency corrective stage (i.e., given the successful use
of corrective controls) is denoted by (44, 48–50).

B. Real-time RMAC SCOPF statement

The MILP formulation of the real-time RMAC SCOPF problem
statement is as shown in (51 – 68).

N.b.: Superscript (?) is used where appropriate (e.g., with the
variable corresponding to the market dispatch of generating units)
to denote a variable whose value has been fixed as per the solution
of a different problem, treated here as a parameter.

N.b.(2): While, as explained in the main body of this paper, all
variables & several parameters of this problem are defined with
respect to a given realization of operational conditions s ∈ S,
we avoid the use of such symbol here for the benefit of notational
simplicity.

min

{∑
g∈G

crg ·
[(
P+
g,0 + P−g,0

)
+

∑
c∈CRMAC(s̄)

πc ·
(
P+
g,c + P−g,c

)]

+
∑

c∈CRMAC

πc · ζc · πfcc ·
∑
d∈D

vd · Pd,

}
(51)



subject to,∑
c∈CRMAC(s̄)

πc · ζc · πfcc ≤ εRt, (52)

for all nodes n ∈ N :{∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)]
−
∑
`∈L

βn,` · f`,0 =
∑

d∈Dn

Pd −
∑

w∈Wn

Pw

}
, (53)

for all transmission elements ` ∈ L:

f`,0 −
1

X`

∑
n∈Nn

βn,` · θn,0 = 0, (54)

f`,0 ≤ fmax
` , (55)

− f`,0 ≤ fmax
` , (56)

for all generating units g ∈ G & non-discarded contingencies c ∈
CRMAC :

0 ≤
(
P+
g,0 + P+

g,c

)
≤ R+?

g , (57)

0 ≤
(
P−g,0 + P−g,c

)
≤ R−?

g , (58)

0 ≤ P+
g,c − ζc ·∆P+

g ≤ 0, (59)

0 ≤ P−g,c − ζc ·∆P−g ≤ 0, (60)

for all nodes n ∈ N & non-discarded contingencies c ∈ CRMAC :{∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)]
−
∑
`∈L

βn,` · fIS
`,c =

∑
d∈Dn

Pd −
∑

w∈Wn

Pw

}
, (61){∑

g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)
+
(
P+
g,c − P−g,c

)]
−
∑
`∈L

βn,` · f`,c =
∑

d∈Dn

Pd −
∑

w∈Wn

Pw

}
, (62)

for all transmission elements ` ∈ L & non-discarded contingencies
c ∈ CRMAC :

fIS
`,c − a`,c ·

1

X`

∑
n∈Nn

βn,` · θISn,c = 0, (63)

fIS
`,c ≤ a`,c · r` · fmax

` , (64)

− fIS
`,c ≤ a`,c · r` · fmax

` , (65)

f`,c − a`,c ·
1

X`

∑
n∈Nn

βn,` · θn,c = 0, (66)

f`,c ≤ a`,c · fmax
` , (67)

− f`,c ≤ a`,c · fmax
` . (68)

The first row objective function (51) correspond to the costs of
using the re-dispatch flexibility in preventive mode, and the expected
costs of further using this resource for post-contingency corrective
control. The term appearing in the second row of (51) relates to the
potential failure of corrective control. Notice that, as anticipated, the
objective function of the real-time RMAC SCOPF (51) is an instance

of the summation appearing in the second to fourth rows of the short-
term RMAC SCOPF (29). The same accordance holds true for the
constraint sets of these two problems.

More specifically, the real-time reliability target (52) is indeed
an instance of constraint (29) of the short-term planning problem.
Further, the preventive (53-56), intermediate post-contingency (61,
63–65) and corrective post-contingency flow constraints (62, 66–68)
correspond with constraint groups (35-38), (43, 45–50) and (48–50)
respectively. Finally, the use of the re-dispatch flexibility is limited
here by (57,58) analogously to (39,40).

C. Real-time RMAC relaxation SCOPF statement

The MILP formulation of the real-time RMAC SCOPF relaxation
problem statement is as shown in (69 – 89).

N.b.: Superscript (?) is used where appropriate (e.g., with the
variable corresponding to the market dispatch of generating units)
to denote a variable whose value has been fixed as per the solution
of a different problem, treated here as a parameter.

N.b.(2): While, as explained in the main body of this paper, all
variables & several parameters of this problem are defined with
respect to a given realization of operational conditions s ∈ S,
we avoid the use of such symbol here for the benefit of notational
simplicity.

min
∑

c∈CRMAC

πc · γc (69)

subject to,

∑
c∈CRMAC

πc · ζc · πfcc ≤ εRt, (70)

for all nodes n ∈ N :

{∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)]
−
∑
`∈L

βn,` · f`,0 =
∑

d∈Dn

Pd −
∑

w∈Wn

Pw

}
, (71)

for all transmission elements ` ∈ L:

f`,0 −
1

X`

∑
n∈Nn

βn,` · θn,0 = 0, (72)

f`,0 ≤ fmax
` , (73)

− f`,0 ≤ fmax
` , (74)

for all generating units g ∈ G & non-discarded contingencies c ∈
CRMAC(s̄) :

0 ≤
(
P+
g,0 + P+

g,c

)
≤ R+

g , (75)

0 ≤
(
P−g,0 + P−g,c

)
≤ R−g , (76)

0 ≤ P+
g,c − ζc ·∆P+

g ≤ 0, (77)

0 ≤ P−g,c − ζc ·∆P−g ≤ 0, (78)



for all nodes n ∈ N & non-discarded contingencies c ∈ CRMAC :{∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)]
−
∑
`∈L

βn,` · fIS
`,c − γc ·M ≤

∑
d∈Dn

Pd −
∑

w∈Wn

Pw

}
,

(79){∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)]
−
∑
`∈L

βn,` · fIS
`,c − γc ·M ≤ −

∑
d∈Dn

Pd +
∑

w∈Wn

Pw

}
,

(80){∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)
+
(
P+
g,c − P−g,c

)]
−
∑
`∈L

βn,` · f`,c − γc ·M ≤
∑

d∈Dn

Pd −
∑

w∈Wn

Pw

}
,

(81){∑
g∈Gn

[
u?
g · PM?

g +
(
P+
g,0 − P

−
g,0

)
+
(
P+
g,c − P−g,c

)]
−
∑
`∈L

βn,` · f`,c − γc ·M ≤ −
∑

d∈Dn

Pd +
∑

w∈Wn

Pw

}
,

(82)

for all transmission elements ` ∈ L & non-discarded contingencies
c ∈ CRMAC :

fIS
`,c − a`,c ·

1

X`

∑
n∈Nn

βn,` · θISn,c = 0, (83)

fIS
`,c − a`,c · (r` · fmax

` + γc ·M) ≤ 0, (84)

− fIS
`,c − a`,c · (r` · fmax

` + γc ·M) ≤ 0, (85)

f`,c − a`,c ·
1

X`

∑
n∈Nn

βn,` · θn,c = 0, (86)

f`,c − a`,c · fmax
` · (1− γc) ≤ 0, (87)

− f`,c − a`,c · fmax
` · (1− γc) ≤ 0, (88)

for all non-discarded contingencies c ∈ CRMAC :

ζc + γc ≤ 1. (89)

With respect to the original problem statement (51 – 68), we
minimize here the probability of those contingency events that need
to also be discarded within the subset CRMAC , originally defined as
per the real-time RMAC contingency discarding principle. We use
auxiliary binary variable γc as an indicator for such contingencies to
be further discarded. Specifically, this auxiliary variable is employed
to facilitate and indicate the relaxation of intermediate and corrective
post-contingency power balance and line flow restrictions (79–80,
83–85) and (81–82 , 86–88) using a sufficiently large constant (M).
We should finally explain that constraint (89) serves to allow, per
non-discarded contingency, either the use of corrective control or the
relaxation of post-contingency constraints only.

D. Market Clearing statement
The MILP formulation (90 – 98) has been used in our case studies

in order to set initial commitment status and dispatch values for all

thermal generating units as per a single period perfectly competitive
electricity market.

N.b.: Superscript (M) is used to designate that all variables in
this problem refer to the market clearing only.

min

(∑
g∈G

(
c0g + cfg

)
· vg +

∑
k∈K

cg,k · pg,k

)
, (90)

subject to, for all generating units g ∈ G:

PM
g −

∑
k∈K

pg,k = 0, (91)

PM
g − vg · Pmax

g ≤ 0, (92)

− PM
g + vg · Pmin

g ≤ 0, (93)

for all generating units g ∈ G & cost-curve segments k ∈ K:

pg,k − vg · pmax
g,k ≤ 0, (94)

for all nodes n ∈ N :∑
g∈Gn

PM
g −

∑
`∈L

βn,` · fM
` =

∑
d∈Dn

Pd −
∑

w∈Wn

Pw(s0),

(95)

for all transmission elements ` ∈ L:

fM
` −

1

X`

∑
n∈Nn

βn,` · θMn = 0, (96)

fM
` ≤ fmax

` , (97)

− fM
` ≤ fmax

` . (98)

We should briefly explain that the first term of (90) measures
start-up and fixed running costs, while all dispatchable units are
assumed to be initially off and available to be committed. The
summation appearing as a second term of the same function measures
the marginal running cost of dispatchable generation, assuming a
piece-wise linear cost function of |K| segments. Expressions (91 –
94) are for the active power generation of all dispatchable units, in
total and across the segments of the piece-wise linear cost curve.
Finally, expressions (95–98) are the nodal power balance and line
flow constraints considering the forecast power injections (denoted
here as s0) and the no-outage state of the network.
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