Generalized Pascal triangles for binomial coefficients of finite words
 Joint work with Julien Leroy (ULg) and Michel Rigo (ULg)

Manon Stipulanti (ULg) FRIA grantee

Computability in Europe (CiE)
Turku (Finland)
June 16, 2017

	$\binom{m}{k}$	k							
		0	1	2	3	4	5	6	7
	0	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
m	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients Pascal's rule: of integers:

$$
\binom{m}{k}=\frac{m!}{(m-k)!k!} \quad\binom{m}{k}=\binom{m-1}{k}+\binom{m-1}{k-1}
$$

- Grid: intersection between \mathbb{N}^{2} and $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$

- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Normalize by a homothety of ratio $1 / 2^{n}$
\rightsquigarrow sequence belonging to $[0,1] \times[0,1]$

The first six elements of the sequence

The Sierpiński gasket

The Sierpiński gasket

The Sierpiński gasket

Folklore fact

The latter sequence converges to the Sierpiński gasket when n tends to infinity (for the Hausdorff distance).

Folklore fact

The latter sequence converges to the Sierpiński gasket when n tends to infinity (for the Hausdorff distance).

Definitions:

- ϵ-fattening of a subset $S \subset \mathbb{R}^{2}$

$$
[S]_{\epsilon}=\bigcup_{x \in S} B(x, \epsilon)
$$

- $\left(\mathcal{H}\left(\mathbb{R}^{2}\right), d_{h}\right)$ complete space of the non-empty compact subsets of \mathbb{R}^{2} equipped with the Hausdorff distance d_{h}

$$
d_{h}\left(S, S^{\prime}\right)=\min \left\{\epsilon \in \mathbb{R}_{\geq 0} \mid S \subset\left[S^{\prime}\right]_{\epsilon} \quad \text { and } \quad S^{\prime} \subset[S]_{\epsilon}\right\}
$$

Remark
 (von Haeseler, Peitgen, Skordev, 1992)

The sequence also converges for other modulos.
For instance, the sequence converges when the Pascal triangle is considered modulo p^{s} where p is a prime and s is a positive integer.

Replace usual binomial coefficients of integers by binomial coefficients of finite words

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101$

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 1$ occurrence

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 2$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 3$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 4$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 5$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 6$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001$

$$
v=101
$$

$$
\Rightarrow\binom{101001}{101}=6
$$

Remark:
Natural generalization of binomial coefficients of integers
With a one-letter alphabet $\{a\}$

$$
\binom{a^{m}}{a^{k}}=(\underbrace{\overbrace{a \cdots a}^{m \text { times }}}_{k \text { times }} \begin{array}{c}
m \cdots a
\end{array})=\binom{m}{k} \quad \forall m, k \in \mathbb{N}
$$

Definitions:

- $\operatorname{rep}_{2}(n)$ greedy base-2 expansion of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_{2}(0):=\varepsilon$ where ε is the empty word

n		$\operatorname{rep}_{2}(n)$
0		ε
1	1×2^{0}	1
2	$1 \times 2^{1}+0 \times 2^{0}$	10
3	$1 \times 2^{1}+1 \times 2^{0}$	11
4	$1 \times 2^{2}+0 \times 2^{1}+0 \times 2^{0}$	100
5	$1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$	101
6	$1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$	110
\vdots	\vdots	\vdots

Generalized Pascal triangle in base 2

\rightsquigarrow base-2 expansions ordered genealogically: first by length, then using the dictionary order

$\binom{u}{v}$	v							
	ε	1	10	11	100	101	110	111
ε	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
10	1	1	1	0	0	0	0	0
u 11	1	2	0	1	0	0	0	0
100	1	1	2	0	1	0	0	0
101	1	2	1	1	0	1	0	0
110	1	2	2	1	0	0	1	0
111	1	3	0	3	0	0	0	1

Binomial coefficient of finite words: $\binom{u}{v}$

Rule (not local):

$$
\binom{u a}{v b}=\binom{u}{v b}+\delta_{a, b}\binom{u}{v}
$$

\rightsquigarrow base-2 expansions ordered genealogically: first by length, then using the dictionary order

The classical Pascal triangle

Questions:

- After coloring and normalization can we expect the convergence to an analogue of the Sierpiński gasket?
- Could we describe this limit object?
- Grid: intersection between \mathbb{N}^{2} and $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$

- Color the grid:

Color the first 2^{n} rows and columns of the generalized Pascal triangle

$$
\left(\binom{\operatorname{rep}_{2}(m)}{\operatorname{rep}_{2}(k)} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{\left(\mathrm{rep}_{2}(m)\right.}{\mathrm{rep}_{2}(k)} \equiv 0 \bmod 2$
- black if $\binom{\mathrm{rep}_{2}(m)}{\mathrm{rep}_{2}(k)} \equiv 1 \bmod 2$
- Normalize by a homothety of ratio $1 / 2^{n}$
\rightsquigarrow sequence belonging to $[0,1] \times[0,1]$

The first six elements of the sequence

A key result

Theorem [Leroy, Rigo, S., 2016]

The sequence of compact sets converges to a limit object \mathcal{L}.

"Simple" characterization of \mathcal{L} : topological closure of a union of segments described through a "simple" combinatorial property

Extension modulo p

Simplicity: coloring the cells of the grids regarding their parity

Extension

Everything still holds for binomial coefficients $\equiv r \bmod p$ with

- base-2 expansions of integers
- p a prime
- $r \in\{1, \ldots, p-1\}$

Left: binomial coefficients $\equiv 2 \bmod 3$
Right: estimate of the corresponding limit object

Generalized Pascal triangles

Generalized Pascal triangle in base 2

$\binom{u}{v}$				v						$S_{2}(n)$
	ε	1	10	11	100	101	110	111	n	
ε	1	0	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	1	2
10	1	1	1	0	0	0	0	0	2	3
u 11	1	2	0	1	0	0	0	0	3	3
100	1	1	2	0	1	0	0	0	4	4
101	1	2	1	1	0	1	0	0	5	5
110	1	2	2	1	0	0	1	0	6	5
111	1	3	0	3	0	0	0	1	7	4

Definition: $S_{2}(n)=\#\left\{m \in \mathbb{N} \left\lvert\,\binom{\left(\mathrm{rep}_{2}(n)\right.}{\mathrm{rep}_{2}(m)}>0\right.\right\} \quad \forall n \geq 0$

Palindromic structure \rightsquigarrow regularity

- 2-kernel of $s=(s(n))_{n \geq 0}$

$$
\begin{aligned}
\mathcal{K}_{2}(s)= & \left\{(s(n))_{n \geq 0},(s(2 n))_{n \geq 0},(s(2 n+1))_{n \geq 0},(s(4 n))_{n \geq 0},\right. \\
& \left.(s(4 n+1))_{n \geq 0},(s(4 n+2))_{n \geq 0}, \ldots\right\} \\
= & \left\{\left(s\left(2^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<2^{i}\right\}
\end{aligned}
$$

- 2-kernel of $s=(s(n))_{n \geq 0}$

$$
\begin{aligned}
\mathcal{K}_{2}(s)= & \left\{(s(n))_{n \geq 0},(s(2 n))_{n \geq 0},(s(2 n+1))_{n \geq 0},(s(4 n))_{n \geq 0},\right. \\
& \left.(s(4 n+1))_{n \geq 0},(s(4 n+2))_{n \geq 0}, \ldots\right\} \\
= & \left\{\left(s\left(2^{i} n+j\right)\right)_{n \geq 0} \mid i \geq 0 \text { and } 0 \leq j<2^{i}\right\}
\end{aligned}
$$

- 2-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{2}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's

Theorem [Leroy, Rigo, S., 2017]

The sequence $\left(S_{2}(n)\right)_{n \geq 0}$ satisfies, for all $n \geq 0$,

$$
\begin{aligned}
S_{2}(2 n+1) & =3 S_{2}(n)-S_{2}(2 n) \\
S_{2}(4 n) & =2 S_{2}(2 n)-S_{2}(n) \\
S_{2}(4 n+2) & =4 S_{2}(n)-S_{2}(2 n)
\end{aligned}
$$

Theorem [Leroy, Rigo, S., 2017]

The sequence $\left(S_{2}(n)\right)_{n \geq 0}$ satisfies, for all $n \geq 0$,

$$
\begin{aligned}
S_{2}(2 n+1) & =3 S_{2}(n)-S_{2}(2 n) \\
S_{2}(4 n) & =2 S_{2}(2 n)-S_{2}(n) \\
S_{2}(4 n+2) & =4 S_{2}(n)-S_{2}(2 n)
\end{aligned}
$$

Corollary [Leroy, Rigo, S., 2017]

$\left(S_{2}(n)\right)_{n \geq 0}$ is 2-regular.

Theorem [Leroy, Rigo, S., 2017]

The sequence $\left(S_{2}(n)\right)_{n \geq 0}$ satisfies, for all $n \geq 0$,

$$
\begin{aligned}
S_{2}(2 n+1) & =3 S_{2}(n)-S_{2}(2 n) \\
S_{2}(4 n) & =2 S_{2}(2 n)-S_{2}(n) \\
S_{2}(4 n+2) & =4 S_{2}(n)-S_{2}(2 n)
\end{aligned}
$$

Corollary [Leroy, Rigo, S., 2017]

$\left(S_{2}(n)\right)_{n \geq 0}$ is 2-regular.
\rightsquigarrow Matrix representation to compute $\left(S_{2}(n)\right)_{n \geq 0}$ easily

The Fibonacci case

Definitions:

- Fibonacci sequence $(F(n))_{n \geq 0}: F(0)=1, F(1)=2$ and

$$
F(n+2)=F(n+1)+F(n) \forall n \geq 0
$$

- $\operatorname{rep}_{F}(n)$ greedy Fibonacci representation of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_{F}(0):=\varepsilon$ where ε is the empty word

n		$\operatorname{rep}_{F}(n)$	Evitability
0		ε	
1	$1 \times F(0)$	1	
2	$1 \times F(1)+0 \times F(0)$	10	
3	$1 \times F(2)+0 \times F(1)+0 \times F(0)$	100	No factor
4	$1 \times F(2)+0 \times F(1)+1 \times F(0)$	101	11
5	$1 \times F(3)+0 \times F(2)+0 \times F(1)+0 \times F(0)$	1000	
6	$1 \times F(3)+0 \times F(2)+0 \times F(1)+1 \times F(0)$	1001	
\vdots	\vdots	\vdots	
Generalized Pascal triangles	Manon Stipulanti (ULg)		
2			

\rightsquigarrow Fibonacci representations ordered genealogically

$\binom{u}{v}$	v								n	$S_{F}(n)$
	ε	1	10	100	101	1000	1001	1010		
ε	1	0	0	0	0	0	0	0	0	1
1	1	1	0	0	0	0	0	0	1	2
10	1	1	1	0	0	0	0	0	2	3
$u \quad 100$	1	1	2	1	0	0	0	0	3	4
101	1	2	1	0	1	0	0	0	4	4
1000	1	1	3	3	0	1	0	0	5	5
1001	1	2	2	1	2	0	1	0	6	6
1010	1	2	3	1	1	0	0	1	7	6

Definition: $S_{F}(n)=\#\left\{m \in \mathbb{N} \left\lvert\,\binom{\operatorname{rep}_{F}(n)}{\operatorname{rep}_{F}(m)}>0\right.\right\} \quad \forall n \geq 0$

2 -kernel $\mathcal{K}_{2}(s)$ of a sequence s

- Select all the nonnegative integers whose base-2 expansion (with leading zeroes) ends with $w \in\{0,1\}^{*}$
- Evaluate s at those integers
- Let w vary in $\{0,1\}^{*}$

$$
\mathbf{w}=\mathbf{0}
$$

n	$\operatorname{rep}_{2}(n)$	$s(n)$
0	ε	$\mathrm{~s}(\mathbf{0})$
1	1	$s(1)$
2	10	$\mathrm{~s}(\mathbf{2})$
3	11	$s(3)$
4	100	$\mathrm{~s}(4)$
5	101	$s(5)$

F-kernel $\mathcal{K}_{F}(s)$ of a sequence s

- Select all the nonnegative integers whose Fibonacci representation (with leading zeroes) ends with $w \in\{0,1\}^{*}$
- Evaluate s at those integers
- Let w vary in $\{0,1\}^{*}$

n	$\operatorname{rep}_{F}(n)$	$s(n)$
$\mathbf{0}$	ε	$\mathbf{s}(\mathbf{0})$
1	1	$s(1)$
$\mathbf{2}$	10	$\mathbf{s}(\mathbf{2})$
$\mathbf{3}$	$\mathbf{1 0 0}$	$\mathrm{s}(\mathbf{3})$
4	101	$s(4)$
$\mathbf{5}$	$\mathbf{1 0 0 0}$	$\mathrm{s}(\mathbf{5})$

$s=(s(n))_{n \geq 0}$ is F-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{F}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's
$s=(s(n))_{n \geq 0}$ is F-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{F}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's

Proposition [Leroy, Rigo, S., 2017]

$\left(S_{F}(n)\right)_{n \geq 0}$ is F-regular.
$s=(s(n))_{n \geq 0}$ is F-regular if there exist

$$
\left(t_{1}(n)\right)_{n \geq 0}, \ldots,\left(t_{\ell}(n)\right)_{n \geq 0}
$$

s.t. each $(t(n))_{n \geq 0} \in \mathcal{K}_{F}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's

Proposition [Leroy, Rigo, S., 2017]

$\left(S_{F}(n)\right)_{n \geq 0}$ is F-regular.

In the literature, not so many sequences that have this kind of property

Done:

- Generalized Pascal triangle and generalized Sierpiński gasket in base 2
- Regularity of $\left(S_{2}(n)\right)_{n \geq 0}$, summatory function and asymptotics
- Regularity of $\left(S_{F}(n)\right)_{n \geq 0}$, summatory function and asymptotics
- Extension to any integer base $b \geq 2$: regularity of $\left(S_{b}(n)\right)_{n \geq 0}$, summatory function and asymptotics

To do:

- Generalized Pascal triangle and generalized Sierpiński gasket: convergence for integer bases, Fibonacci numeration system, etc.
- Study of S : extension to other numeration systems

