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We investigate the degeneracy of the superconducting vortex matter ground state by directly vi-
sualizing the vortex configurations in a kagomé lattice of elongated antidots via scanning Hall probe
microscopy (SHPM). The observed vortex patterns, at specific applied magnetic fields, are in good
agreement with the configurations obtained using time-dependent Ginzburg-Landau (TDGL) simu-
lation. Both results indicate that the long range interaction in this nano-structured superconductor
is unable to lift degeneracy between different vortex states and the pattern formation is mainly ruled
by the nearest neighbour interaction. This simplification allows the identification of a set of simple
rules characterizing the vortex configurations. We demonstrated that these rules can explain both
the observed vortex distributions and the magnetic field dependent degree of degeneracy.

I. INTRODUCTION

The physics of quantized units of flux in a supercon-
ductor interacting with a pinning landscape continues
to attract considerable academic interest due to the im-
plications largely transcending the domain of supercon-
ductivity such as Bose-condensates [1, 2], colloids [3, 4],
semiconductors [5, 6], Mott insulator transition [7], vor-
tex ice and charge ice [10–12], skyrmions [13, 14], cold-
atoms trapping [15], etc. The appeal and advantage of
superconducting systems is that the size and number of
the particles can be tuned by respectively changing the
temperature and the strength of the magnetic field. In
addition, the enormous flexibility in the design and fabri-
cation of artificial vortex traps in superconducting films
has fueled during the last decade an in-depth investiga-
tion of the interplay between pinning landscape and motif
symmetry [16], influence of pinning size and period [17–
20], competition between ordered and disordered defects
[21–23], or pinning energy dispersion [24, 25], to name a
few.

It has been recognized that vortex traps arranged in
complex units cells such as honeycomb or kagomé pat-
terns [26, 27], exhibit some properties unique to them.
Indeed, (i) molecular dynamics simulations have revealed
multistage melting of vortex ground states in a kagomé
periodic array of pinning sites when the temperature is
slowly varied [28], (ii) commensurate pinning enhance-
ment taking place at magnetic fields H/H1=n/2 (honey-
comb) and H/H1=n/3 (kagomé) rather than the stan-
dard H/H1=n [29], (iii) stronger enhancement of the
depinning current compared to a triangular lattice [29],

(iv) spontaneous transverse voltage and jamming effect
in a honeycomb array generated by the dimerization of
interstitial vortices [30], and (v) vortex interaction en-
hanced saturation number and caging effect [31]. Al-
though a great theoretical effort has been undertaken
to understand the physics of these systems, the exper-
imental investigations remain scarce. The few performed
experiments relied on electrical transport measurements
and, therefore, represent an indirect assessment of the ac-
tual dynamics of the vortex matter[26, 31]. In addition,
thermodynamic entropy is determined by measurements
of heat, while much less common is the determination
of configurational entropy. The latter relies on count-
ing the available states, which is possible for systems
where experimental techniques can resolve the state of
the individual particles. This direct imaging of configu-
rational entropy has been successfully done in magnetic
systems[8, 9]. Bearing in mind the aforementioned flex-
ibility of a vortex system, this opens a new route to ex-
plore degeneracy and frustration in nanostructured su-
perconductors.

In this work we explore the vortex distribution, using
scanning Hall probe microscopy (SHPM), in a thin su-
perconducting film with a kagomé lattice consisting of
elongated antidots (see Fig. 1(a)). By performing con-
secutive field-cooling (FC) experiments we can visualize
the resulting vortex distributions at different fractional
matching fields. The main observation is that each FC
experiment at a fixed magnetic field value (between 0
and H1) results in a different vortex configuration. This
experimental irreproducibility indicates that a large set
of vortex distributions exist with nearly the same en-
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FIG. 1. Scanning electron micrograph (a) and atomic force
microscopy image (b) of the investigated Pb film with an ar-
tificial kagomé lattice of elongated antidots. Experimentally
obtained out-of-plane component of the magnetic field, Bz,
and simulated current lines for an interstitial vortex located
in the area S1 (c) and pinned vortex in area S2 (d). S1 and
S2 are indicated in panel (a).

ergy. The resulting vortex patterns can be explained by
the particular design of the elongated antidot structure
and its impact on the different vortex-vortex interactions.
Firstly, the short-range interaction between vortices lo-
cated in two neighbouring antidots is enhanced due to
the elongated shape of the antidots. This gives rise to
very strong local constraints. In addition, the interac-
tion between vortices separated by exactly one antidot
(“long-range” interaction) is weaker and unable to dif-
ferentiate between the various vortex distributions. As
such, the long-range order is lifted and the vortex pat-
terns are ruled by the specific local constraints. More-
over, the obtained degeneracy can be easily tuned by
varying the applied magnetic field, which makes it an
ideal toy model to explore degeneracy in physical sys-
tems.

II. SAMPLE AND EXPERIMENTS

Figs. 1(a-b) show the kagomé lattice of elongated an-
tidots in a 85 nm thick Pb film, fabricated using conven-
tional electron-beam lithography, on a Si/SiO2 substrate.
The sample stage is cooled to 77 K, using liquid nitrogen,
to ensure a homogeneous growth. A Ge layer with thick-
ness of 10 nm is also deposited on top of the Pb layer
to protect it from oxidation. The source materials are
99.999%-pure Pb and 99.9999%-pure Ge. The external
magnetic field is applied perpendicularly to the sample
surface and the vortex configurations are directly visu-
alized using a low temperature SHPM (with magnetic
field resolution of 10−5 T and temperature stability bet-

ter than 1 mK) [32, 33]. All the SHPM images of vortex
patterns in our measurements are obtained by lifting the
Hall cross about 500-800 nm above the sample surface at
T = 4.25 K.

In analogy to other well-studied antidot systems [34,
35], the elongated antidots act as pinning centers to
trap vortices. Since the attractive vortex-pinning force is
much stronger than the repulsive vortex-vortex interac-
tion, the vortices prefer occupying vacant antibars rather
than forming an Abrikosov lattice. Figs. 1(c-d) show the
experimentally obtained magnetic field profiles and the
simulated current lines for an interstitial and trapped
vortex, respectively. These results clearly indicate that
the pinned vortex is strongly deformed. As a result, the
interaction between vortices will dependent on their exact
orientation. The short-range interaction, between vor-
tices located at neighboring antidots is very strong and
will introduce strict, magnetic field dependent, constric-
tions on the vortex lattice. For example, the amount
of vortices observed in each unit cell perfectly coincides
with the applied field value at H = H1/3, 2H1/3 and H1.

At fields below H1 also a long-range interaction, be-
tween vortices separated by an empty antidot, plays an
important role in determining the energy of the vortex
lattice. Previous SHPM experiments on nanostructured
Pb superconductors, in this field range, show that the
observed vortex distributions are the ones maximizing
the inter-vortex distance[36, 37]. In the present case, the
anisotropy of the pinned vortices and the anisotropy of
the superconducting film due to the kagomé antidot lat-
tice results in a complex vortex-vortex interaction. Its
impact on the final vortex distribution, given by the low-
est energy state, is difficult to predict. Therefore, one
has to perform TDGL simulations in order to gain in-
sight and resolve the important ingredients determining
the experimentally observed distributions.

III. THEORETICAL FORMALISM

The simulating results in this work are derived based
on the time-dependent Ginzburg-Landau (TDGL) equa-
tions, which provide a very useful tool for simulating both
dynamic and static superconducting problems. The nor-
malized TDGL equations can be written as [39–41],

∂tψ = (∇− iA)2ψ + ψ − |ψ|2ψ (1)

σ∂tA = Js − κ2∇×∇×A (2)

Js = Im(ψ∗∇ψ)−A|Ψ|2 (3)

where ψ, A and Js are order parameter, vector poten-
tial and supercurrent density, respectively. The length is
made dimensionless in units of coherence length ξ, time
in ξ2/D where D is diffusion coefficient, order parameter
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FIG. 2. (a-b) Two SHPM images (upper panels) and TDGL simulations (lower panels) of the vortex states in a kagomé antibar
lattice at Ha=H1/3 and 2H1/3, respectively. (c) Free energy corresponding to Ha =0 (red square), the two vortex states
shown in panel (a) at H1/3 (red-white triangle and blue pentagon), the three vortex states at H1/2 shown in Fig. 4(b) (white
diamond, blue circle and green triangle), the two vortex states shown in panel (b) at 2H1/3 (red pentagram and white-blue
circle) and, finally, the vortex state shown in Fig. 5(b) at H1 (red hexagon). (d) The discrete unit cells (red) and conjugated
unit cells (blue) in the kagomé lattice. (e) Schematic representation of possible vortex arrangements in a unit cell at Ha=H1/3,
2H1/3 and H1/2.

in ψ0 =
√
|a|/b, and vector potential in

√
2κHcξ where

Hc =
√

4πa2/b.
The magnetic field can be derived by Biot-Savart law,

B(r) =
µ0

4π

∫
V

Js(r
′
)× (r− r

′
)

|r− r′ |3
dr

′
(4)

where r=(x, y, h), r
′
=(x

′
, y

′
, 0) and h is the distance

between the Hall cross and sample surface. The Gibbs
free energy density of the system, in units of H2

cV/8π,
can be calculated by [40]

Gt = Gh +Gp = V −1

∫
V

[2(A−A0)Js − |ψ|4]dr (5)

where A0 is the vector potential of the uniform mag-
netic field. We consider an infinite sample, and periodic
boundary conditions are applied in the simulations. Be-
cause the thickness of the sample is sufficiently small,
the variations of order parameter and currents along the
thickness are neglected in simulations. To mimic the sta-
ble vortex patterns in the field-cooling experiments, we
start the simulations from different randomly generated
initial conditions [11]. Then we can obtain many vortex
ground- and metastable states. We find that the free en-
ergy of some vortex states are nearly the same, and these
vortex configurations agree well with the experimental
vortex patterns at specific applied magnetic fields.

IV. RESULTS AND DISCUSSIONS

In order to show the presence of degeneracy and obtain
the constraints, imposed by this particular system, we ex-
plore the vortex patterns at different fractional matching
fields. Figs. 2(a-b) show two distinct SHPM images and
TDGL simulations of typical vortex states observed at
Ha=H1/3 and 2H1/3, respectively. A good agreement
is observed between the simulated results (lower pan-
els) and the experimentally obtained data (upper pan-
els). Moreover, the square versus triangular packing of
the vortex lattice (shown in Fig. 2(a)) results in a dis-
tinct average vortex-vortex distance between both states.
However, the observation of both vortex states indicates
that the difference between the vortex interactions in the
two states is too small to resolve between them. Naively,
one could argue that the interaction in the square lattice
is more efficiently screened than in the triangular lattice
because of the appearance of an elongated antidot in be-
tween vortices in the latter case. This can be clarified by
removing the vacant elongated antidots in between vor-
tices. Indeed, the TDGL simulations indicate that the
antidots effectively decrease the difference induced by the
long-range interactions between the square and triangu-
lar vortex pattern. At 2H1/3 the interpretation is anal-
ogous. The interactions between the nearest-neighbor
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FIG. 3. Schematic representation of a possible degenerate vortex state constructed based on degeneracy rules at Ha=H1/3
and 2H1/3 (middle panel). The red bars represent the vortex configuration at H1/3, and the blue bars represent the vortex
state at 2H1/3. Experimental vortex states at H1/3 (left panels A1, A2, A3 and A4) and 2H1/3 (right panels B1, B2, B3
and B4), which exactly correspond to the local vortex patterns (red bars with yellow lines in four green boxes to the vortex
configurations in left panels and blue bars with white lines in four black boxes to the vortex configurations in right panels) in
the middle panel by rotating the boxes with about 30◦, 90◦, 150◦, 210◦, 270◦, 330◦.

vortices determine strong local constraints, while very
small energy differences (about ten thousandth in units
of H2

cV/8π) exist between the vortex states arising from
the interactions between vortices located at next-nearest
neighboring antidots. In addition, we have calculated the
free energy as a function of magnetic field, based on the
TDGL simulations (see Fig. 2(c)). The free energy for
different vortex distributions, marked by different sym-
bols, is indeed nearly the same. These results show that
the long-range interaction is unable to resolve between
different distributions. The free energy of vortex states
at H1/2 is situated at midpoint between the vortex states
at H1/3 and 2H1/3 since the energy caused by vortex-
vortex interactions increases linearly with external ap-
plied field.

By carefully analyzing the obtained experimental and
simulated vortex patterns, we can identify common topo-
logical characteristics regarding the resulting vortex con-
figurations. At Ha=H1/3, exactly one third of the an-
tidots are filled with vortices. By imposing homogene-
ity of the equilibrium state, this constraint persists on a
local scale, which results in the occupation of one anti-
dot at each vertex of the system. This constraint is a
natural consequence of a FC experiment, since vortices
are formed staring from a homogeneous field distribution.
At Ha=2H1/3 exactly the complementary conditions are

fulfilled: (i) exactly two thirds of the elongated antidots
are filled and (ii) two antidots are occupied at each unit
cell of the system. As seen in the Fig. 2(b), these con-
straints result in the formation of parallel vortex strings
at 2H1/3, which looks like the domain walls of the su-
perconductor.

The topological characteristics of the different degen-
erate vortex patterns can be deduced from simple filling
rules imposed onto the occupation of the kagomé lattice
unit cell. This approach will allow us to calculate the de-
generacy as a function of the applied magnetic field. As
shown in Fig. 2(d), the kagomé lattice can be divided into
unit cells and conjugated unit cells, which are labelled
as Ci,j and Ci,j respectively. The matrix C=[Ci,j ] and

C=[Ci,j ] denote the number of vortices in each unit cell
and conjugated unit cell. The aforementioned constraints
can now be explicitly written down for both magnetic
field values. In order to match the applied magnetic field
the

∑
i,j{Ci,j}=N/3 at H1/3 and the

∑
i,j{Ci,j}=2N/3

for 2H1/3, with N the amount of unit cells in the sam-
ple. As a result of the second (local) constraint, Ci,j has
to be 1 at H1/3, one-occupied/two-empty antidots, and
2 at 2H1/3, two-occupied/one-empty antidot, which are
reminiscent to ice rules [10–12]. Fig. 2(e) schematically
presents the 3, equivalent, vortex arrangements in case
Ci,j = 1 and Ci,j = 2.
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If the adjacent unit cells are non-interacting the vor-
tex distribution is highly degenerate and the amount of
degeneracy for both field values is 3N . In the case of a
long-range interaction the translational symmetry will be
preserved and only 3 possible distributions exist. As such
no real degeneracy (i.e. scaling with N) can be observed.
However, in the case of a short-range interaction the con-
straints are weakened and degeneracy is not fully lifted
in this system. The nearest neighbor interaction adds an
additional constraint to the conjugated unit cells. More
specifically, each conjugated unit cell must contain one
vortex at H1/3, i.e. Ci,j=1 and two vortices at 2H1/3,

i.e., Ci,j . Although it reduces the amount of degener-
acy, this constraint is much weaker than that imposed
by the long-range interaction. Based on our numerical
calculations the amount of degenerate vortex states is
Z<1.644N (see Supplementary Material [42]).

Moreover, with the aforementioned rules we can easily
construct a possible vortex distribution on a larger scale.
The middle panel of Fig. 3 shows a design of the vortex
distribution in large area, in which red bars represent the
vortex pattern at Ha=H1/3, and blue bars represent the
vortex pattern at 2H1/3. Please note that the reverse
vortex patterns at H1/3 turn out to be vortex states at
2H1/3 and vice versa. By comparing this pattern with
a variety of SHPM images at both magnetic field values
(upper and bottom panels of Fig. 2(e)) we can indeed
confirm that all obtained vortex distributions are repro-
duced by these simple rules. Due to the symmetry of
hexagon, we can get the same view of the sample with
the graph under SHPM (left and right panels) by rotat-
ing the schematic with about 30◦, 90◦, 150◦, 210◦, 270◦,
330◦.

As mentioned above, the number of particles can be
simply tuned by merely increasing or decreasing the ex-
ternal magnetic field. In virtue of this advantage, we also
explore the vortex state degeneracy at H1/2. As shown
in Fig. 4(a), we observe a completely different vortex
state at Ha=H1/2. To understand better the apparent
randomness of the vortex distribution, we also perform
numerical TDGL simulations for the vortex states at the
corresponding field Ha=H1/2. Fig. 4(b) shows the nu-
merical simulating vortex states, which clearly resemble
the vortex patterns observed by SHPM. Moreover, the
TDGL simulations indicate that the free energy of these
different vortex states are the same (see Fig. 2(c)).

Let us now identify the topological characteristics of
the different degenerate vortex patterns in Figs. 4(a)
and 4(b). Firstly, since the applied magnetic field is H1/2
and a FC procedure was used, only half of the antidots
are occupied with vortices and the remaining half are
empty. Secondly, the tendency of the system to keep a
homogeneous field distribution results in the absence of
completely empty unit cells and completely filled unit
cells. As a result Ci,j has to be 1, one-occupied/two-
empty antidots, or 2, two-occupied/one-empty antidot,
which are reminiscent to ice rules. The obtained pat-
terns are a combination of the 6 building blocks (pre-

FIG. 4. (a) Experimental SHPM images of three different
degenerate vortex states in a kagomé lattice of elongated an-
tidots at an applied field Ha=H1/2. (b) Three simulated
vortex states at the same magnetic field value.

sented in Fig. 2(e)) used to construct the vortex distri-
bution at Ha=H1/3 and Ha=2H1/3. In this case, we
can easily pinpoint the initial constraints, 1≤Ci,j≤2 and∑
i,j{Ci,j − 1}=N/2. It is interesting to note that the

reverse patterns of vortex states at H1/2 are also degen-
erate vortex states. For instance, as shown in Fig. 4(b),
the vacant antibars (white dash bars) are also degenerate
vortex states at H1/2. If no interaction exists between
these unit cells, the aforementioned constraints results in

an amount of degeneracy equal to Z= 3N ·N !
((N/2)!)2 . Based on

Stirling’s approximation, Z≈
√

2
πN · 6

N (see Supplemen-

tary Material [42]). However, also at this magnetic field
value two additional constraints appear due to the inter-
play between neighboring unit cells. These constraints
can be well identified using the conjugated unit cells: (i)
Similar to the regular unit cells, there must be 1 or 2
vortices in every conjugated unit cell, i.e., 1≤Ci,j≤2. (ii)
The number of conjugated unit cells with one vortex must
be N/2, i.e.,

∑
i,j{Ci,j − 1}=N/2.

Finally, a general constraint was observed, combin-
ing both the regular and conjugated unit cells, in or-
der to avoid the accumulation of one-vortex-unit-cells
or two-vortex-unit-cells in a larger area (overall uni-
formity of the magnetic field profile), every unit cell
and its three conjugated unit cells (also every con-
jugated unit cell and its three unit cells) are nei-
ther all two-vortex-unit-cells nor all one-vortex-unit-cells
based on the experimental and simulating vortex pat-
terns (see Fig. 4), i.e., 5≤Ci,j+Ci−1,j+Ci,j−1+Ci,j≤7,

5≤Ci,j+Ci,j+Ci,j+1+Ci+1,j≤7. Because of these con-
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FIG. 5. (a-b), Experimental observation of vortex states in
kagomé antibar latice at Ha=0.792 G (between 2H1/3 and
H1) and Ha=H1 via SHPM. (c), Numerical simulating vortex
state at Ha=0.801 G, which is very close to external field in
Fig. 4(a). (d), TDGL simulating vortex state at H1.

straints, the amount of degeneracy is reduced. For ex-
ample, the amount of degeneracy in 16 unit cells is
Z<6.17×109 (see Supplementary Material [42]), which
is much less than possible vortex states with 16 unit cells
(5.54×1011) in the non-interacting case. However, com-
pared to Ha=H1/3 or 2H1/3 the degeneracy is strongly
increased at Ha=H1/2.

It has been already well established that not all
nanoscale ferromagnetic islands comply with ice rules in
spin ice system. In vortex system, additional vortices
(vortex-defects) can be introduced by detuning the exter-
nal field. Fig. 5(a) shows the experimental SHPM vortex
pattern at Ha=0.792 G (0.741H1). Some of the vortex
strings intersect at some vertices, where three neighbor
antibars are all occupied by the vortices. Such defects
will have an impact on the degeneracy of the total sys-
tem. With increasing field, the amount of defects in-
creases, and the superconducting stripes are divided into

more isolated areas. The increasing number of defects
cause a reduction of degeneracy of the vortex states. Fi-
nally, as shown in Fig. 5(b), at H1 every antibar traps
exactly one vortex to form a large vortex-net. The vor-
tex state at H1 is unique and degeneracy is completely
suppressed.

V. CONCLUSION

In summary, we fabricated a kagomé lattice with elon-
gated antidots. This structure permits us to boost the
first neighbor interaction and directly observe many dis-
tinct degenerate vortex states with low temperature scan-
ning Hall probe microscopy at several fractional match-
ing fields. Based on the experimental measurements and
TDGL simulations, we find the local degeneracy rules to
characterize the vortex configurations at H1/3, H1/2 and
2H1/3, respectively. The local degeneracy rules can give
rise to different vortex distributions and a large configu-
ration entropy. In addition, the vortex-defects can result
in a failure of the degeneracy rules and the decrease of
vortex degeneracy. The elongated antidot system in the
kagomé antibar lattice provides an entirely new way to
study vortex degeneracy via SHPM directly and, as a first
in its kind exploration, it shows the potential of similar
vortex systems as a highly tunable playground to explore
concepts like frustration and degeneracy.
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