Diametral dimension and property $(\overline{\Omega})$ for spaces S^{ν}

Loïc Demeulenaere

June 8, 2017

Spaces S^{ν} are metrizable sequence spaces defined by Jaffard in the context of multifractal analysis and signal treatment. From a functional analysis point of view, the study of these spaces points out some topological properties, such as the facts they are locally pseudoconvex in general and locally *p*-convex in certain cases, Schwartz, and non-nuclear.

In this talk, we focus on two topological invariants, namely the diametral dimension (Bessaga, Mityagin, Pełczyński, Rolewicz) and the property $(\overline{\Omega})$ (Vogt, Wagner). Firstly, we revisit a result of Aubry and Bastin giving the diametral dimension of locally *p*-convex spaces S^{ν} and extend it to some non-locally *p*-convex spaces S^{ν} . Secondly, we explain how these developments can be used to prove that a subclass of spaces S^{ν} (among which the locally *p*-convex ones) verifies the condition $(\overline{\Omega})$.