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Abstract: Psychrophiles thrive permanently in the various cold environments on Earth. Their unsuspected
ability to remain metabolically active in the most extreme low temperature conditions provides
insights into a possible cold step in the origin of life. More specifically, metabolically active
psychrophilic bacteria have been observed at −20 ◦C in the ice eutectic phase (i.e., the liquid veins
between sea ice crystals). In the context of the RNA world hypothesis, this ice eutectic phase would
have provided stability to the RNA molecules and confinement of the molecules in order to react and
replicate. This aspect has been convincingly tested by laboratory experiments.
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1. Introduction

The oldest traces of potentially biogenic carbon on Earth have been recently dated back to
4.1 billion years [1], while the most ancient microfossil records have been found in the range of 3.2 to
3.7 billion years [2–4]. These cells were all expected to thrive in shallow marine costal environments,
which suggests mild local temperatures. Fossil records from the most primitive cellular organisms
remain elusive because their soft structure has only left very discrete chemical signatures, and also
because of the lack of rock records that old. Nevertheless, hyperthermophilic prokaryotes (mainly
archaea) have long been regarded as possible remnants of these primitive living forms [5,6] because
they branch deep in the phylogenic tree of life, with short branches towards the last universal
common ancestor (LUCA), even though the structure of the tree remains under debate [7,8] with
recent evidence for a two-domain tree of life [9]. Furthermore, only extant archaeal species are able to
colonize the most extreme environments on our planet in terms of temperature, pH, or salinity [10].
However, this view seems to be tainted by an anthropocentric bias because it postulates that extant
hyperthermophilic prokaryotes would have escaped about 3.8 billion years of evolution, which is more
than suspicious. As a matter of fact, current views suggest that LUCA was a mesophilic organism and
that extant extremophiles have subsequently colonized harsh environments [11–16]. In this respect,
the occurrence of sn2,3 di- and tetra-isoprenoid ethers in archaeal membranes (instead of sn1,2 di-fatty
acyl esters in the other domains) appears as a key determinant of archaea to outperform in extreme
environments [15]. As far as prebiotic chemistry is concerned, deep sea hydrothermal vents have been
proposed to be a plausible natural phenomenon compatible with the synthesis of the first biogenic
molecules [17]. These hot vents currently support life under extreme conditions, their chemistry agrees
with a chemolithoautotrophic primitive metabolism [18], and their isolation in deep sea water would
have protected from intense UV radiation detrimental to biological macromolecules [19].

Although attractive and well documented [20], the hypothesis of hot hydrothermal vents is in
partial contradiction with the concept of the RNA world [21,22], which postulates that RNA was
the first biogenic macromolecule because it is endowed with catalytic activity (the ribozyme) and
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genetic information, in contrast with DNA and proteins. The contradiction mainly resides in the
pronounced heat-lability of the isolated RNA molecule, and has led to the proposal of a cold origin
of life [23]. Furthermore, the mechanism of enzymatic activity requires some proximity with the
substrates, which is not met in the concept of a primitive soup. Accordingly, the possibility that ice has
been a matrix for biogenic molecules has emerged. In this respect, extant psychrophiles have never
been consistently regarded as remnants of a cold origin of life, but their ability to colonize the most
extremely cold environments provides physicochemical evidences supporting the appearance of biotic
macromolecules in the cold, which should not be neglected amongst the various hypotheses [24,25].

2. Extant Psychrophiles

It is frequently overlooked that the majority (>80%) of the Earth’s biosphere is cold and
permanently exposed to temperatures below 5 ◦C [26]. Such low mean temperatures mainly arise
from the fact that ~70% of the Earth’s surface is covered by oceans that have a constant temperature of
2–4 ◦C below 1000 m depth, irrespective of the latitude. The polar regions account for another 15%,
to which the glacier and alpine regions must be added, as well as the permafrost representing more
than 20% of terrestrial soils. All these low temperature biotopes have been successfully colonized by
cold-adapted organisms (termed psychrophiles [27]), which include a large range of representatives
from all three domains—Bacteria, Archaea, and Eukarya. These organisms do not merely endure
such cold and inhospitable conditions, but are irreversibly adapted to these environments, as most
psychrophiles are unable to grow at mild (or mesophilic) temperatures. Some microorganisms
have a larger growth temperature range, from low to mild temperatures, sometimes referred to
as psychrotrophs or psychrotolerants. However, in the absence of environmental, physico-chemical,
or metabolic parameters to differentiate them, any organism thriving and dividing actively at low
temperature is currently defined as a psychrophile [28,29].

Psychrophiles thrive in permanently cold environments in thermal equilibrium with the medium
and even at sub-zero temperatures in supercooled liquid water. Such extremely cold conditions are
encountered, for instance, in salty cryopegs at −10 ◦C in the Arctic permafrost [30], in the brine veins
between polar sea ice crystals at −20 ◦C [31,32], or in supercooled cloud droplets [33]. The bacterium
Planococcus halocryophilus, isolated from high Arctic permafrost, was found to divide at −15 ◦C and to
remain metabolically active at −25 ◦C [34], which probably represents the lower temperature limit
before dormancy. Unusual microbiotopes have also been described, such as porous rocks in Antarctic
dry valleys hosting microbial communities surviving at −60 ◦C [35]. Cryoconite holes on glacier
surfaces represent another permanently cold biotope hosting complex microbial communities [36].
Antarctic fungi and cryptoendolytic communities found, for instance, in Antarctic Dry Valleys are
regarded as the most psychrophilic eukaryotes [37], while polar fish thriving at −2 ◦C beneath the
icepack are the biggest psychrophiles [38]. Glacier ice worms are also worth mentioning, as they
complete their life cycle exclusively in glacier ice [39]. These examples highlight the unsuspected
ability of psychrophiles to adapt to low temperatures. Evidently, life in cold environments requires a
vast array of adaptive features at nearly all levels of the cell architecture and functions [29,40–42].

There is no formal lower temperature limit for life under natural conditions, as most microbial
species can be maintained for extended periods of time in low temperature freezers at −80 ◦C, then
revived under appropriate conditions. Bacterial survival has been reported in frozen permafrost
samples up to half a million years in age, and such viability was correlated with the capacity to slowly
repair DNA, therefore preserving the cell genetic program [43].

3. Life in the Cryosphere

The concept of ice as a habitat for cold-adapted organisms has been initially described by
Priscu and Christner [44]. Currently, this field is intensively investigated, and is the topic of
international conferences [45]. The microbial ecology of the cryosphere has benefited from the
most recent omics approaches [46–50]. More specifically, Price has provided a series of significant



Life 2017, 7, 25 3 of 9

contributions focused on physico-chemical and energetic aspects of life in ice [51–55], summarized
in [56]. The above-mentioned reports, and especially [52,56] should be consulted for a complete
coverage of the topic.

In the context of a possible cold origin of life, some parameters are worth mentioning here, as they
are relevant for both extant psychrophiles and prebiotic macromolecules.

3.1. Microenvironments in Ice

Three habitats for psychrophiles in ice have been described.

(i) Liquid veins between ice crystals: the eutectic phase [51]. In glacier ice, solutes are excluded from
ice crystals and are concentrated in interstitial liquid veins. In sea ice, the concentrated sea salts
allows these brine veins to remain liquid to −35 ◦C [31] and to host microorganisms in a network
of micron-diameter veins, as illustrated in Figure 1.

(ii) Unfrozen water film in contact with minerals. Ice in contact with rocks, mineral particles, or clay
grains harbor a nanometer-thick layer of unfrozen water. Cells attached to mineral particles have
been observed in both glacier ice and permafrost. As a result of the small size of the water film,
these cells are immobilized in this microenvironment and are not able to move freely.

(iii) Inside ice crystals. Microorganisms can be trapped inside individual crystals in polycrystalline
ice [54]. As with mineral inclusions, a microbe will be coated with an unfrozen layer of water.
Interestingly, such a microenvironment is potentially less detrimental to cells than veins and
minerals which possess a hostile chemical composition.
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Figure 1. Bacteria visualized microscopically directly within a brine pocket of Arctic winter sea ice at
−15 ◦C: (a) The transmitted light image shows ice crystals and the brine-filled veins between them;
(b) Enlarged image of a brine pocket in (a) shows the microscale habitat; (c) Its bacterial inhabitants are
revealed by epifluorescence microscopy [31], reprinted by permission from Elsevier.

It follows that ice, but also frozen minerals or clay and permafrost, all display liquid microenvironments,
ranging from thin water molecule layers to large veins, which are compatible with the water-based
chemistry of prebiotic molecules.
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3.2. In-Ice Metabolism

Cells can remain metabolically active in the above-mentioned microenvironments, as they can
obtain a limited amount of gases and nutrients by diffusion, including through individual ice crystals,
whereas waste products diffuse away from them. For instance, huge excess concentrations of CO2 and
CH4 in deep Greenland glacier ice have been related to ongoing in situ production by microorganisms
trapped in ice 400,000 years ago [55,57].

Exponential growth with doubling time in the range of 5 h at 0 ◦C recorded for psychrophilic
bacteria cultivated in the laboratory in rich medium [58] are unlikely to occur under environmental
conditions. Nevertheless, seasonal blooms of algae attached beneath polar ice sheets are very fast and
productive events, stimulated by summer light crossing the ice cover [59]. A maintenance metabolism
ensuring the basal cell functions but without growth is expected for airborne microorganisms deposited
on snow and ice, or for marine microorganisms entrapped in seasonal polar sea ice, if they are not
adapted. By contrast, microbes imprisoned in ice for extended periods of time enter in a survival
metabolism (or dormancy) without division in which the limited amount of available energy is devoted
to the repair of macromolecular damages [53]. Figure 2 illustrates an Arrhenius plot of metabolic
activity as a function of temperature down to −40 ◦C (upper scale). The metabolic rate is given in g
carbon (of metabolic gas) per g carbon (of cellular origin) per year [55]. There is no obvious break in this
plot: the metabolic activity exponentially decreases with low temperatures, just like any elementary
chemical reaction. Furthermore, the recorded metabolic activities are clustered with the rates of nucleic
acid depurination and amino acid racemization: the low residual metabolic activity is therefore just
sufficient to repair these spontaneous macromolecular damages, as also evidenced by the most ancient
bacteria recovered from ice [43].
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Figure 2. Metabolic rate for fractional turnover of carbon in cells trapped in ice, rock, and sediment as
a function of in situ inverse absolute temperature (upper scale in ◦C). The purple lines are extrapolated
from rates of racemization of aspartic acid and of DNA depurination. The green solid line is an
exponential fit to the metabolic data [55,56], reprinted by permission from Canadian Science Publishing.

In the context of prebiotic chemistry, the main message here is that extremely low environmental
temperatures do not totally abolish the metabolism of a complex microorganism like a bacterium,
which relies on a huge number of biochemical reactions. Accordingly, simple prebiotic chemical
reactions might have been slowed down but not cancelled in ice at low temperature.
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3.3. In-Ice Survival

Vitrification of the intracellular content—which does not result in cell death (in contrast to
freezing)—has been proposed for survival at very low subzero temperature [60]. However, the
limit for survival in ice is apparently related to the exhaustion of energy supply, which leads to
cell death. Besides macromolecular aging, natural radiation has also been implicated in cell decay.
Mineral inclusions in ice and permafrost contain natural uranium and thorium isotopes, the decay
of which generates α particles. Such radiation induces DNA single- or double-strand breaks and
produces reactive oxygen species. In addition, the time-dependent DNA degradation in the oldest
ices from Antarctica has been related to the generation of ionizing radiation from cosmic high-energy
particles [61].

The long term survival of microorganisms in ice suggests that diffusion of nutrients and waste
products is still effective in frozen environments. It follows that prebiotic reactions might have been
confined in an icy medium, but with sufficient diffusion potential to avoid poisoning of the niche.
Furthermore, ice appears as a better environment to escape natural radiation as compared with
minerals and permafrost, although none of these environments could protect from cosmic radiation
until buried several meters in ice.

4. Ice as a Protocellular Medium for Life

Several studies have shown that the polymerization of prebiotic molecules is favored in ice veins
and at the surface of clay grains at subfreezing temperatures because precursors are concentrated
from initially dilute solutions and are organized, for instance, on a mineral surface that provides a
scaffolding, while low temperature reduces the tendency to hydrolyze (see [52,62,63] for a discussion).
However, in the context of the RNA world hypothesis, an additional constraint is imposed because
these molecules have to replicate.

In this respect, an outstanding contribution in this field from the Holliger’s lab has convincingly
shown that ice can be a protocellular medium for RNA replication [64]. The authors used a ribozyme to
monitor in-ice RNA-catalyzed RNA replication within the eutectic phase. They found that ice promotes
high-fidelity RNA replication and protects the ribozyme from hydrolytic degradation, enabling the
synthesis of long replication products for extended periods of time at −7 ◦C. This is in sharp contrast
with proteinaceous RNA polymerases, which are inactivated by freezing (Figure 3).
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and the ribozyme RNA polymerase at ambient temperatures (red) and in ice (blue) resolved by gel
electrophoresis [64], reprinted by permission from Macmillan Publishers Ltd.
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It was also shown that the eutectic phase is required for polymerase activity, as further freezing to
−25 ◦C abolished ribozyme activity (Figure 3). Furthermore, highly dilute solutions of nucleotides and
ions at concentrations found in present freshwater sources strongly impair ribozyme activity, whereas
after freezing, a >200-fold concentration in ice veins promotes a near-optimal RNA replication activity.
Finally, the eutectic phase slows down ribozyme diffusion by more than three orders of magnitude,
providing quasicellular compartmentalization of RNA replication.

However, the ribozyme used in this study was optimally active at ambient temperature, and
only synthesized short nucleotides. Therefore, the same group has subjected the ribozyme to in-ice
directed evolution and engineering in order to produce a variant adapted to subzero temperatures
able to synthesize RNA in ice at temperature as low as −19 ◦C [65]. This reveals that mutations in
the RNA sequence are able to confer adaptive traits to the eutectic phase conditions. Furthermore,
this ribozyme variant was capable of catalyzing the accurate synthesis of RNA sequences longer than
itself—an important step toward RNA-self replication. It was also shown that freeze–thaw cycles
promote the assembly of short RNA oligomers into an active ribozyme [66]. This outlines how cyclic
physicochemical processes could have driven an expansion of RNA compositional and phenotypic
complexity from simple oligomer pools in ice.

5. Conclusions

It is currently elusive to draw a precise scenario for the emergence of life, which should obviously
include a wide range of diverse factors such as geothermal chemistry, meteoric input of organic
precursors, clay geochemistry, or vesicles formation, amongst others [24,25]. Nevertheless, current
evidence indicates that life appeared on Earth much earlier than previously thought—possibly before
4.1 billion years [1]. Within this timespan, the young Earth has presumably been subjected to several
freezing periods [67]. Our anthropocentric view has neglected or refuted the possible appearance of
life in icy environments, but extant psychrophiles demonstrate that life persists in the present coldest
conditions [52,56]. Direct observation and laboratory experiments have revealed that liquid water
films or veins occur in many icy microenvironments, compatible with water-based prebiotic and biotic
chemistry. Furthermore, freezing concentrates precursor molecules in the ice eutectic phase to levels
compatible with the polymerization of prebiotic molecules [62] and even with RNA self-replication
in the context of the RNA world hypothesis [64], while low temperature should have protected
these molecules from thermal degradation [23]. Such concentration and diffusion-limited conditions
also provided quasicellular compartmentalization [64], which might have promoted the appearance
of LUCA.

Ice is certainly not the unique environment for the origin of life, but as elegantly stressed by
Price [56], “It is fascinating to note that the physico-chemical properties of clay grains and liquid veins
in ice seem to play similar roles both in enhancing the rate of polymerization of biomolecules in Earth’s
early history and in providing habitats for microbial life in modern glacial ice”.
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