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Abstract. The details of the standard INCL4.2 version of the Liége Intranuclear Cascade model for
spallation reactions are reviewed. Emphasis is put on the physics features which are incorporated and
on their practical implementation in the numerical code. New developments, bearing on the production
of clusters, on the properties of the nucleon and pion mean fields and on the behaviour of the model at
low incident energy, are briefly presented and discussed. They will be part of the forthcoming
INCLA4 4 version.

1. Introduction

This report is a short explanatory account of the latest versions of the Liége intranuclear
cascade model (INCL) for high-energy nuclear collisions induced by nucleons, pions or light
clusters.

The Liége Intranuclear Cascade (INC) model has been built about twenty years ago in order
to describe heavy-ion collisions in the GeV range [1]. Afterwards, specific versions have been
built to describe reactions induced by antiprotons, pions, nucleons or light clusters. Due to the
renewed interest for spallation reactions, in relation to transmutation studies, the early version
for nucleon-induced reactions [2] has been improved to give birth to the INCL3 version a few
years ago [3] and to the INCL4 version a little bit later [4]. Thanks to the HINDAS
collaboration [5], this model was shown to be, when coupled to the ABLA evaporation-
fission code, quite successful in describing an extensive set of experimental data in the 200
MeV to 2 GeV energy range [6]. This model, known as INCL4.2, has been included in
LAHET [7] and MNCPX [8], and is considered as the standard version of the INCL4 model.
It is basically a parameter free model. Yet it suffers from some limited but systematic
deficiencies. Further improvements have been studied in the meantime. They bear on the
introduction of light charged cluster emission in the cascade stage [9], on the introduction of
energy-dependent potentials for nucleons [10], on the introduction of an average potential for
pions[11] and on the improvements of the code at low incident energy (below 200 MeV) [12-
14]. The inclusion of these developments to the INCL model constitute the version INCL4 .4,
which is not yet available to the public, some aspects being still under study in the frame of
the EUROTRANS collaboration [14]. A version consisting of INCL4.2 plus the production of
clusters, as defined in Ref. [9], is available under the label INCL4.3.

The purpose of this note is to describe the standard version of INCL4.2 and to give a short
account of the additional features contained in INCL4.4. However, due to lack of space, only
the main features of INCL4.2 will be given. For a comprehensive description, we refer to Ref.
[15].



2. Description of the standard INCL model (INCL4.2)
2.1. Introduction

The basic premises of the INCL model are schematically illustrated in Fig. 1. Particles are
moving freely between instantaneous events that we call "avatars” (to distinguish from the
usual meaning of "event", namely a complete simulation or “realization” of the reaction).
These avatars can be of three types: two-body collision, decay and transmission or reflection
at the nuclear periphery. In INCL4.2 only three types of particles are considered: nucleons (#,
p), A-isobars (4 charge states) and pions (3 charge states). The target is composed of point-
like particles. All particles are followed in space-time and are propagated in single steps
between avatars, on a manner described below. The simulation is stopped according to a self-
consistent criterion, which constitutes a unique feature of INCL. The properties of the exit
channel are recorded and are transferred to an evaporation module.

In this presentation, we will refer to the nucleon-nucleus case, indicating when necessary the
variants for incident pions or incident light clusters.

2.2. Description of the model

A. Target preparation

Nucleons are positioned at random, according to a distribution f{7) which follows nuclear
density (i.e. with the same shape), taken from electron scattering measurements. For target
mass A>27 a Woods-Saxon distribution is used up to a maximum distance R, fixed to Ry +
8a. For 6<4<27, a "modified harmonic oscillator" distribution is adopted and for 4<6,
Gaussian density distributions are used. See Ref. [15] for the values of the parameters of these
distributions.

Nucleon momenta are taken at random in a sphere of radius pF , the Fermi momentum, equal
to 270 MeV/c, a value corresponding to normal nuclear matter. The same distribution is used
for protons and neutrons.

Fig. 1. Schematic illustration
w0f the main features of the
INCL model.
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Actually, momentum and position are not taken independently. Momentum p is generated
first at random and the position is taken at random inside a sphere of radius R(p), which is
implicitly given by:
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where N is a normalization constant

max
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It is easy to check that R(p) is an increasing function going from 0 at p=0 to Rmay at p=pF. It

is shown in Ref. [4] that this procedure amounts to requiring that the nucleons with
momentum contained in the interval [p, p+dp] are contributing to the density profile by a
horizontal slab corresponding to the vertical coordinates R(p) and R(p+dp), as shown in Fig.
2, or equivalently that nucleons with momentum p do not propagate farther than R(p). The
procedure is also equivalent to a phase space joint distribution function of the form

dn___ O(R(p)-r)0(p; - p) 3)
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where H(x) is the Heaviside function. Although this distribution obviously generates
correlations between r and p coordinates, it nevertheless yields the constant Fermi gas
distribution and the r-space distribution f{¥) after integration over 7 and p, respectively, as
demonstrated in Ref. [4]. There are no other correlations. There is no attempt to have zero
total momentum (Z p =0), location of the barycenter at the origin (ZF =0) nor zero total

angular momentum ( ZF xp=0).

All target particles are sitting in a (fixed and constant) attractive square potential well, with a
momentum-dependent radius R(p) and a depth V0. The function R(p) is such that, in absence
of collisions, nucleons are moving while the average (over events) spatial and momentum
distributions remain unaffected. This is demonstrated in Ref. [4]. But it is almost clear from
Fig.2 that nucleons can be divided into groups of particles with the same momentum



occupying given spheres in r-space. In absence of collisions, the distribution in r- and p-space
remains the same on the average (this is a well-known property of a system of billiard board
particles with initial momentum and directions at random bouncing elastically on the interior
surface of a sphere). We anticipatively indicate that particles with momentum larger than pF
experience a potential well with radius R, (as for p= pF').

The r-p correlations introduced in this model are not of the conventional type. They comply
with the fact that high (kinetic) energy particles can propagate farther out than low energy
particles, as they should, in accordance with the standard shell-model. In contrast with the
latter, particles keep the same momentum, be they in the centre or in the (allowed) surface
region of the nucleus. The procedure that is adopted here has the advantage of straight-line
motion between collisions, an advantage that will become clearer when we will be discussing
the propagation of the particles.

B. Projectile preparation

The nucleon is incoming along the z-direction and is given at random in the xy-plane an
impact parameter b inside a circle of radius R, =R, +8a. A sphere of the same radius

centered on the middle of the target is defined as the "volume of calculation". Nothing
happens to the particles outside this volume. At =0 (beginning of the calculation), the
incoming nucleon is positioned at the surface of the volume of calculation. As described
above, this is also the surface of the potential well felt by this particle. It is considered that at
=0, the incident nucleon has just entered the well. Therefore its total energy has increased by
the value of the potential depth V0 and its momentum has been increased accordingly
(direction is not changed; no reflection, no refraction in the entrance channel). The choice of
bmax guarantees a good compromise between computational efficiency and accurate
evaluation of the total reaction cross section. Indeed only a small fraction (10-4) of the
interacting events beyond bmax is missed.

For an incident pion, the procedure is the same, except that the pion does not experience any
average potential. For an incident light ion, the procedure is more involved. First the incident
ion has to be generated. In the rest frame of the latter, nucleons are given positions and
momenta at random according to Gaussian laws, with rms values given in Table 1 below.

TABLE I. PARAMETERS OF THE GAUSSIAN FORMS USED TO DESCRIBE RADIAL
DISTANCE AND MOMENTUM DISTRIBUTIONS IN LIGHT IONS

Light ion d t 3 4

Jo7) @ 1.91 1.8 1.8 1.63
J7) evio) 77 110 110 153

The values of the parameters are either taken from the Paris potential for the deuteron, and
from experiment or from realistic wave functions, for the other ions. In this case, ZF =0 and




Z p=0are imposed, simply by choosing the values for the last nucleon appropriately,

possibly after a renewed generation of the first ones. The maximum impact parameter is taken
as bmax defined above plus the rms radius of the ion. The transverse position of the ion
centre of mass is taken randomly in a circle of radius equal to this new value. The ion is then
Lorentz-contracted along the collision axis and the longitudinal position of the ion is chosen
in such a way that one of the nucleons is just touching the "interaction volume", the other
ones being outside. The ion is then “boosted”: 4-momenta undergo the Lorentz transformation
corresponding to the velocity of the incident ion. They are finally corrected in order to comply
with the energy content of the incoming ion. Because of the generation of the internal motion
of the nucleons, the total energy is larger than the nominal incident energy Winc=Tlab+Minc.
Let us denote by siand p, the total energy and the momentum of the ion nucleons,

respectively. The momenta of the nucleons are scaled by a common factor such that the sum
Zez is put equal to Winc . Let us notice that for very slow ions, this operation may not be

possible, because the minimum value of Zax is AincMN, the mass number of the incident

ion times the nucleon mass, whereas the minimum value of Winc is equal to that quantity
minus the binding energy of the ion. To circumvent this drawback, the following procedure if
adopted: if Winc — AincMN < 0, all nucleons are given the same kinematics as the velocity as
the incident ion, neglecting so internal motion and binding energy. Finally, as in the nuclear
case, the nucleon located at the surface of the interaction volume is supposed to sit inside the
nuclear potential, with appropriate energy and momentum.

C. Propagation of the particles

At t=0, all nucleons are set in motion with their initial velocity and are assumed to follow
straight-line trajectories until an avatar occurs, i.e. until two of them achieve their minimum
distance of approach, or until one of them hits the nuclear surface, or until a A-resonance
decays. Due to the straight-line trajectories, the times at which these events occur can be
predicted. The smallest of these times is selected and the particles are propagated in a single
step. The simplicity of this propagation is a particular feature of the Liége INC model. After
the occurrence of an avatar, straight-line motion is resumed until the next avatar, and so on.
The process is followed up and terminated according to a criterion explained below.

Let us elaborate a little bit on the procedure. At the beginning, a table of times for the possible
avatars is constructed. For a possible collision between a pair of nucleons a and 5, with initial

relative position 7, and relative velocity B, =/, —f,, the time at which. the relative

distance is minimum is given by

=0

r .
o= b Tab 0]
B
and the square of this minimum relative distance is equal to
2 - min —~0 ¥ (7:;(5), ‘Bab
din :(rab )2 = (rab) . s : ©)
ab

—min

where 77" is the minimum relative position vector. It is also easy to verify that a nucleon a
will encounter the radius R of the potential well (which depends on its momentum) at time
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See later for A-decay. Not all times need to be considered. They are disregarded:
- if they are larger than the stopping time #stop of the cascade (see Section 2.F)

- if nucleons a and b are spectators; nucleons are divided into participants and spectators; a
nucleon is a participant if it is an incident nucleon or if it has participated to an avatar (Deltas
and pions are participants)

- if tab is negative (diverging trajectories)

- if nucleons a and b are passing too far away from each other to make a real collision, i.e. if
7Z.driin > G;\?/(/

- if the c.m. energy of the collision is smaller than 1925 MeV (2MN+cutNN , cutNN =
48.5 MeV)

The last point needs a word of clarification. Soft collisions are so neglected, for three reasons.
First, a soft collision does not change very much the momentum content of the target. Second,
most of the time, soft collisions involve nucleons with momenta not far from the Fermi
momenta and, therefore, these collisions are expected to be suppressed efficiently by the Pauli
principle. The third reason is more practical: taking these soft collisions, whose effect is
presumably not important, into account would multiply the number of times fgb, due to the
very large NN cross sections at low energy. There are theoretical arguments supporting this
procedure, indicating that “soft interactions” are rather taken into account by the average
potential, whereas hard interactions contribute to the collisions. See Ref. [16] for a discussion
of these matters.

After the list of times for the occurrence of possible avatars is completed, the smallest time of
the list is selected. If the corresponding avatar is a collision, a test for the possible realisation
of the latter is performed. If

s >2M,, +cutyy, Q)
and

My, < T (s), ®)
the avatar is accepted. Otherwise the time #gp is removed from the list, and the next smallest
time is selected. The same test is done and the same procedure is repeated until the avatar is
accepted (avatars corresponding to decay or reflection/transmission are always accepted at
this stage). Particles are then propagated until the selected time, in a single step.

At this stage, the first avatar is considered for realisation. It may be realized or not (due to
Pauli blocking of collisions for instance, see later). If it is realized, the list of times is updated.
Let us consider for instance a collision between particles a and b. We refer here to the labels
of the particles. Their nature may have changed during the collisions. All the times involving
a and b are removed. New times are added, corresponding to possible further collisions
between either a or b with other particles (not between a and b to avoid repeated interactions)



or to possible reflection/transmission of ¢ and b). For other kinds of avatars, it is easy to list
the operations needed to update the list of times. Of course, in the addition of new times, the
same criteria of selection as described above are applied.

Then, the smallest time of the updated list is selected and the same set of operations is
performed, and so on.

The process is terminated on a manner described later.

D. Description_ of the avatars

D.1 Collisions

Inelastic nucleon-nucleon collisions are dominated by the production of pions. In the energy
range mentioned in the introduction, there are good indications that pion production results
from the production of a A-resonance followed by its decay. Although the A-resonance is
short-lived, it has a good chance to interact with another nucleon before decaying. The
philosophy of the standard INCL model is to propagate the A-isobars (instead of describing
the NN inelastic collisions by the asymptotic channels in free space). Therefore, the following
possible reactions are considered

NN — NN, NN-—>NA, NA—>NA, AA—-AA, 7N —A )
We treat the two-body reactions first.

(a) Selection of the final channel. For any of the incident channels (NN, NA, AA), the final
channel is selected at random, by the standard method of comparing a random number with
the ratio between elastic and inelastic cross sections. The relevant cross sections, as
parametrized in INCL4.2, as well as the angular distributions, are given in Refs. [4,17].
Elastic NN cross sections are of course taken directly from experiment. The NN— NA cross
section is taken as equal to the experimental inelastic NV cross section (pp and np, the nn
cross section is taken equal to the pp cross section). The NA — NN cross section is taken from
the previous one by detailed balance:

2

1 ; 1

O Na—NN (S ) = oo 5(%\&} 1‘:5‘“ O nv—na (S) . (10)
Na NN

In this equation, valid for definite charge states of the particles, pab is the momentum of the
particles in the c.m.

Ks—(ma-i-mb)zXS“(ma -mb)z)f/z (11)

pab:pnb(‘g): 2\/; 4

the % factor comes from the spin degeneracies and the Kronecker symbol applies to the
isospin states of the nucleons. In INCLA4, a definite value of the mass is ascribed to the A-
isobar (see below), which makes pNA well defined. However, detailed balance breaks down
for unstable particles. Arguments are given in Ref. [4], which show that the effect of the
unstable isobar can be approximated by the use of a correction factor f, , =exp(t,,/7,)

involving the collision time and the A lifetime. The former is not well known, but is of the
order of 1-2 fim/c. More or less accordingly, in INCL4.2, fcorr is put equal to 3.



The NA—» NA and AA— AA  cross sections are taken as equal to the NN elastic cross
section at the same cm energy.

(b) Generation of the final state. The collision is realized in the cm frame. The 4-momenta of
the initial particles are Lorentz-transformed in the cm frame. The cm relative momentum g in
the final state is calculated by Eq. (11) for the two outgoing particles. For A-creating
reactions, the mass of the isobar should be determined first. It is taken at random according to
the following distribution

3
1
f(ma):FN 361 3 oN2 (12)
K q“1+4(——~—mﬁ“mA)
T

0

subject to kinematical constraints: the A-mass should be larger than mN +mz and smaller

than /s — mN (otherwise the available energy is not sufficient). If these conditions are not
fulfilled, new random generations are performed repeatedly, until they are satisfied. In Eq.
(12), F, is a normalization constant, g,=180 MeV/c, m,= 1215 MeV and I;=130 MeV.

The introduction of the g-dependent factor can be justified as follows: a Aresonance can be
viewed as a zV correlated system and the phase space of the latter is considerably reduced
when the cm energy is low. The form of g-dependent factor is also inspired from the
7N elastic cross section.

The direction of the outgoing particles (in the cm) are determined according to the
experimental angular distributions, as far as possible. The polar angle, relative to the incident
direction is taken at random according to distributions which parametrize cm differential cross
sections (see Refs. [15,17]). The azimuthal angle is determined at random. The 4-momenta of
the outgoing particles are Lorentz-transformed back in the target frame.

For the NN — NA reaction, the description of the final state is completed with the
determination of the A-lifetime and of its helicity. The intrinsic lifetime 0 is determined
stochastically according to an exponential law with a mean of 7, =#/I,. The actual lifetime

¢, is corrected as
1 1 ¢ 1

— (13)
2\ 7/934‘@3 fy

where the first factor is the inverse of the Lorentz factor for the motion of the isobar in the
target frame and where ¢ is the relative momentum of the pion and the nucleon in the rest
frame of the isobar (given by Eq. (11)). The second factor is motivated by the reduction of

phase space. The helicity h=p-5§ /f ]3”?{ (involving momentum and spin), considered as a

classical quantity, is taken at random with a distribution proportional to cos®&, where 9 is
the angle between the incident direction and the one of the outgoing isobar. The helicity,
which is not supposed to change in further (elastic) collisions, will govern the eventual decay
of the isobar.

Let us turn to the treatment of the 7zV — A reaction. The cross section is taken as the
experimental 7V total cross section and parametrized as follows. The 7+ p cross section is

given (in mb) by
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where ¢ (in MeV/e) is the cm relative momentum, given by Eq. (11), and where the cm
energy is in MeV. The other 7V cross sections are derived by isospin symmetry. Here the
generation of the final state is very simple. It consists in creating an isobar with a 4-

momentum equal to the sum of the 4-momenta of the pion and the nucleon. Its 3rd component
of the isospin is also the sum of the ones of the two incident particles. Finally, its lifetime is
generated in exactly the same way as described above and its helicity is taken equal to 1. In
INCL4, the zV — A reaction is allowed if the cm energy is larger than 1117 MeV (slightly
above the physical threshold) and is smaller than 3 GeV. It is supposed to be elastic only.
Above 1500 MeV, the intrinsic average lifetime is taken /200 MeV.

D. 2 Reflection/Transmission

At the time foreseen for this kind of avatar, the particle (nucleon or Delta) is sitting on the
boarder of its potential well (whose radius depends upon its energy). If its kinetic + potential
energy is negative, the particle is reflected. If it is positive, the particle will be transmitted
with a probability equal to

akk' 56
T= e, (15
(k+kY
with
2 T 27 &
_mzZe ( T 2) =1 B= N
G= i arcos x—xvl—x" |, 3 R, (16)

if x<1 (below the barrier B) , and G=0, if x>1 (above the barrier B). In these equations, k and
k' are the momenta of the particle before and after transmission, m and z are the mass and
charge of the particle, Z,, is the current charge of the target (at the time of the avatar), 7" is

the asymptotic kinetic energy after transmission and R, is the radius of the density

distribution. The transmission probability (Eq. (15)) is taken as the product of the
transmission of a Schrédinger (plane) wave on a potential step and of the semi-classical
(JWKB) transmission probability through a Coulomb barrier V(r)zBRo/ r, for r>R,,

V(r)=0 for r <R,.

When the particle is transmitted, it keeps its direction of motion (there is no refraction). The
kinetic energy is changed as T'=T -V, and the momentum is changed accordingly. Once it is

transmitted, the particle is “frozen™: it leaves the “interaction volume”. Actually, it receives a
tag which tells that it should not be considered for further interaction: it will not be accepted
any more for the evaluation of the times for future avatars. That is why it receives its
asymptotic kinetic energy 7" readily. If the particle does not succeed the test for transmission,
it is reflected. The times corresponding to this particle are removed from the list of times and
new ones (for future avatars involving this particle) are added. See Ref. 5 for a discussion
about reflection and refraction.



When the incident particle is a light ion, one can find a slightly different type of avatar,
corresponding to the entrance of a nucleon in the “interaction volume”. It is reminded that at
=0, only one nucleon is at the boarder of this volume, the other ones being outside. For the
latter ones, the time for the entrance is calculated by Eq. (10), where the plus sign is replaced
by a minus sign. Reflection is not considered for this kind of avatar. When entering the
“interaction volume”, the kinetic energy of the nucleon is changed by adding the depth of the
potential. The direction is not changed and the momentum is modified accordingly. After the
entrance, the list of times is re-actualized in exactly the same way as for the escape of a
particle.

D3 Decay of a 4 particle

At the end of its foreseen lifetime, a A-isobar is forced to decay. The decay is performed in
the rest frame of the isobar: the pion and the nucleon have opposite momenta (absolute value

given by Eq. (11) with Js=m . ) and the direction is taken at random with the probability law
P(6)oc1+3hcos® @, where @ is the angle between the direction of the isobar (in the lab

frame) and the direction of the outgoing pion (the azimuthal angle is chosen completely at
random). The 4-momenta of the outgoing particles are Lorentz-transformed back in the target
frame. The charge states of the pion and the nucleon are determined in agreement with the
isospin Clebsch-Gordan coefficients. The list of the times is updated as described before.

E. Pauli blocking

Due to the fermionic nature of the particles, the collision probability may be diminished as a
consequence of the Pauli principle. Although it is a purely quantum effect, the reduction may
fortunately be expressed in terms of phase space density. In INCL4, Pauli blocking is
implemented in this spirit.

Let us discuss first the case of two body collisions a+b — ¢ +d with two nucleons in the
final state and let 7 and p,, i =c,d, the positions and momenta of the nucleons just after the
realization of the collision (the avatar). Phase space occupation probabilities fi are estimated
by counting the nucleons lying in phase space in a small test volume centered of the
representative point of nucleon 7 in phase space. They are given by:

Ze(rPB trk—rl)e(pPB ,) a7

Iei
pPB

where the summation runs over nucleons of the same isospin state as nucleon / and where
@ is the Heaviside function. The factor % stands for spin degeneracy (nucleon spin is not
considered). The parameters r,, and p,, define the size of the test volume (an hypersphere)
in phase space. They should not be too small, otherwise the estimated occupation probability
can be vanishing almost all the time and they should not be too large, otherwise the variations
of the occupation probability in the occupied phase space can be missed. In INCLA4, r,, and
ppy have been taken just large enough for results (in typical cases) to be more or less
insensitive to moderate modifications on these parameters: r,, =3.18 fm and p,, = 200
MeV/c, which corresponds to ~2.3 natural units of phase space. We remind that in the ground
state of normal nuclear matter there is one nucleon (of given spin and isospin) per natural unit.
It is generally considered that there cannot be more than one particle per unit phase space in



any circumstance and that this density is more or less achieved in the ground state of actual (at
least heavy) nuclei.

The collision will be allowed stochastically with a probability P=(1- £, }1- f,). Pauli

blocking is not applied to A -isobars (for a collision with a A and a nucleon in the final state,
there is only one blocking factor ). On the other hand, it is enforced for nucleons issued from
A-decays.

The interplay between this stochastic implementation of the Pauli blocking, the evaluation of
the phase space density by Eq. (17) and the fluctuations of the phase space occupancy,
inherent to any model with a stochastic generation of the initial state, may introduce
unphysical effects, unless sufficient care is exercised. In any particular event, the initial phase
space is not uniformly populated and displays “clumps” and “holes”. If several nucleons are
clumped in a test volume, the quantity f, may be larger than 1. In such a case, it is put equal

to unity. Let us consider the possible effect of a hole in the momentum Fermi sphere. With the
procedure described above, the first collision may bring a nucleon into this hole from a higher
energy occupied state, creating so a negative excitation energy. In order to avoid such an
annoying feature, a procedure referred to in Ref. [4] as CDPP (for Consistent Dynamical Pauli
Principle) has been implemented. The latter centers on the energy content of the current Fermi
sphere. As shown in Section 2.3, the excitation energy of the target may be written as a sum
of two terms: one which corresponds to the nucleons which have been promoted above the
Fermi level (and which therefore is positive) and a term ECDPP which corresponds to the
rearrangement of the remaining Fermi sphere and can be considered as the excitation of this
remaining Fermi sphere. At each possible collision, after the test on the Fermi blocking is
passed successfully, the quantity ECDPP is checked for the possible final state. The
collision is blocked if ECDPP is negative (this check is also done after a A-decay, but not
after a reflection/transmission, the energy content of the Fermi sphere being not changed in
that case). Doing so, the remaining Fermi sphere can only have positive excitation energy. A
fortiori, the remaining target (i.e. the baryons inside the “interaction volume”) can only have
positive excitation energy, in spite of the deficiencies of the implementation of the
“statistical” Pauli blocking.

F. End of the cascade

An original feature of INCL4 is the consistent determination of the stopping time, i.e. the time
at which the cascade should be stopped. A criterion has been adopted which is based on
physical results concerning the time-dependence of several key physical quantities when
averaged over events. Examples are given in Fig. 3 below.
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One can see that both the excitation energy of the target nucleus and the average kinetic
energy of the ejectiles assume large values at early times, decrease rapidly until some time,
after which they vary much more slowly. Other quantities (not shown), in particular the
anisotropy of the momentum distribution of the participants sitting inside the target, offer a
similar pattern with a rapid variation followed by a much slower one. For all of them, the
change of regime occurs af the same time, defined within a few fim/c. This observation
suggests that the regime of fast variation, typical of a cascade, gives place at a rather well-
defined time to a regime of softer variation, typical of an evaporation. This feature is also in
strong support of skipping an pre-equilibrium module between cascade (at least INCL4.2 with
its proper stopping time) and evaporation. We refer to Refs. [4,15,18] for elaboration on this
point. In INCLA4, the cascade is stopped at this common time, called the stopping time 7, . It

stop *

has been sampled once for all and parametrized as

A 0.16
tstop = f;‘topfc (5628—} ( 1 8)
with fmp

and target mass under interest, but may be improved at the border of this range, by using
another value for f, . All the results labelled as “INCL4.2” correspond to the standard value

=1 and ¢,=70 fm/c. This parametric form seems reasonable for the range of energy

top *
of this parameter.

An event is stopped when the clock for a foreseen avatar gives a time larger than ¢, . Some

stop *
events may be stopped earlier. An event may be stopped at the very beginning, if the initial
time list for the collision avatars is empty. This happens mainly for peripheral events. Such a
event is named a void event. An event may also terminate at a time earlier than 7, if the list

of times becomes empty when it is updated. In a no-void event, it may happen that no
collision has taken place (due to Pauli blocking for instance) and that the incident particle has
left the interaction volume with its incident energy. Such events, together with the void events
are named “transparent event”. The other events are called “interacting events”.

Transparent events are just disregarded (but they are counted for cross section evaluation, see
later). The other events, after they are stopped, may possibly be completed by the decay of the



remaining A-isobars, if any. The Pauli blocking is not applied in this case and the resulting
nucleons are considered as belonging to the remnant.

The description of the final state is delayed to Section 2.4
2.3. Conservation laws

It is instructive to detail how INCL4 handles conservation laws. In the energy range of
interest, the most important conservation laws can in general be formulated as follows:

Ap+ 4, =A,+4,, (19)
Lp+Z,=2,+72 +Z2, (20)
Pp+Pr=Dy+ P+ Dren ey
Tp=K,+W,+T, +E +S (22)
L=0,+1,,+I (23)

for baryon number, charge, momentum, energy and angular momentum, respectively. We
consider a projectile P colliding with a target 7 and generating baryonic ejectiles, pions and a
remnant (the remaining nucleus at the end of the cascade). For the sake of simplicity, we have
assumed that the interaction between the several bodies at the end of the cascade is negligible.
In addition, we have disregarded intrinsic spins and we have neglected the production of other
particles than those introduced in INCL4. In Eq. (22), K, is the kinetic energy of the

ejectiles, ¥, is the total energy of the pions, 7, is the recoil energy of the remnant, E"is the

excitation energy of the remnant and S is the separation energy (i.e. minus the {-value of the
reaction). Strictly speaking, energy conservation law should include rest mass energies. They
have been eliminated from Eq. (22) owing to the use of Eq. (19). The other notations are self-
explanatory.

In INCL4.2, conservation laws (19) and (20) are exactly fulfilled. Eq. (20) is strictly

equivalent to the conservation law for the 3rd component of the isospin. Egs. (21,22) need be
commented. Let us for the moment neglect the recoil energy. The different terms of the rhs of
Eq. (22) have a well-defined meaning within the INCL4.2 model, in terms of the quantities
handled by this model. In addition, since there is no interaction energy in INCL4.2 between
the ejectiles, the baryons inside the interaction volume and the pions, decomposition (22)
holds at any moment during the cascade. Indeed, one can write, for any time during the
cascade

TP+Z(T,.°-VO)=§T,»+W”+ ST -7,), (24)

iedr €40

where the sums run over the target nucleons in the initial state, the ejectiles and the baryons
remaining in the interaction volume, respectively, and where the bar means that the A-
nucleon mass difference has been added to the kinetic energy for the isobars (which are
supposedly not present any more at the end of the cascade, when Eg. (22) applies). The



quantities 7" are the initial kinetic energies of the target nucleons. In INCL4.2, the interaction
volume is fixed and there is no recoil energy. Eq. (24) can be rewritten as

TP :iﬁ+Wﬂ +{ Z ?j —{ZZO _(AT mArem)TF:I}.*—(AT nA}'enr)(VO _TF)D (25)

J€drm iedr

where TF is the Fermi kinetic energy. The last term is the minimum energy required to extract
AT —Arem nucleons and can be identified as the separation energy S (in the model).
Consequently, the term inside the curly bracket is nothing but the excitation energy E* (in the
model). This term can still be rewritten as

E= Y (E"}—TF)+{ 5 Z]{ZQO—(AT—A;)TFE, 26)

€4y P> DF J€4ins P S0F iedr

F . . . .
where 4, is the number of nucleons in the remnant with momentum less than the Fermi

momentum. The quantity in the square bracket is the ground state energy of the current Fermi
sea. The term in the curly bracket is identified as the excitation energy of the current Fermi
sea, i.e. the quantity ECDPP discussed above.

In the INCL4.2 model, energy is conserved exactly, since it is conserved during the collisions
and at the entrance and the exit of the interaction volume (but without recoil energy). On the
contrary, momentum and angular momentum is not conserved. Momentum is conserved
during collisions but not at the entrance or exit of particles. Angular momentum is not
conserved, even at the level of the collisions. See however Ref. [3] for a discussion of this
topic. However, the results of the cascade can be used to evaluate with reasonable accuracy
the momentum, angular momentum and recoil energy of the remnant. The lack of momentum
conservation mainly arises from the treatment of transmission of particles at the surface.
Suddenly, a particle is emitted with (sometimes a large) momentum p, without any
counterpart. It is not easy to know how to correct for this since it may depend very much upon
the dynamics leading to the emission. The simplest thing would be to give an opposite recoil
momentum to the nucleus, keeping the same available energy. The momentum of the ejectile
relative to the nucleus will then be = (1 -1/ (ZA ))ﬁ . Recoiling the whole remnant (plus the

average potential) is technically difficult. But, one can see that the momentum of the gjectiles
is estimated in the model with an error of the order of 1/{2A). Therefore, the quantity

rem

ﬁ/‘enz:ﬁp_ﬁej_ﬁrr (27)

evaluated with the results of the model yields the remnant momentum with an accuracy of the
order of 1/(2A). The corresponding recoil energy

’f'rem = VEVZem +M7'2€l)2 erElﬂ (28)

gives already a good evaluation of the recoil energy of the remnant. It should be stressed that
even if p can be large part of p,, ﬁem (of the order of 1 MeV) is always very small compared

to the other terms of Eq. (22). Nevertheless, in INCL4.2, an effort has been done to include
the approximate recoil energy, still managing the energy balance. The recoil energy is first
evaluated through Egs. (27,28). This quantity is then included in the rhs of Eq. (26) and the



momenta of the ejectiles and the pions are multiplied by a factor fU in order to balance the two
sides of the equation. The modified momenta are then used to re-evaluate p,, and T,

through Egs. (27,28). The new recoil energy is introduced in the final energy and the
momenta of the ejectiles and pions are multiplied by /7 in order to balance the two sides of
Eq. (26) again, and so on. Two iterations are performed, which is largely sufficient.

The internal angular momentum of the remnant is also evaluated by difference:
["=1,-1 -1 -1 (29)

where the last term is evaluated as [, = R X Igmm , R being the position of the barycenter

of the remnant. It is argued in Ref. [4] that Eq. (29) provides a good estimate, which follows
to some extent from the accuracy of the calculated momentum transfer.

2.4. Description of the final state
The output data of a cascade event contain:

1. the type of event: transparent event, absorption (no outgoing particle), non-transparent
event {with the number of emitted particles)

2. for each of the emitted particles, the following quantities are recorded:
1. type of emitted particle
2. kinetic energy (in MeV)
3. the three direction cosines

4. for the remnant: mass number, charge, excitation energy, recoil energy,
direction cosines and intrinsic angular momentum (in units of h; absolute value
and direction cosines).

When coupled to an evaporation model, the output of a (complete) event contains in addition
the same information for the evaporated particles and the properties of the final residue. These
information are recorded in an n-tuple. n-tuples can be handled “off-line” by PAW++ to
generate physical results.

Evaluation of cross sections is done by standard means. The total inelastic (reaction) cross
section is given by:

op=mb> (1-N,,.. IN,,) (30)

max transp

where N,,, is the total number of runs and Nyg.s, the number of transparent events.
Differential cross sections can be formulated as:

9T o e, G
dw N . do

Fun

where do is the relevant element of phase space and N,_,_ is the cumulated number of

iedw

relevant particles belonging to this element.



3. A short account of the INCL4.4 model

Here we turn to the recent developments of the INCL4 model that has been added to INCLA4.2
to form the INCL4.4 model, as explained in the introduction. Due to lack of space, we only
give a sketchy description of the most important features.

3.1. Isospin and energy-dependent potential for nucleons

The motivation for this development is rooted in the phenomenology of the optical model
(and of the shell model), which indicates that the depth of the average nuclear potential
depends upon the isospin of the nucleons and decreases more or less linearly when the energy
of the nucleon increases until it reaches roughly 200 MeV (kinetic energy). At this value, the
potential basically vanishes. Above, it remains very small. Accordingly, an isospin and
energy-dependent potential for nucleons has been introduced. Square wells with momentum-
dependent radius are still used, as before. Inside this radius, the value of the potential is a
function ¥ (z, E) of the isospin and the total energy E. One now has:

272

E=T+V(z,E)=ZA]‘; +V{z,E) (32)

Following Refs. [19,20], the following form is used
V(r,E)zVO(Z')Jra,(E—E;), for E<Eg,
V{r,E)=0, for £>E7, (33)

where £} is the Fermi energy and E is the energy at which the rhs in the first line vanishes.

For the sake of consistency, the Fermi momentum should also depend upon isospin, in order
to have roughly the same Fermi energy for protons and neutrons, which is required by f-

stability. The Fermi momenta are determined by

(,f] 2 Slay+wp =, (34

translating the fact that neutron and proton densities are proportional to neutron and proton
mass numbers and sum to ordinary nuclear density. The parameters ¢, in Eq. (33) are taken

as a,=a,=023, following Ref. [19]. Finally, the quantities Vo(r) are determined by

requiring

EL+Tf +V,(r)=-S (35)

where S is the separation energy. The potential for A-isobars is kept energy-independent but
does depend upon the isospin, with a linear dependence which matches the one for protons
and neutrons. The potential depth for the A-isobars is determined by assuming that, for the
same isospin, it is equal to the nucleon potential at the Fermi energy.

The implementation of such a potential somehow complicates the realization of collisions.
Indeed, for collisions a+b — ¢+ d , the energy conservation now writes



E +V, +E +V,=E +V_+E,+V, (36)

in the rest frame of the potential (or the target). It is proceeded as follows. The initial free 4-
vectors (E,p) are Lorentz-transformed into the usual cm frame (as before). The

corresponding final 4-vectors in this frame are determined, as usual, ie. conserving
momentum and free (kinetic) energy. This would be the normal procedure if there were no
potential. Let p* be the momentum of the particles in the cm. Let us consider now these 4-
vectors after multiplication of p* by a factor ¥ (and, of course, after modification of the
energy component to be consistent with the cm energy). These modified 4-vectors are
Lorentz-transformed back in the target frame and inserted in Eq. (36), which appears then as
an algebraic equation for f*. So the new energy conservation law is fulfilled owing to solution
of this algebraic equation. It turns out that f* is always rather close to unity. This may suggest
that the energy-dependence of the potential has minor effects. Actually, the effect may be
significant when, in a collision, nucleons changes substantially their individual energy. Of
course, it is expected that there are compensating effects in other collisions. It is therefore no
surprise that the effect of the energy-dependence is noticeable for charge-exchange quasi-
elastic and quasi-inelastic events (see ref. [18]).

3.2. Average potential for pions

A difficulty arises here. The phenomenological optical-model potential for pions is badly
determined in the nuclear volume, because of the strong pion absorption. Propagating pions
are not therefore good quasi-particle excitations. Furthermore, what is needed is the potential
energy of a pion created at any moment of the multiple scattering process (involving
successive creations and absorptions of pions), which of course cannot be revealed by elastic
scattering experiments to which the optical model applies. Finally, the largest part of the pion-
nucleon interaction proceeds to Delta formation, which is explicitly accounted for in INCL. In
view of these considerations, a pragmatic approach has been adopted. A square well potential
is chosen with a radius of R, =R, + 2fm, a range somehow consistent with the properties of

the empirical pion potentials. More precisely, the following form is used:

V(r.o)=V.(r)

I
N
5
p—

+
S

for r<R,, 3G7N

2
Vir,t)=V, = ) forr>R,,

where 7 is the 3" component of the pion isospin. The nuclear part VN and the average

Coulomb part f/; are given by

2
Z,Te

Vo)=v+v) &, V.=1.25 (38)

0

where &= (N-Z)/A is the asymmetry parameter of the target.

The parameters va, and V;, have been determined by a rough fit to experimental data
concerning reactions with pions as incident or produced particles. The following values have
been so obtained: V?V = -30.6 MeV and V}V = -71.0 MeV, rather consistently with the
phenomenological values of the pion potential in the nuclear surface.



Pions are now considered as participants. They are subject to transmission or reflection at the
boarder of their nuclear potential (using formulae (15,16)) and they do not interact any more
after leaving this potential.

The introduction of the pion potential considerably improves the predictions of INCL4 for the
pion production cross sections, but also, to a lesser extent, for other observables. See Refs.
[11,18] for more detail.

3.3. Production of light charged clusters

The introduction of this production is based on the idea that a nucleon escaping from the
nucleus can drag with him other nucleons which are sufficiently close (in phase space), and
form an emitted light charged cluster. The following procedure has been introduced:

1. When a nucleon hits the surface and satisfies successfully the test for emission (sufficient
energy), it is checked to see whether it can belong to a cluster. A candidate cluster is
constructed, starting from the considered nucleon, by adding a second, then a third, etc,
nucleons which are sufficiently close in phase space. The following proximity criterion is
adopted:

STy AR (39)

where the quantities in the lhs are the Jacobian coordinates, i.e. the relative spatial and
momentum coordinates of nucleon i with respect to the subgroup consisting of the first i-/
nucleons, and where 4 is a parameter. The following light clusters are considered for the

moment: d, £, SHe, “He. A-isobars are not supposed to be included in clusters.

2. Fast nucleons being checked for emission at R(pF), in the very outskirts of the nuclear
surface, where the density is practically vanishing, they are moved back along their
direction of motion until they sit at a radial distance R+ D (One is forced to check for

emission of nucleons at large radial distance, because possible collisions even in the
periphery of the nucleus cannot be precluded). In order to avoid problems with tangential
emission, clusters are considered only if the cosine of the angle between their emission
direction and the radial direction is larger than a certain value, taken as 0.7.

3. The cluster with the lowest “excitation energy” is selected. The relevant parameter is
(\/— —B)/ A, where +/s is the c.m. energy of the cluster, B its nominal binding energy,
and 4 its mass number.

4. For being emitted, the selected cluster should fulfil two requirements. First, its total
kinetic plus potential energy, corrected by the nominal binding energy should be positive,
owing to which a cluster with positive kinetic energy can be emitted. Second, it has to
succeed the test for penetration through the Coulomb barrier, given by Eqgs. (16,17). If
these conditions are not met, the “leading” nucleon is emitted, provided it succeeds the
Coulomb penetration test.

Let us notice that this procedure is slightly different from the one described in Ref. [9] and
used in INCL4.3. In the latter, only one cluster for each species was constructed and a
hierarchy for the possible emission was established, favoring emission of heavier clusters. See
Ref. [9] for more detail.



The procedure described above looks like a surface coalescence model and retains some well
established features: the small probability for existence of clusters in the nuclear volume and
the necessary dynamical generation of clusters in the surface from “pre-existing” clusters. It
contrasts with the ordinary coalescence model: clusters can be emitted at any time and their
properties are not directly linked with the final nucleon spectra. It contains two parameters: D
and h. They have tentatively been determined by a rough fit to experiment. The extracted
values are D=2fm and /=387 MeV fm/c.

This model cures evidently a serious shortcoming of INC models. Furthermore, it gives
surprisingly good results, at least for sufficiently high enough incident kinetic energy. See
Ref. [9] for detail. To extend this model at lower energy, variation of the parameters and
modification of the scenario are presently envisaged [14].
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3.4. Extension to low energy

The conventional wisdom expresses that the INC approach is valid in the classical (non
quantum) independent collision regime, which roughly requires that the following condition is
fulfilled:

Rp<<r <d, (40)

where X ,is the de Broglie wavelength for the relative motion, 7, is the range of the nuclear

forces and d is the average distance between neighbouring nucleons. These conditions are
only marginally satisfied (and for the first collisions only) for incident energy above 200
MeV. Yet, INC models do not seem to yield crazy results at lower energy. Even, it was shown
in Refs. [12,21] that INCL4.2 can reproduce surprisingly well neutron and proton spectra at as
low incident energy as 50 MeV, where important quantum motion effects are expected. There
is no real explanation to this paradox. See however Ref. [22] for an interesting discussion.

The most important deficiency of INC4.2 at very low energy lies in the fact that it is unable to
reproduce the rise of the total cross section just above the Coulomb barrier. The latter is



usually interpreted as due to the interplay between the rise of the NN cross section and the
variation of the penetration through the Coulomb barrier. Several ways of curing this defect
have been investigated recently [14], resulting in a much better prediction of the total reaction
cross section, as shown in Fig.4. Because of lack of space and because these developments are
still under investigation, we cannot give much detail here. Let us just mention that the
quantity cutyn has been removed (set to zero) for the first collision, Coulomb distortion in

the entrance channel has been introduced and corrections have been introduced to compensate
for the too large momentum content of the target surface (see Section 2.2.A). One may
wonder why cufy has been removed whereas we have insisted on cutting soft collisions. In

fact, soft collisions do not perturb very much the nucleon motion and it is then natural (or
acceptable) to consider that their effect is mainly taken into account by the average potential.
However, the total reaction cross section is determined by the first collision inside any event.
Whether the first collision is soft or hard does not matter, inasmuch a soft collision can be
followed by a harder one. It is then indicated to consider first soft collisions totally.

The last modification deals with collisions occurring in the nuclear surface. As we said in
Section 2.2.A, the target nucleons moving in this region have a large energy (in the allowed
[0, TF] interval). They have also a large momentum. This results from the use of square well
potentials. It is generally considered that, in reality, these nucleons have a large energy but a
low momentum, in accordance with the shell-model, which uses a smooth Saxon-Woods-like
potential. Let us now consider the collision between an incident low-energy nucleon and one
of these surface target nucleons. If the cross section depends upon the relative momentum, the
latter is probably overestimated in INCL4.2 and the cross section is consequently
underestimated. To compensate for this, a new procedure have been introduced, which
realizes the collision with the momenta of the particles in a smooth potential, defined as
having the same classical turning points as the one used in INCL4.2. The latter is implicitly
given by

V6)= e =(p) -7, + 2= B @

where R™' is the inverse of the function R(p). In practice, the modified momenta are
calculated, by using this potential. The collision is realized with this kinematics, including the
evaluation of the cross section, and the final momenta and energies are calculated after
restauration of the original INCL4.2 potential, guaranteeing so the conservation of energy. It
is easy to see that this modification has no effect when the collisions occurs in the interior (the
potential defined by Eq. (41) is practically equal to -V} in this region) or when the collision

occurs at high energy. One should also realize that this procedure has to do with the
extrapolation of the experimental cross sections to off-shell particles. The original procedure
of INCL4.2 supposes that the cross sections should be extended according to the cm energy,
whereas the new procedure is better suited if they have to be extended according the momenta
of the particles. More details are given in Ref. [15].

One has to stress that, even if the modifications described in this subsection are motivated by
the behaviour of INCL4.2 at low incident energy, they have been implemented for any
incident energy. It is easy to see that they are only effective at low energy.

3.5. Other modifications

Other minor modifications have also been introduced in the meantime. Let us mention two of
them:



1. The strict Pauli blocking has been introduced on the first collision. This seems to be the
best compromise which minimizes the problems inherent to the statistical implementation,
partly cured by the CDPP procedure (see Section 2.2.E), and accounts nevertheless for the
depletion of the Fermi sphere. More detail can be found in Ref. [21].

2. Events are terminated at fszop (see Section 2.2.F) or when all the particles have energies
below the Fermi energy plus a constant energy, taken as 10 MeV, if this occurs earlier. In
such a situation, it is expected that the system will basically evolves by evaporation. This new
procedure has been adopted because the results are basically unchanged, while the
computation time is reduced by 25%.

4. QOutlook

We have presented an analytical description of the recent versions of the INCL model, trying
to present the features of the physics included in this model, the various assumptions and
some technical points, which are nevertheless important to understand how the numerical
simulations are working.

The standard version INCL4.2 is basically a parameter free version. In the numerical code,
there are only two physical parameters: the potential depth V¢ and the nucleon separation
energy. These are not really free parameters, as it is indicated to use phenomenological values
for these parameters. There are also options allowing to use a more or less diffuse surface, to
vary the stopping time (through the parameter fszop) and to adopt alternative versions of the
Pauli blocking (like the strict Pauli blocking), enabling the user to have an idea of variations
of the model. But it should be stressed that what is referred to as the INCL4.2 model
corresponds to the standard choice described in this paper.

We did not discuss the performances of INCL4.2. For this, we refer to Ref. [4]. One has to
keep in mind that if some observables constrain the INCL model alone (total reaction cross
section, high-energy particle spectra), many others constrain INCL and the de-excitation
model to which it is coupled, at the same time. The good performances of INCL4.2 for the
second kind of observables have been obtained thanks to the coupling to the standard version
of the ABLA model (named KHSv3p, see Ref.[4]). They have to be confirmed with the new
version of ABLA [6] or with another evaporation-fission model.

Model INCI4.4 has been developed to cure some shortcomings of INCL4.2 (lack of cluster
emission), to introduce mandatory features of nuclear dynamics (energy-dependent average
potential for nucleons and average potential for pions) and to improve the performances,
especially at low energy. Inclusion of new features was done by relying as much as possible
on known physics rather than on free parameters. Developments are still in progress, but it is
likely that achieving a good description of more and more observables in a more and more
extended domain will not be possible with a little dose of free parameters. We have
particularly in mind the production of clusters, which is expected to proceed differently at
high or low incident energy and in heavy or light nuclei. Preliminary results seems to indicate
that the goal could be reached with a satisfactorily low level of fitting procedure [14,25].

We did not really discuss the justification of the assumptions of the model, nor the general
theoretical foundation of the model, which is still in embryo for the time being. See Ref. [15]
for a discussion of this point.
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