
Semi-implicit representation of sharp features with level sets

H. Asadi Kalameha,b, O. Pierarda, C. Friebela, E. Béchetb
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Abstract

The present contribution enriches the nowadays “classical” level set implicit representation of geometries with topological informa-

tion in order to correctly represent sharp features. For this, sharp features are classified according to their positions within elements

of the level set support. Based on this additional information, sub-elements and interface-mesh used in a finite element context for

integration and application of boundary conditions are modified to match exactly to the sharp features. In order to analyze evolving

geometries, Boolean operations on these semi-implicit representations are derived so that the minimal additional information to rep-

resent correctly the new geometry is stored. This approach has been successfully applied to complex two-dimensional geometries.

It computes in a robust way numerous Boolean operations and guarantees the precision and the convergence rate of the numerical

simulations.
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1. Introduction

The level set method (LSM) was originally introduced by

Osher and Sethian (1; 2; 3) as a robust technique to represent

implicitly the evolution of interfaces which have a smooth ge-

ometry in two or three dimensions. The representation of the

interface, or more generally any boundary, is obtained by the

iso-zero of the level set function, classically a distance function

to the boundary. This function is defined on a grid so that it is

suitable for using it within a finite element context. A major ad-

vantage is that the simulation mesh does not need to match the

boundary anymore. In case of a moving interface in the normal

direction, a Hamilton-Jacobi equation - also called the level set

equation - is solved to track the interface.

This method has been successfully employed in a wide vari-

ety of applications such as the solidification process (4), crystal

growth (5), crack representation (6), image processing (7) or

multi-phases flows (8; 9). Another key topic for which implicit

representation with level set is helpful is topology optimization

(10; 11; 12).

Implicit representation of smooth interfaces is particularly

efficient with the level set method. However, when the bound-

ary has small curvature radius, sharp features like corners or

small items with respect to the characteristic length of the grid,

a smoothing effect is observed. In some cases, as for the im-

plicit representation of a CAD model, this might be unaccept-

able. Several improvements have been proposed over the years

in order to circumvent these limitations. A first approach is

to use higher-order level sets instead of the classical first-order

interpolation (13). Accurate integration requires a particular at-

tention (14). Such an approach has been successfully used in

several applications, including magneto-mechanical problems

(15). Another approach is to dissociate the computation mesh

from the grid on which the level set is defined as adopted by

Legrain et al. (16). Typically, a finer grid might be used in

regions where sharp geometrical features are located. This lat-

ter approach has been used by Legrain et al. (17) to represent

implicitly CAD thin structures. Even if these two approaches

improve the implicit representation by reducing the geometrical

error, both are unable to represent exactly sharp features.

Using several level sets to represent accurately sharp fea-

tures as corners or edges has been set up by Moumnassi et al.

(18). Typically, each level set represents one basic geometric

feature like a plane and Boolean operations are performed be-

tween them to capture an intersecting edge. This approach is

also coupled to level set definition on a sub-grid to improve rep-

resentation of curvatures. In Tran et al. (19), several level sets

are also used for the representation of complex microstructures,

each one representing an inclusion.

In the present paper, it is proposed to use a single level set

for the implicit representation of the structure. For a correct

representation of sharp features, information from the geometry

is added to the level set so that the representation is not purely

implicit anymore but semi-implicit.

The paper is structured as follows. In section 2, the defini-

tion of level set to represent implicitly a boundary is recalled

as well as the way to use it in a finite element context. The

effect of smoothing corners is highlighted. In section 3, the

concept of level set plus is introduced. It enriches the classi-

cal level set with geometrical information to correctly represent

the sharp features. In section 4, Boolean operations on level

set plus are examined. Finally, in section 5, numerical valida-

tions are presented for semi-implicit geometry representation,

Boolean operations and finite element computations. In what
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follows “corner” is used along with of “sharp feature” whit the

same meaning.

2. Interface representation with level set

In this section, basic notations and methodologies used for

representation of interfaces with classical level set in the context

of a finite element problem are recalled. Problems related to the

capture of corners are highlighted.

2.1. The classical level set method

The primary concept of the level set technique is to implic-

itly describe an interface Γ by a function (3). The level set func-

tion Φ is a signed distance function with respect to Γ such that

the following sign convention applies:






Φ(x) < 0⇔ x ∈ Ω−

Φ(x) = 0⇔ x ∈ Γ

Φ(x) > 0⇔ x ∈ Ω+
(1)

where x is a point in the level set supportΩ containing the inter-

face. The level set support can be defined on an unstructured or

structured non-conforming mesh. Ω− and Ω+ are sub-domains

of Ω on both sides of the interface such that Ω− ∪ Γ ∪ Ω+ = Ω

and Ω− ∩ Ω+ = ∅. When the level set is used to represent im-

plicitly a structure embedded within the level set support, Ω−

is the structure and Γ is the boundary. In this paper, the terms

internal and external regions respectively correspond toΩ− and

Ω+.

2.2. Usage of level set within a finite element simulation

In the context of this work, when the level set is used within

a finite element simulation, Ω is considered to be a 2D trian-

gular first-order mesh. Decomposition to simplicial elements is

performed for other element types. Level set values are com-

puted at every node belonging to Ω. For nodes which are very

close to the interface (e.g., | Φ(x) |< 0.01 e, where e is the ele-

ment edge size), the level set value is arbitrarily set to 0 to avoid

narrow sub-elements for integration.

In the finite element context, for the imposition of Neumann

boundary conditions on the interface, an Interface-mesh is re-

constructed from the level set. The interface, defined by the

iso-0 level set, i.e. a curve on which Φ(x) = 0, is obtained by

evaluating a level set field with help of the finite element shape

functions. In case of first-order shape functions, the intersec-

tion points on edges are determined with a linear interpolation

between the level set values calculated at the end-points of each

edge.

In order to create bijective relations between mesh entities

(vertex, edge and face) of the level set support and intersection

points, a tagging system is introduced for linking entities. As il-

lustrated on Figure 1, an interface-tag TAG-I is defined, so that

any side of a relation can be retrieved by knowing the other side

and the tag. Connecting these intersection points with line seg-

ments results in the construction of the Interface-mesh which is

a poly-line in 2D. As illustrated in the Figure 1, each of these

poly-line segments is also tagged to the corresponding element.
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Figure 1: Classical level set approach: creation of the Interface-mesh and asso-
ciated tagging system on the element containing the corner C
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Figure 2: Classical level set approach: creation of the associated Submesh on
the element containing the corner

In addition to the Interface-mesh, a Submesh associated to

each element cut by the Interface-mesh is constructed for the

purpose of integration over the element. Typically, different

integration rules can be used on both sides of the interface (i.e.

materials interface) or even no integration at all on Ω+ in case

of an implicitly defined volume. It is important to notice that

the use of Submesh is limited to integration and visualization

purposes, without introduction of additional degrees of freedom

to the finite element problem.

Creation of the Submesh is shown on Figure 2. Elements

crossed by the iso-0 level set are subdivided into sub-elements

(triangles) whose edges are conforming to the iso-0 level set.

Similar Gaussian quadrature rule is used on each sub-element

as for the uncut elements.
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The subdivision algorithm is the following. Intersection

points which are detected during construction of the Interface-

mesh are retrieved from support entities using the interface-tag

(TAG-I) and then subdivision is performed for each element so

that each sub-element is located on either side of the Interface-

mesh. As shown in Figure 2, intersection points and the vertices

are duplicated and related by using the submesh-tag (TAG-S).

Sub-elements are constructed from the duplicated vertices. The

position (internal or external) of the sub-elements is determined

by discussing the sign of the level set values on the vertices of

the parent element. Alternatively Moumnassi et al. (18) de-

tect the position of sub-elements using sign of level set at their

centroids. All sub-elements are linked to their parent elements

using partitioning-tag (TAG-P).

2.3. On the capture of corners with classical level sets

The classical level set is shown to be a versatile, robust and

efficient technique for a wide class of problems. However, the

level set description as presented above fails at representing pre-

cisely geometries which contain corners or small details com-

pared to the level set support characteristic length. As illus-

trated in the Figure 1, the classical level set tends to erase or

smooth out the corner C when using linear interpolation inside

an element.

The effect of this drawback is not only limited to the ele-

ments containing corners. As shown in Figure 1, the signed

distance of vertex v1 to the interface (red line) is the distance to

the vertical leg of the interface (i.e. at the intersection with the

edge v1 − v3), but the same value is also used for computing the

intersection point M on the other edge associated to v1. There-

fore, the intersection point M obtained from the interpolation

along this edge is badly located.

In order to increase the geometrical accuracy, mesh refine-

ment in the vicinity of elements containing corners might be

used (see Figure 3(a)). However, as depicted in Figure 3(b),

even if the interface representation tends to be more accurate

while refining mesh around the corners, it still fails in the sense

that the geometric feature associated to the corners is lost and

cannot be used, for instance, for the imposition of boundary

conditions.

Γ 

Interface-mesh

(from iso-0

level set)

(a) Mesh refinement around corner

Interface-mesh

(from iso-0

level set)

(b) Zoom around mis-captured iso-

0 level set

Figure 3: Mesh refinement around mis-captured corner

Another alternative is to use the multiple level sets approach

as proposed by Moumnassi et al. (18) which guarantees the

accuracy of implicitly represented object around corners with

minimal dependency on level sets supports. This method is

an adaptation of the parametric description of interface com-

bined with implicit representation so that parametric definition

of each interface segment is converted into an implicit form

which is defined on the background mesh. By using this tech-

nique, the corner depicted in Figure 3 is correctly captured us-

ing two level sets, each one representing one segment of Γ,

without the need of mesh refinement. However with this tech-

nique multiple level set values are required in vicinity of sharp

features which can result in an increase of computational cost

in terms of memory. The issue with that technique is that the

level sets are global; It means that the values of the level sets

are known every where leading to a memory footprint which is

roughly proportional to the number of sharp features and mem-

ory footprint of one global level set. Of course, we could reduce

the memory footprint by reducing the support of each level set

to its narrow band. In what follows, we have the procedure that

achieves the same complexity automatically. There is, however,

another drawback in the use of multiple level sets for repre-

senting concave corners beside convex ones. This flaw appears

when applying Boolean operations between level sets.

3. Interface representation with level set plus

This section introduces the concept of level set plus and the

associated additional information to the classical level set for

correct capture of sharp features. This is done in two steps : (i)

corners detection from the interface Γ and (ii) classification of

these corners. Accordingly, modification on the Interface-mesh

and the Submesh become necessary.

3.1. The level set plus method

The level set plus is a semi-implicit technique which com-

bines the classical level set approach with the explicit extraction

of the geometrical corners. Contrary to the methods mentioned

in section 2.3, no mesh refinement is needed and a single level

set is used to represent the interface accurately.

The algorithm proposed for the level set plus technique is

presented in Figure 4. The light blocks represent the essen-

tial steps which are needed for capturing the interface with the

classical level set approach as described in section 2.1 while

the dark blocks are the additional steps of the level set plus al-

gorithm to correctly capture corners. Each additional block is

described hereafter.
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Figure 4: Algorithm for representation of the interface; light blocks: essen-
tial steps needed by the classical level set; dark blocks: additional operations
required by the level set plus technique

3.1.1. Corners detection

In order to represent sharp features, the first step is to iden-

tify corner points from the interface. These corners can be ob-

tained from angular filtering of interface geometry or mesh, or,

if available, directly from geometrical information contained

within the mesh. These techniques can keep the topological

features that are geometrically smooth such as corners located

between almost collinear edges. However, detecting corners

based on the internal angle between edges gives an opportunity

to set a tolerance based on the desired accuracy. Corners which

are detected from the interface are stored in a list of corners

which is added to the classical level set data structure.

3.1.2. Corners classification

Considering the different configurations of the corner place-

ment with respect to the face in which it lies, the next step is to

classify these corners. Corners classification is all about adding

necessary data to each corner so that the suitable algorithm is

selected during upcoming steps in the Interface-mesh and Sub-

mesh modifications. Ten different configurations are identified

and illustrated in Figure 5.
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- (Classical level set) iso-0 level set

(i) (j)

 -

1 VERTEX

IN FACE -

1 EDGE -

1VERTEX

OPP

(a) (b) (d)(c)
IN FACE -

2 EDGES

ON VERTEX IN FACE -

2 VERTICES

IN FACE -

1 EDGE

(e) (f) (g) (h)

ON EDGE -

CROSS

ON EDGE -

2 EDGES

ON EDGE -

1 EDGE

ON EDGE -

1 EDGE -

1 VERTEX

Figure 5: Corners classification

Beside the configurations above, other configurations do ex-

ist as depicted in Figure 6. However, as some of the interface

edges are much smaller than characteristic element size, those

configurations will not be handled by the present algorithm but

smoothed by the classical level set approach. This has the ad-

vantage of not representing features which are too small with

respect to the mesh size.

Interface

Face

iso-0 level set

Figure 6: Two additional corner configurations which are not considered within
corners classification

Based on the proposed classification, three main attributes

are considered for each detected corner plus a fourth one for a

limited number of cases only:

• cxy stores the coordinates of the corner.

• celm is the face of the level set support in which the corner

is located. As loop over all faces is time-consuming, al-

gorithm performance is improved by detecting the clos-

est vertex to the corner (with an implementation of the
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Nearest-Neighbor algorithm (20)), and then check all faces

that are connected to that particular vertex (with the Cross-

ing Number method (21)). The latter algorithm counts

the number of times a ray starting from the corner C

crosses the face boundary edges. Since the result of the

algorithm may be incorrect if the corner lies very close to

the face boundary (due to the rounding error), following

process applies before checking corner inclusion within

the face.

If a corner lies on a vertex (case (b) on Figure 5), celm

attribute is one of the faces (chosen arbitrarily) which is

connected to the vertex and is crossed by the interface (a

face which has vertices with opposite level set signs).

If a corner lies on an edge (cases (e), ( f ), (g) and (h)

on Figure 5), celm is assigned as follows. If the interface

crosses the edge, case (e), one of the two faces connected

to the edge is chosen arbitrarily. For cases ( f ), (g) and

(h), celm attribute needs more investigation and will be

assigned while processing ctype (see Equations 2f - 2h).

• cedge holds the edge on which the corner is located (cases

(e), ( f ), (g) and (h) in Figure 5). In other cases cedge

remains empty.

• ctype indicates the corner classification according to Fig-

ure 5. Classification is based on the sign of the level set

evaluated at vertices of the element celm. V is the set of

all vertices v belonging to celm and Ve is the set of vertices

belonging to cedge. Classification is done by applying fol-

lowing assortment:

ctype = IN FACE - 2 EDGES⇔

cedge = Ø & ∀v ∈ V : Φ(v) , 0 &

∃v1, v2 ∈ V : Φ(v1)Φ(v2) < 0 (2a)

ctype = ON VERTEX⇔

∃v1 ∈ V : Φ(v1) = 0 &

∃v2, v3 ∈ V : Φ(v2)Φ(v3) < 0 (2b)

ctype = IN FACE - 1 EDGE⇔

celm , Ø & cedge = Ø &

∀v1, v2 ∈ V : Φ(v1)Φ(v2) > 0 (2c)

ctype = IN FACE - 2 VERTICES⇔

celm , Ø & ∃v ∈ V : Φ(v) , 0 &

∀v1, v2 ∈ V : Φ(v1)Φ(v2) = 0 (2d)

ctype = ON EDGE - CROSS⇔

cedge , Ø & ∀v ∈ V : Φ(v) , 0 &

∃v1, v2 ∈ Ve : Φ(v1)Φ(v2) < 0 (2e)

ctype = ON EDGE - 2 EDGES⇔

cedge , Ø & ∀v ∈ V : Φ(v) , 0 &

∀v1, v2 ∈ Ve : Φ(v1)Φ(v2) > 0 &

∃v1, v2 ∈ V : Φ(v1)Φ(v2) < 0 (2f)

ctype = ON EDGE - 1 EDGE⇔

cedge , Ø & ∀v ∈ V : Φ(v) , 0 &

∀v1, v2 ∈ Ve : Φ(v1)Φ(v2) > 0 &

∀v1, v2 ∈ V : Φ(v1)Φ(v2) > 0 (2g)

ctype = ON EDGE - 1 EDGE - 1 VERTEX⇔

cedge , Ø & ∃v ∈ V : Φ(v) = 0 &

∀v1, v2 ∈ Ve : Φ(v1)Φ(v2) > 0 (2h)

ctype = IN FACE - 1 EDGE - 1 VERTEXOPP⇔

celm , 0 & cedge = 0 & ∃v1 ∈ V : Φ(v1) = 0 &

∃v2, v3 ∈ V : Φ(v2)Φ(v3) < 0 (2i)

ctype = IN FACE - 1 EDGE - 1 VERTEX⇔

celm , 0 & cedge = 0 & ∃v1 ∈ V : Φ(v1) = 0 &

∃v2, v3 ∈ V : Φ(v2)Φ(v3) > 0 (2j)

As shown in Figure 7, there are cases such that even if the

corner lies outside the level set support, it still has an effect on

the iso-0 level set. These cases will be handled in the Interface-

mesh and Submesh modifications, as described hereafter.

Interface

Face

Negative  level set

iso-0 level set

C

Figure 7: Effect of the corner outside level set support on an element within
level set support

Correct classification and assignment of the attributes are

crucial for the subsequent operations.

3.2. Usage of level set plus within a finite element simulation

As presented in the section 2.2, Interface-mesh and Sub-

mesh are needed for, respectively, the imposition of a Neumann

boundary conditions and integration. As illustrated on Figure

4, modifications of the algorithms are required according to the

corner classification.

3.2.1. Interface-mesh modification

As illustrated on Figure 4, modification of the Interface-

mesh is based on the one obtained from the iso-0 of the classical

level set. Interface-mesh is adapted in elements containing cor-

ners as well as in neighboring elements. Knowing all corners

stored in the list of corners, the elements containing corners can

be retrieved by checking the celm attribute.

The first modification consists in correcting the intersection

of the Interface-mesh with the edges of all these elements con-

taining a corner (e.g. in Figure 1, the edge connecting vertices

v1 and v2). As shown in Figure 8(b), a wrongly calculated inter-

section point, p2, moves to p′2 on Figure 8(c) and no additional

tag is required for this modification. Correct position of p2 is
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obtained by intersecting the fictitious line connecting the em-

bedded corner to the previous/next corner inside list of corners

and the edge on which p2 is located. Modifications are then

considered within adjacent elements crossed by the interface

until an element in which no modification is required or already

containing a corner is reached.

The second modification consists in modifying the Interface-

mesh by splitting the edge inside the face celm into two segments

and directly inserting corner C. This operation is needed only

for corners classification of types (a − f ) and (i). All types of

corners are related to their corresponding face celm using the

corner-interface tag (TAG-IC in Figure 8).

F

Figure 8: (a) Tagging corner and intersection points during cre-
ation/modification of Interface-mesh in face F containing a corner C, (b) clas-
sical level set, (c) level set plus

It is clear from Figure 5 that with the classical level set

approach, no interface is created for the corner classifications

(c, d, g, h, j). In this section, only cases (c) and ( j) are discussed

as cases (g) and (h) are considered as extensions. For case (d),

the general treatment described above applies.

As illustrated on Figure 9 in configuration (c), all vertices

have either positive or negative level set values which results

in pertaining the element to the external or internal region re-

spectively. In the configuration ( j) only one of the vertices with

zero level set value appears on the the interface. However this

contribution is only related to the vertex itself. For these two

particular cases, the Interface-mesh is modified not only by in-

serting the corner point, but also additional edges. The effect

of mis-capturing the iso-0 level set (blue line in Figure 9) for

these cases can be more severe than for a general case, as no

contribution to the Interface-mesh is captured at all within the

gray area of Figure 9.

Once again, the additional edges which are tagged to the

corresponding gray elements can be used later in the Submesh

modification. This tag for level set plus is different from the

one used with classical level set as it is not detectable during

creation of the Submesh and hence, it has no negative effect on

creation of the Submesh by classical level set method.

iso-0 level set

Missed face

Interface

(a) Case (c) (b) Case (j)

Figure 9: iso-0 level set (blue line) representing the interface (red line) using
classical level set approach for cases (c) and ( j)

The difference between cases (c) and ( j) arises during the

extension of the Interface-mesh from the element containing

the corner point to the neighboring ones. For the case ( j),

since each leg of the corner crosses different neighboring el-

ements, the correction of the Interface-mesh is achieved sepa-

rately for each of them, similarly to the general case. However,

for the configuration (c), since both legs of the corner cross only

one edge and enter to the same neighbor element, construct-

ing/modifying Interface-mesh is simultaneous for both legs.

3.2.2. Submesh modification

This section describes how the Submesh is modified to take

corners into account. The modification is applied to the ele-

ments containing corners and, whenever needed, to their neigh-

bors as well. Depending on the corner classification ctype, differ-

ent solutions are proposed for the Submesh modification. The

more general approach is described first and then some particu-

lar treatments for different corners classifications are examined.

The algorithm loops over all the corners. For a given corner

and its celm attribute, the first step consists in deleting the as-

sociated sub-elements computed with the classical level set by

breaking the partition-tag (TAG-P, Figure 2).

Figure 10 illustrates the algorithm for a face celm contain-

ing a corner C. As depicted in Figure 10(b), the corner C is

retrieved by the corner-interface tag (TAG-IC). Similarly to the

classical technique of adding a vertex to the Submesh, corner

C is duplicated in the Submesh using the corner-submesh tag

(TAG-SC).
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Interface-mesh
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TAG-SC

(b)

C

TAG-IC C

Figure 10: Tagging corner during Submesh modification : (a) Interface-mesh

and (b) Submesh

Sub-elements associated to elements containing a corner ac-

cording to their classification are illustrated in Figure 11. The

approach based on the corner classification ensures that no de-

generated triangle is produced. Vertices duplication from the

Interface-mesh is sufficient for the creation of the Submesh face

entities inside an element. In the last step of the Submesh modi-

fication, all generated sub-elements are tagged to the internal or

external region of the level set support similarly to the classical

level set approach.

Interface

Face

Ω
- (Level set plus)

(i) (j)

IN FACE -

1 EDGE -

1 VERTEX

IN FACE -

1 EDGE -

1VERTEX

OPP

(a) (b) (d)(c)
IN FACE -

2 EDGES

ON VERTEX IN FACE -

2 VERTICES

IN FACE -

1 EDGE

(e) (f) (g) (h)

ON EDGE -

CROSS

ON EDGE -

2 EDGES

ON EDGE -

1 EDGE

ON EDGE -

1 EDGE -

1 VERTEX

Figure 11: Submesh modification according to corner classification

Corner classification (e) is exempted of the Submesh modi-

fication as this corner already lies on an edge, only position of

the intersection on the edge needs to be modified. No additional

interface-corner tag is defined for this particular case.

As already mentioned in section 3.2.1, for corner classifi-

cations (c, g, h, j), the effect of the corner is not limited to the

element containing the corner but also to neighboring elements

(see Figure 12). Since additional edges during modification

of the Interface-mesh are tagged to the elements using corner-

interface tag TAG-IC, they cannot be recalled during the cre-

ation of Submesh. Hence, additional Submesh corrections are

needed for these types. Figure 12 shows subdivision of the el-

ements around corner type (c) and ( j) using the classical level

set approach and the level set plus technique.

Interface-mesh

Face

Internal

Interface

(a) Case (c)- classical level set (b) Case (c)- level set plus

(c) Case ( j)- classical level set (d) Case ( j)- level set plus

Figure 12: Creation of Submesh for cases (c) and ( j) by classical level set and
level set plus

4. Combining level sets

One of the advantages of the implicit representation of in-

terfaces with level sets is the simplicity of performing Boolean

operations. Boolean operators prove to be very useful in dif-

ferent fields such as topography simulations (22), machining

processes (23) and simulations involving multi-materials parts

(24).

4.1. Boolean operations for classical level set

By representing interfaces implicitly with level sets, Boolean

operations on the interfaces can be described as operations on
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the corresponding level set functions (25). Considering the in-

terfaces Γa and Γb represented by the level sets functions Φa

and Φb, Boolean operations can be expressed as:

Union : Γc = Γa

⋃

Γb ⇐⇒ Φc = min(Φa,Φb) (3)

Intersection : Γc = Γa

⋂

Γb ⇐⇒ Φc = max(Φa,Φb) (4)

Complement : Γc = Ω\Γa ⇐⇒ Φc = −Φa (5)

Di f f erence : Γc = Γa\Γb ⇐⇒ Φc = max(Φa,−Φb) (6)

Based on the Equations 3-6, in the classical level set ap-

proach, Boolean operations are performed directly on the level

sets values.

4.2. Boolean operations for level set plus

Although the classical level set approach allows treatment

of merging interfaces as mentioned above, not only the corners

of the interfaces are missed but also those generated during in-

tersection of interfaces, as illustrated at the intersection of blue

and red lines on Figure 13(a).

The overlapping area of internal regions of two level set

functions can be obtained by applying the intersection operator.

As illustrated on Figure 13(b), it can be perceived that apply-

ing a Boolean operator only on level sets values of the level

sets plus is not enough to correctly capture the interface. Al-

though explicit corners on each level set are detected and added

to the interface-mesh, auxiliary corners (denoted auxC in Fig-

ure 13(b)) may arise during Boolean operations and are stored

in an ordered merged list of corners.

Γ1

Internal

Γ2

(a) Classical level set

CauxC

C

Γ1

Internal

Γ2

(b) Level set plus - basic Boolean

operation only

Figure 13: Intersection operation - Gray area in the remaining part

Auxiliary corners also need to be classified similarly as it

was done for a single level set plus (see section 3.1.2). Possible

configurations for intersecting two interfaces according to their

position within the face are illustrated on Figure 14.

(a) (b) (c)

(d) (g)(f)(e)

Face

Γ2

Γ1

Figure 14: Possible configurations of intersecting two interfaces

Above configurations are discussed as follows:

• case (a): Two interfaces are crossing all edges and no

vertex.

• case (b): Two interfaces are crossing two edges.

• case (c): Two interfaces are crossing all edges and one

vertex

• case (d): Two interfaces are crossing two edges and one

vertex

• case (e): Two interfaces are crossing two edges and two

vertices

• case (f): One interface crosses two edges and the other

lies on one of the crossed edge.

• case (g): Two interfaces lie on two edges.

Among these configurations, cases (a, b, c, d, e), the most

common cases, are taken into account in the context of this

work. The conditions in Algorithm 1 are chosen so that the el-

ement is detected as a suspected face regardless of the internal

or external regions of interfaces.

The procedure of updating the corners list during applica-

tion of the Boolean operation is done in two steps. First, one

detects suspected faces in which there are potential auxiliary

corners. The second step adds auxiliary corners and removes

ineffective corners associated to each level set plus.

Detection of suspected faces is presented in Algorithm 1

and illustrated on Figure 15(a).

Since there is a possibility of having two interfaces with no

intersection but sign conversions, the sign conversions positive

to negative P2N and negative to positive N2P are separated, in

Algorithm 1, in order to avoid detection of faces between two

interfaces as suspected faces.

The second step consists in updating the list of merged cor-

ners associated to the level set plus by inserting auxiliary cor-

ners and removing ineffective ones. This step contains several

stages which are presented in Algorithm 2 and illustrated in

Figure 15(b). Forasmuch as the correction of intersections in-

side an element is done by intersecting the edge and the line

8



Γ1 Suspected face
Γ2 Interior direction

(a) Detection of suspected face

(Alg.1)

Γ1

Internal

Γ2

1i

1ii

2i

2ii

auxC

11

1213

21

22 23

(b) Update list of corner (Alg.2)

Merged interface

Intersection area

auxC

11

12

22 23

(c) Final merged interface (Alg.2) and

intersection area

Figure 15: Intersection operation

Algorithm 1: Detect suspected faces for cases (a, b, c, d and e)

Input: LS +1 , LS +2
Output: Suspected faces (F)

foreach face f in Ω do

-Compute Nr. of vertices with positive sign for both LS +1 and LS +2 (P2P);

-Compute Nr. of vertices with negative sign for both LS +1 and LS +2 (N2N);

-Compute Nr. of vertices with sign conversion from negative for LS +1 to positive for LS +2 (N2P);

-Compute Nr. of vertices with sign conversion from positive for LS +
1

to negative for LS +
2

(P2N);

-Compute Nr. of vertices with sign conversion from/to zero for either LS +1 or LS +2 (0PN);

if

• N2N + P2P = 3 with (N2N&P2P > 0)⇒ (case a & b) or

• P2N + N2P = 3 with (P2N&N2P > 0)⇒ (case a & b) or

• N2N + P2P + (P2N or N2P) = 3 with (N2N&P2P&(P2N + N2P) > 0)⇒ (case a & b) or

• P2N + N2P + (P2P or N2N) = 3 with (P2N&N2P&(P2P+ N2N) > 0)⇒ (case a & b) or

• (P2P or N2N) + (P2N or N2P) + 0PN = 3 with (P2P or N2N)&(P2N or N2P)&0PN) > 0⇒ (case c) or

• P2P + N2N + 0PN = 3 with (P2P&N2N&0PN > 0)⇒ (case d) or

• P2N + N2P + 0PN = 3 with (P2N&N2P&0PN > 0)⇒ (case d) or

• 0PN = 2⇒ (case e)

then
Insert f in F

end

end

return F
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Algorithm 2: Update list of corners

Input: LS +1 ans LS +2 lists of corners

Output: Updated merged list of corner

-Create map between LS +1 and LS +2 intersection points and interfaces line-segments numbers (CornerMap);

-Split LS +1 and LS +2 interfaces into line-segments (Fig. 15(b)): [ni, nii, ...] where n is the interface number;

foreach suspected face do

Find the first segment of each interface that intersects with the suspected face;

if line-segments intersect (2i, 1ii) then

Insert the intersection point (auxiliary corner, auxC) into the CornerMap;

end

end

foreach intersection point (key of CornerMap) do

Find correct directions for LS +1 and LS +2 based on the level set values of the corresponding element (Fig. 15(b));

end

-Insert auxiliary corner into line-segments;

-Order each line-segment (e.g. multiple intersections on a same line-segment);

-Convert back line-segments into a list (Fig. 15(b)):






f or LS +1 : [11, 12, auxC, 13]

f or LS +2 : [21, auxC, 22, 23]
;

-Classify corners inside lists of corners;

-Update merged list of corners based on the above lists and the directions of the auxiliary corner. The merged list of corners:

[11, 12, auxC, 22, 23] (Figure 15(c)) ;

connecting two corners (see section 3.2.1), finding the correct

placement inside merged list of corners for auxiliary corners is

necessary.

For the case where an auxiliary corner is located in an el-

ement already containing an usual corner, a smoothed solution

is formed by taking into account only the usual corner, in ac-

cordance with the non handled corner classification case (see

Figure 6).

Considering the possibility of forming discontinuous inter-

face as a result of the Boolean operation as shown on Figure

16, the merged list of corners stores corners in a matrix hav-

ing columns with different lengths. Each column of the matrix

represents one merged interface.

Γ1 Int�r�al
Γ2

Figure 16: Forming discontinuous interface

There is also a possibility of forming a closed merged in-

terface as a result of the Boolean operation. A new attribute

is added to each merged interface representing the mode of the

interface (open, closed). This attribute also helps to avoid fail-

ure in finding the correct position of the interface intersections

based on the next/previous corner point. Figure 17 depicts the

closed attribute for different methods of capturing initial inter-

faces.

Γ1

Internal

Γ2

(a) Classical level set (b) Level set plus

(c) level set plus with auxiliary cor-

ners

Figure 17: Closed merged interface mode

When considering several Boolean operations, two strate-
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gies can be adopted. For the first one the result of each opera-

tion is preserved, while for the second strategy the outcome of

an operation overwrites the result of the previous one so that a

single interface representation is maintained.

With the first strategy, the level set corresponding to a com-

bination of (n − 1) Boolean operations can be expressed as

LS +n
∗
= ((LS +1 , LS +2 ), ..., LS +n ) (7)

where (., .) represents one Boolean operation.

With the second strategy, the level set after operation (n−1)

reads

LS +n
∗
= (LS +n−1

∗
, LS +n ) . (8)

The second strategy can generally be solved by an iterative

algorithm which is running in linear time and requires constant

storage. The first strategy, in contrast, may require exponential

time and storage. Therefore, the second strategy is often more

efficient than the first one. Moreover, for most of the practi-

cal examples, keeping the history of the Boolean operations is

not needed. The second strategy is adopted for the numerical

examples in section 5.

4.3. Corners storage

Storing all the data related to the corners is not necessary

for a case involving a single smooth interface. However, all

data are stored inside the corner data structure itself, this infor-

mation is updated after each Boolean operation. For example,

the ctype attribute of a corner may vary after each operation.

Therefore, it is necessary to create links connecting corners and

modified intersections (i.e. point p′2 on Figure 8) to the corre-

sponding entities. These links are preserved and tracked during

each update of the level set. Adding this feature in accordance

with the Boolean operation, it is certain that the interface is cor-

rectly captured for all steps with no need of extra recalculations

of modified intersections. Storing corners is sufficient as long

as the level set support is unchanged.

5. Numerical validations

The proposed approach has been validated on various nu-

merical examples. The strategy is first applied in the context of

a pure geometric validation. The robustness of the level set plus

technique is then studied when a large number of Boolean op-

erations is involved. Finite element simulation of an L-shaped

geometry is discussed for the purpose of error analysis. Finally,

a comprehensive finite element simulation is performed by tak-

ing advantage of both the geometrical accuracy and Boolean

operation capability of the proposed method.

5.1. Geometrical validation - Compass

To clarify the accuracy of the level plus method, it is useful

to compare it on a rather complex geometry. A compass with 8

branches and 16 corners is illustrated in Figure 18. The support

of the level set is a square domain of side L = 6.5 meshed with

338 structured triangles of size 0.5.

Figure 18: A 16 corners compass

On Figure 19(a), the implicit representation of the compass

is obtained with the classical level set technique. The implicit

representation is very bad. In addition disconnected domains or

voids are observed. This may lead to a convergence problem

in the context of finite element simulations. Exact representa-

tion of the compass using level set plus technique is illustrated

in Figure 19(b). As expected, the semi-implicit representation

is conforming with the initial geometry. As shown in Figure

19(c), if the level set support is refined in the vicinity of the iso-

0 level set, a better representation of the interface is captured.

However, as discussed in section 2.3, using mesh refinement

technique in the region of the iso-0 level set, Figure 19(d), can-

not ensure an exact representation of the interface.

(a) Classical level set (b) Level set plus

(c) Classical level set with mesh re-

finement

(d) Classical level set with mesh re-

finement - Zoom around one corner

Figure 19: Implicit representation of the compass with different methods
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Figure 20 illustrates the relative geometrical error obtained

with the classical level set when the refinement increases while

it is zero for the level set plus technique independently of the

mesh size provided that all corners are classified as one the

types mentioned in section 3.1.2. The relative geometrical error

measures the area which is captured by classical level set with

respect to the exact area.
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Figure 20: Relative surface (area) error obtained by classical level set as func-
tion of number of elements in the support

5.2. High number of Boolean operations - Gear

The performance of the level set plus algorithm is tested

on an example containing a high number of Boolean operation

steps (719 differences obtained by Equation 6). Cutting steps

of a 120 tooth gear, each tooth with 6-stages cutting process,

is illustrated in Figure 21. As shown in Figure 21(a), level

set support is non-uniform with high refinement in the vicin-

ity of the disk circumference in order to avoid cutting same

element by multiple interfaces. Although interior layers of in-

terfaces have no effect on the final geometry of the gear (each

of them lies inside internal region of the next step), this exam-

ple insists on showing robustness and performance of the level

set plus technique. Figures 21(b, c) show the sequence of the

Boolean operations in different stages. According to the algo-

rithm 2 presented in section 4.3, the list of corners is updated

at each Boolean operation in order keep it as minimal as possi-

ble. The evolution of the corners list size is reported in Figure

22 and compared to the total number of corners. This strategy

clearly highlights the advantage of filtering the corner list. The

difference between the two line charts indicates the number of

corners which are filtered and increases over the whole cutting

process.

X

Y

Z

(a) Initial configuration and different

cutting steps

(b) Quarter cut, Level set plus

(c) Final cut, Level set plus

Figure 21: 120 tooth gear with 720 cutting process
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Figure 22: Corners list evolution during cutting progress with/without filtering
corners

5.3. Error estimation - L-shape domain under mode I load

The L-shape domain is a classical simulation problem for

which an analytical solution is available in linear elasticity. It

was firstly formulated by M. Williams (26) and later by B. Sz-

abo and I. Babuška (27). The dimensions and prescribed bound-

ary conditions for this problem are illustrated in Figure 23.

The black dashed lines of the boundary are loaded with trac-

tion computed from the analytical solution given in Equation 9
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Figure 23: L-shape model dimensions and boundary conditions

while the remaining boundaries are stress free.

σ(r, θ) = KIλIr
λI−1
ΦI(λI , θ)

︸                 ︷︷                 ︸

pure Mode I

+KIIλIIr
λII−1
ΦII(λII , θ)

︸                      ︷︷                      ︸

pure Mode II

(9)

where r and θ are radial distance and angular position. This

example only studies L-shape model under pure mode I load.

KI represents the generalized stress intensity factor which lin-

early determines the intensity of the stress field in the vicinity

of sharp corner. λI is an eigenvalue which determines the mag-

nitude of the singularity and is only related to the corner angle

alpha and can be computed as the smallest positive root of fol-

lowing equation:

sin(λIα) + λI sin(α) = 0, (10)

α = 3π/2 ⇒ λ = 0.544484

Tensor ΦI is a set of trigonometric functions which is given

by Equation 11:

ΦI(λI , θ) =






(2 − Q(λI + 1))cos(λI − 1)θ − (λI − 1)cos(λI − 3)θ

(2 + Q(λI + 1))cos(λI − 1)θ + (λI − 1)cos(λI − 3)θ

Q(λI + 1)sin(λI − 1)θ + (λI − 1)sin(λI − 3)θ

(11)

where Q =
cos
(

(λI−1) α
2

)

cos
(
(λI+1) α

2

) is a constant for given angle α. The

analysis is carried out assuming plane strain conditions. The

material parameters are Young’s modulus E = 1000 MPa, and

Poisson’s ratio ν = 0.3. The interested reader can find more

details in (28). Using Equation 9, the relative error in energy

norm Een, computed from Equation 12, for classical level set

and level set plus is shown in Figure 24.

Een =

( 1
2

∫

(σ − σexact) : (ε − εexact)dΩ
)1/2

( 1
2

∫

σexact : εexactdΩ
)1/2

(12)

It shows that level set plus always gives lower numerical error

compared to classical level set. This guarantees the quality of

the implementation of both Interface-mesh and Submesh. Os-

cillations come from mesh quality in vicinity of the corner. As

a reference, conforming finite element simulation is performed.

The difference between level set plus and FEM results on Figure

24 is due to the difference on numerical integration. Integration

scheme is briefly discussed in the Appendix A.
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Figure 24: Relative error in energy norm

According to the B. Szabo et al. (29), asymptotic rate of

convergence of L-shape model for h-refinement equals to:

β =
1

2
min(p, λ) = 0.272242 (13)

where p is the polynomial degree.

5.4. Netted plate

This problem involves a square plate with a side of 2 m,

featuring 36 squares cutout with a side of 0.1 m each, that is

subjected to pure tension. The square holes are sequentially ex-

tracted by use of level set plus technique as illustrated in Figure

25(a,b).

(a) 8th cut, Level set plus (b) Imposed boundary condition to the

plate

Figure 25: Netted plate cut and boundary conditions
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x=0.4375 x=0.4375

x

y

Figure 26: Magnitude of displacement field for level set (left) and level set plus
(right)

The plate is clamped along the left edge and has a uniform

load of 1000 MPa imposed on its right side (see Figure 25(b)).

Plane strain conditions and E = 200 GPa, ν = 0.3 (under linear

elasticity condition) are assumed for this example. The number

of degrees of freedom for this example is 2.8K. Distribution of

the magnitude of the displacement field is illustrated for both

level set and level set plus techniques on Figure 26. As for

the example of section 5.1, classical level set results in poor

representation of the geometry. Since there is no exact solution

available for this problem, a reference finite element solution on

a fine conforming mesh with about 500K degrees of freedom is

considered. Relative displacement in x direction with respect

to the reference solution is plotted over line x = 0.4376 as il-

lustrated on Figure 27. Non-zero relative displacement for the

conformed case is due to the dependency of the result accuracy

on the mesh size. The difference between conformed result and

level set plus is due to the adopted integration scheme (see Ap-

pendix A). Displacement fluctuates much more when corners

are not accurately represented. As depicted in Figure 27, level

set plus technique provides better result than classical level set.
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Figure 27: Relative displacement in x direction plotted over line x = 0.4376

6. Conclusions

The level set plus technique presented in this paper is able

to represent semi-implicitly sharp features of a boundary. In

addition to the implicit representation of the classical level set

technique, topological information from the boundary is con-

sidered. In the context of a finite element simulation, the goal

is to update Interface-mesh and Submesh in order to accurately

impose boundary conditions and perform the numerical inte-

gration. This process is done in several steps. First of all,

sharp features must be detected from the boundary. Those are

then classified according to their position within the face of the

level set support to which they belong. Thanks to this classi-

fication and additional information associated to the corners as

the face or edge on which they lie, Interface-mesh and Submesh

obtained with the classical level set technique are modified to

be coherent with the initial boundary containing sharp features.

All adopted algorithms are presented in details for the different

configuration cases.

Combining level set plus with Boolean operations is another

challenge considered in this work . Not only existing sharp fea-

tures of interfaces must be considered, but also those appearing

during the operations. Also, final corner list must be sorted and

filtered to eliminate potential useless corners. All this is done

without any modification or mesh refinement of the level set

support.

All these developments are illustrated and validated on sev-

eral examples such as compass shape (geometrical validation),

gear (robustness in Boolean operations), L-shape model (con-

vergence study), and Netted plate (general finite element sim-

ulation). For the different meshes, the error related to the level

set plus always lies in between the one obtained with the classi-

cal level set (which contains geometrical errors as well) and the

one from a conforming finite element simulation.

A first extension of this work is to generalize the algorithms

(detection and classification of sharp features) for 3D geome-

tries. In this 2D case, we were able to explicitly generate all

different configurations by hand. For the 3D case, the num-

ber of configurations is much higher. Therefore, we plan to

switch the classification part of the algorithm so that these ex-

plicit enumeration is not needed anymore. It is currently under

development.

Another research topic is regarding implementation aspects,

especially for three dimensional specimens. Parallelization of

the proposed algorithms should be considered to be in line with

what is done for classical implicit representation.

Finally, in addition to capturing sharp features, implicit rep-

resentation of curvatures ((14; 13)) should be coupled with this

approach.

Appendix A. Numerical integration

Numerical integration has to be treated by care on the ele-

ments cut by iso-0 level set. Therefore, these element split into

integration cells (Submesh) as discussed in section 2.2. Then,

regular integration rule is performed on Submesh. Figure A.1

shows distribution of stress differences between level set plus
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and a conforming finite element simulation that is based ex-

actly on the same Submesh that is used only for integration pur-

poses. The difference here is that the sub-elements are used as

the support for building the interpolation. Significant difference

is observed on elements in vicinity of the corner. These differ-

ences arise due to different degrees of freedom. In the level set

plus approach the connected elements to the red nodes in Fig-

ure A.1 have partial contribution during numerical integration.

Of course, introducing new degrees of freedom to the level set

plus approach will provide same solution.

1.0023

1.9984

2.9946

6.116e-03

3.991e+00

Stress Magnitude

Figure A.1: Distribution of stress difference between level set plus and con-
forming finite element simulation
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M. Potier-Ferry, Finite element analysis on implicitly defined domains:
An accurate representation based on arbitrary parametric surfaces, Com-
puter Methods in Applied Mechanics and Engineering 200 (5) (2011)
774–796.

[19] A. Tran, J. Yvonnet, Q.-C. He, C. Toulemonde, J. Sanahuja, A multiple
level set approach to prevent numerical artefacts in complex microstruc-
tures with nearby inclusions within xfem, International Journal for Nu-
merical Methods in Engineering 85 (11) (2011) 1436–1459.
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