Covering codes

Élise Vandomme

Combinatorics on Words and Tilings Workshop Montréal – April 2017

(r, a, b)-covering code with

- r: reach of the emitting stations
- *a*: number of emitting stations within reach of an emitting station
- b: number of emitting stations that reach of a phone

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of G = (V, E) if for any $u \in V$

$$\Big|\{B_r(v)\mid u\in B_r(v),\ v\in S\}\Big|=egin{cases}\mathsf{a}& ext{if }u\in S\b& ext{if }u
ot\in S.\end{cases}$$

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of G = (V, E) if for any $u \in V$

$$\Big|\{B_r(v)\mid u\in B_r(v),\ v\in S\}\Big|= egin{cases} \mathsf{a} & ext{if } u\in S\ \mathsf{b} & ext{if } u
ot\in S. \end{cases}$$

Also known as isotropic coloring, perfect coloring.

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of G = (V, E) if for any $u \in V$

$$\Big|\{B_r(v)\mid u\in B_r(v),\ v\in S\}\Big|=egin{cases} \mathsf{a} & ext{if } u\in S\ \mathsf{b} & ext{if } u
ot\in S. \end{cases}$$

Also known as isotropic coloring, perfect coloring. If a = 1 = b, they are called *r*-perfect code. [Biggs 1973]

Finding an r-prefect code is NP-complete. [Kratochvíl 1988]

- Vertices : $\mathbf{x} = (x_1, x_2) \in \mathbb{Z}^2$
- Edge between (x_1, x_2) and (y_1, y_2) if $|x_1 y_1| + |x_2 y_2| = 1$

Manhattan distance d:

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2|$$

Radius 1

Theorem (Axenovich 2003) There exists a (1, a, b)-code in \mathbb{Z}^2 iff (a, b) is equal to one of: (1, 4), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),(4, 1), (4, 3), (4, 4),

up to switching colors.

Radius 1

 Theorem (Axenovich 2003)

 There exists a (1, a, b)-code in \mathbb{Z}^2 iff (a, b) is equal to one of:

 (1, 4), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4),

 up to switching colors.

$$(1, a, b)$$
-code switching colors $(1, 5 - b, 5 - a)$ -code.

Radius 1

 Theorem (Axenovich 2003)

 There exists a (1, a, b)-code in \mathbb{Z}^2 iff (a, b) is equal to one of:

 (1, 4), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4),

 up to switching colors.

$$(1, a, b)$$
-code switching colors $(1, 5 - b, 5 - a)$ -code.

Unique up to isomorphism

Exactly two up to isomorphism

Theorem (Puzynina 2004)

There exist non-periodic codes, but all of them can be obtained by periodic ones.

Theorem (Puzynina 2004)

There exist non-periodic codes, but all of them can be obtained by periodic ones.

Non-periodic (1, a, b)-code $\implies (a, b) = (3, 2)$ or (a, b) = (4, 3)

Theorem (Puzynina 2004)

There exist non-periodic codes, but all of them can be obtained by periodic ones.

Non-periodic (1, a, b)-code $\implies (a, b) = (3, 2)$ or (a, b) = (4, 3)Example?

Radius 1 in higher dimension

Theorem (Dorbec, Gravier, Honkala, Mollard 2009)

Construction of periodic codes by extension of a 1D-pattern.

A	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$ N[u] \cap A $	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_1 = 0$															
$-w_1 = 0$															
$w_2 = 2$															
$-w_2 = -2$															
<i>w</i> ₃ = 4															
$-w_3 = -4$															
<i>w</i> ₄ = 5															
$-w_4 = -5$															
$w_5 = 7$															
$-w_{5} = -7$															

A	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$ N[u] \cap A $	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$-w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$w_2 = 2$	0	0	٠	٠	٠	0	0	0	0	0	0	0	0	0	0
$-w_2 = -2$	•	0	0	0	0	0	0	0	0	0	0	0	0	٠	•
<i>w</i> ₃ = 4	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0	0
$-w_3 = -4$	0	0	0	0	0	0	0	0	0	0	0	٠	•	•	0
$w_4 = 5$	0	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0
$-w_4 = -5$	0	0	0	0	0	0	0	0	0	0	٠	٠	٠	0	0
$w_5 = 7$	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0	0
$-w_{5} = -7$	0	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0

A	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$ N[u] \cap A $	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$-w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$w_2 = 2$	0	0	٠	٠	٠	0	0	0	0	0	0	0	0	0	0
$-w_2 = -2$	•	0	0	0	0	0	0	0	0	0	0	0	0	٠	•
<i>w</i> ₃ = 4	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0	0
$-w_3 = -4$	0	0	0	0	0	0	0	0	0	0	0	٠	•	٠	0
$w_4 = 5$	0	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0
$-w_4 = -5$	0	0	0	0	0	0	0	0	0	0	٠	٠	٠	0	0
$w_5 = 7$	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0	0
$-w_{5} = -7$	0	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0
	5	5	5	2	2	2	2	2	2	2	2	2	2	2	2

A	•	•	٠	0	0	0	0	0	0	0	0	0	0	0	0
$ N[u] \cap A $	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$-w_1 = 0$	•	٠	٠	0	0	0	0	0	0	0	0	0	0	0	0
$w_2 = 2$	0	0	٠	٠	٠	0	0	0	0	0	0	0	0	0	0
$-w_2 = -2$	•	0	0	0	0	0	0	0	0	0	0	0	0	٠	•
<i>w</i> ₃ = 4	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0	0
$-w_3 = -4$	0	0	0	0	0	0	0	0	0	0	0	٠	•	٠	0
$w_4 = 5$	0	0	0	0	0	٠	٠	٠	0	0	0	0	0	0	0
$-w_4 = -5$	0	0	0	0	0	0	0	0	0	0	٠	٠	•	0	0
<i>w</i> ₅ = 7	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0	0
$-w_{5} = -7$	0	0	0	0	0	0	0	0	٠	٠	٠	0	0	0	0
	5	5	5	2	2	2	2	2	2	2	2	2	2	2	2
$C = \{(x_1, \ldots,$, <i>x</i> ₆)	$\in \mathbb{Z}$	26 2	x ₁ –	x ₂ v	v ₁ –		— x	(6 <i>W</i> 5	$\in A$	A} is	за			

(1, 5, 2)-code

Theorem (Puzynina 2008)

All (r, a, b)-codes with $r \ge 2$ are periodic.

Axenovich divides (r, a, b)-codes into

• Type A: \exists a vertex such that

• Type B: \forall vertex, we have

Type B \implies which values of a and b?

Theorem (Axenovich 2003)

If c is an (r, a, b)-covering code of \mathbb{Z}^2 and |a - b| > 4, then c is a **p**-periodic diagonal colouring for some $\mathbf{p} = (p, 0)$.

diagonal coloring

Consequence

We can assume that φ is an (r, a, b)-code with $r \ge 2$ and |a - b| > 4 $\implies \exists p \in \mathbb{Z}$ such that

• $\varphi(\mathbf{x}) = \varphi(\mathbf{x} + (1, 1))$ $\forall \mathbf{x} \in \mathbb{Z}^2$, • $\varphi(\mathbf{x}) = \varphi(\mathbf{x} + (p, 0))$ $\forall \mathbf{x} \in \mathbb{Z}^2$.

Hypotheses :

 $\begin{array}{l} \bullet \ \varphi : \mathbb{Z}^2 \to \{ \bullet, \circ \} \\ \bullet \ t, p \in \mathbb{N} \\ \bullet \ \varphi(\mathbf{x}) = \varphi(\mathbf{x} + (t, 1)) \qquad \forall \mathbf{x} \in \mathbb{Z}^2, \\ \bullet \ \varphi(\mathbf{x}) = \varphi(\mathbf{x} + (p, 0)) \qquad \forall \mathbf{x} \in \mathbb{Z}^2. \end{array}$

Goal :

Identify vertices of a given ball playing the "same role".

 \exists a (3,11,7)-covering code of \mathbb{Z}^2

We only have to study particular colorings in 4 types of cycles!

Properties

Proposition

For any G = (V, E), $v \in V$, $w : V \to \mathbb{R}$ and $A \subseteq Aut(G)$, a monochromatic coloring is a constant 2-labelling.

$$\alpha = \sum_{u \text{ black}} w(u) = \sum_{u \in V} w(u)$$

NB : β is not defined.

Properties

Proposition

For any G = (V, E), $v \in V$, $w : V \to \mathbb{R}$ and $A \subseteq Aut(G)$, φ is a constant 2-labelling iff $\overline{\varphi}$ is a constant 2-labelling.

Example of results

Lemma (Gravier, V.)

If c is a non-trivial constant 2-labelling of such cycle, then the number of vertices is a multiple of 3 and c is 3-periodic of pattern period $\bullet \circ$.

Example of results

Lemma (Gravier, V.)

If c is a non-trivial constant 2-labelling of such cycle, then the number of vertices is a multiple of 3 and c is 3-periodic of pattern period $\bullet \bullet \circ$.

For $r \ge 2$ and |a - b| > 4, \exists an (r, a, b)-code of \mathbb{Z}^2 iff \exists a constant 2-labelling of some cycle C_p with adequate constants.

Characterization

Theorem (Gravier, V.)

Let $r, a, b \in \mathbb{N}$ be such that |a - b| > 4 and $r \ge 2$. For all (r, a, b)-codes of \mathbb{Z}^2 , the values of a and b can be given explicitly.

If φ is an (r, a, b)-code with |a - b| > 4,

- φ is one of the periodic diagonal colorings given by Axenovich's theorem.
- We can apply the projection and folding method.
- Using constant 2-labellings, we have the possible values of *a* and *b*.

Many (1, a, b)-covering codes of \mathbb{Z}^d are periodic.

[Dorbec, Gravier, Honkala, Mollard 2009]

Many (1, a, b)-covering codes of \mathbb{Z}^d are periodic.

[Dorbec, Gravier, Honkala, Mollard 2009]

• Similar periodicity result? Yes [Puzynina 2009]

Many (1, a, b)-covering codes of \mathbb{Z}^d are periodic. [Dorbec, Gravier, Honkala, Mollard 2009]

- Similar periodicity result? Yes [Puzynina 2009]
- Which kind of weighted cycles?

Many (1, a, b)-covering codes of \mathbb{Z}^d are periodic. [Dorbec, Gravier, Honkala, Mollard 2009]

- Similar periodicity result? Yes [Puzynina 2009]
- Which kind of weighted cycles?

Same question for the King Lattice

www.words2017.lacim.uqam.ca

Submission deadline: April 16