Covering codes

Élise Vandomme

Combinatorics on Words and Tilings Workshop Montréal - April 2017

Mobile network

Mobile network

Mobile network

Mobile network

(r, a, b)-covering code with

- r : reach of the emitting stations
- a: number of emitting stations within reach of an emitting station
- b : number of emitting stations that reach of a phone

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of $G=(V, E)$ if for any $u \in V$

$$
\left|\left\{B_{r}(v) \mid u \in B_{r}(v), v \in S\right\}\right|= \begin{cases}a & \text { if } u \in S \\ b & \text { if } u \notin S\end{cases}
$$

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of $G=(V, E)$ if for any $u \in V$

$$
\left|\left\{B_{r}(v) \mid u \in B_{r}(v), v \in S\right\}\right|= \begin{cases}a & \text { if } u \in S \\ b & \text { if } u \notin S\end{cases}
$$

Also known as isotropic coloring, perfect coloring.

Translation in terms of graphs

A set $S \subseteq V$ is an (r, a, b)-covering code of $G=(V, E)$ if for any $u \in V$

$$
\left|\left\{B_{r}(v) \mid u \in B_{r}(v), v \in S\right\}\right|= \begin{cases}a & \text { if } u \in S \\ b & \text { if } u \notin S\end{cases}
$$

Also known as isotropic coloring, perfect coloring. If $a=1=b$, they are called r-perfect code. [Biggs 1973]

Finding an r-prefect code is NP-complete. [Kratochvíl 1988]

- Vertices: $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}$
- Edge between $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ if $\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|=1$

Manhattan distance d :

$$
d(\mathbf{x}, \mathbf{y})=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

The infinite grid \mathbb{Z}^{2}

The infinite grid \mathbb{Z}^{2}

The infinite grid \mathbb{Z}^{2}

The infinite grid \mathbb{Z}^{2}

The infinite grid \mathbb{Z}^{2}

The infinite grid \mathbb{Z}^{2}

Radius 1

Theorem (Axenovich 2003)
There exists a $(1, a, b)$-code in \mathbb{Z}^{2} iff (a, b) is equal to one of:

$$
\begin{array}{lll}
(1,4), & (2,3), & (3,1), \\
(3,2), & (3,3), & (3,4), \\
(4,1), & (4,3), & (4,4),
\end{array}
$$

up to switching colors.

Radius 1

Theorem (Axenovich 2003)
There exists a $(1, a, b)$-code in \mathbb{Z}^{2} iff (a, b) is equal to one of:

$$
\begin{array}{lll}
(1,4), & (2,3), & (3,1), \\
(3,2), & (3,3), & (3,4), \\
(4,1), & (4,3), & (4,4),
\end{array}
$$

up to switching colors.
$(1, a, b)$-code $\quad \begin{gathered}\text { switching colors } \\ \Longrightarrow \\ (1,5-b, 5-a) \text {-code. }\end{gathered}$

Radius 1

Theorem (Axenovich 2003)
There exists a $(1, a, b)$-code in \mathbb{Z}^{2} iff (a, b) is equal to one of:

$$
\begin{array}{lll}
(1,4), & (2,3), & (3,1), \\
(3,2), & (3,3), & (3,4), \\
(4,1), & (4,3), & (4,4),
\end{array}
$$

up to switching colors.
$(1, a, b)$-code $\quad \underset{\Longrightarrow}{\text { switching colors }}(1,5-b, 5-a)$-code.

Unique up to isomorphism

Exactly two up to isomorphism

$(3,2)$

$(3,2)$

Radius 1

Theorem (Puzynina 2004)
There exist non-periodic codes, but all of them can be obtained by periodic ones.

Radius 1

Theorem (Puzynina 2004)
There exist non-periodic codes, but all of them can be obtained by periodic ones.

Non-periodic $(1, a, b)$-code $\Longrightarrow(a, b)=(3,2)$ or $(a, b)=(4,3)$

Radius 1

Theorem (Puzynina 2004)
There exist non-periodic codes, but all of them can be obtained by periodic ones.

Non-periodic $(1, a, b)$-code $\Longrightarrow(a, b)=(3,2)$ or $(a, b)=(4,3)$ Example?

Radius 1 in higher dimension

Theorem (Dorbec, Gravier, Honkala, Mollard 2009)
Construction of periodic codes by extension of a $1 D$-pattern.

$\ln \mathbb{Z}^{6}$

A	\bullet	\bullet	\bullet	\circ											
$\|N[u] \cap A\|$	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
w_{1}	$=0$														
$-w_{1}$	$=0$														
w_{2}	$=2$														
$-w_{2}$	$=-2$														
w_{3}	$=4$														
$-w_{3}$	$=-4$														
w_{4}	$=5$														
	$w_{4}=-5$														
w_{5}	$=7$														
$-w_{5}$	$=-7$														

$\ln \mathbb{Z}^{6}$

A	\bullet	\bullet	\bullet	\circ											
$\|N[u] \cap A\|$	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$-w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$w_{2}=2$	\circ	\circ	\bullet	\bullet	\bullet	\circ									
$-w_{2}=-2$	\bullet	\circ	\bullet	\bullet											
$w_{3}=4$	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ							
$-w_{3}=-4$	\circ	\bullet	\bullet	\bullet	\circ										
$w_{4}=5$	\circ	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ						
$-w_{4}=-5$	\circ	\bullet	\bullet	\bullet	\circ	\circ									
$w_{5}=7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ	\circ						
$-w_{5}=-7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ							

$\ln \mathbb{Z}^{6}$

A	\bullet	\bullet	\bullet	\circ											
$\|N[u] \cap A\|$	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$-w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$w_{2}=2$	\circ	\circ	\bullet	\bullet	\bullet	\circ									
$-w_{2}=-2$	\bullet	\circ	\bullet	\bullet											
$w_{3}=4$	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ							
$-w_{3}=-4$	\circ	\bullet	\bullet	\bullet	\circ										
$w_{4}=5$	\circ	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ						
$-w_{4}=-5$	\circ	\bullet	\bullet	\bullet	\circ	\circ									
$w_{5}=7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ	\circ						
$-w_{5}=-7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ							
	5	5	5	2	2	2	2	2	2	2	2	2	2	2	2

A	\bullet	\bullet	\bullet	\circ											
$\|N[u] \cap A\|$	2	3	2	1	0	0	0	0	0	0	0	0	0	0	1
$w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$-w_{1}=0$	\bullet	\bullet	\bullet	\circ											
$w_{2}=2$	\circ	\circ	\bullet	\bullet	\bullet	\circ									
$-w_{2}=-2$	\bullet	\circ	\bullet	\bullet											
$w_{3}=4$	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ							
$-w_{3}=-4$	\circ	\bullet	\bullet	\bullet	\circ										
$w_{4}=5$	\circ	\circ	\circ	\circ	\circ	\bullet	\bullet	\bullet	\circ						
$-w_{4}=-5$	\circ	\bullet	\bullet	\bullet	\circ	\circ									
$w_{5}=7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ	\circ						
$-w_{5}=-7$	\circ	\bullet	\bullet	\bullet	\circ	\circ	\circ	\circ							
	5	5	5	2	2	2	2	2	2	2	2	2	2	2	2

$C=\left\{\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{Z}^{6} \mid x_{1}-x_{2} w_{1}-\cdots-x_{6} w_{5} \in A\right\}$ is a $(1,5,2)$-code

Radius $r \geq 2$

Theorem (Puzynina 2008)
All (r, a, b)-codes with $r \geq 2$ are periodic.

Radius $r \geq 2$

Axenovich divides (r, a, b)-codes into

- Type A: \exists a vertex such that

- Type B: \forall vertex, we have

Radius $r \geq 2$

Axenovich divides (r, a, b)-codes into

- Type A: \exists a vertex such that

Type $A \Longrightarrow|a-b| \leq 4$

- Type B: \forall vertex, we have

Radius $r \geq 2$

Axenovich divides (r, a, b)-codes into

- Type A: \exists a vertex such that

Type $A \Longrightarrow|a-b| \leq 4$

- Type B: \forall vertex, we have

Type $B \Longrightarrow$ which values of a and b ?

Theorem (Axenovich 2003)

If c is an (r, a, b)-covering code of \mathbb{Z}^{2} and $|a-b|>4$, then c is a \mathbf{p}-periodic diagonal colouring for some $\mathbf{p}=(p, 0)$.

Consequence

We can assume that
φ is an (r, a, b)-code with $r \geq 2$ and $|a-b|>4$
$\Longrightarrow \exists p \in \mathbb{Z}$ such that

- $\varphi(\mathbf{x})=\varphi(\mathbf{x}+(1,1)) \quad \forall \mathbf{x} \in \mathbb{Z}^{2}$,
- $\varphi(\mathbf{x})=\varphi(\mathbf{x}+(p, 0)) \quad \forall \mathbf{x} \in \mathbb{Z}^{2}$.

Projection and Folding

Hypotheses:

- $\varphi: \mathbb{Z}^{2} \rightarrow\{\bullet, \circ\}$
- $t, p \in \mathbb{N}$
- $\varphi(\mathbf{x})=\varphi(\mathbf{x}+(t, 1)) \quad \forall \mathbf{x} \in \mathbb{Z}^{2}$,
- $\varphi(\mathbf{x})=\varphi(\mathbf{x}+(p, 0)) \quad \forall \mathbf{x} \in \mathbb{Z}^{2}$.

Goal :

Identify vertices of a given ball playing the "same role".

Projection and folding

Projection and folding

Projection and folding

Projection and folding

Projection and folding

Projection and folding

Projection and folding

\exists a $(3,11,7)$-covering code of \mathbb{Z}^{2}

Constant 2-labellings

We only have to study particular colorings in 4 types of cycles!

Constant 2-labellings

A coloring is a constant 2-labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black $\quad \sum_{u \text { black }} w(u)=7$
v white

Constant 2-labellings

A coloring is a constant 2-labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black
v white

$$
\begin{aligned}
\sum_{u \text { black }} w(u) & =7 \\
\sum_{u \text { black }} w(u) & =7
\end{aligned}
$$

Constant 2-labellings

A coloring is a constant 2-labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black
v white

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=7 \\
& \sum_{u \text { black }} w(u)=7 \neq 11
\end{aligned}
$$

Constant 2-labellings

A coloring is a constant 2 -labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black

$$
\sum_{u \text { black }} w(u)=11
$$

v white

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=7 \\
& \sum_{u \text { black }} w(u)=7 \neq 11
\end{aligned}
$$

Constant 2-labellings

A coloring is a constant 2 -labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black
v white

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=7 \\
& \sum_{u \text { black }} w(u)=7 \neq 11
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=11 \\
& \sum_{u \text { black }} w(u)=7
\end{aligned}
$$

Constant 2-labellings

A coloring is a constant 2 -labelling of a weighted cycle \mathcal{C}_{p} if for all rotations of the coloring

- v black $\Longrightarrow \sum_{u \text { black }} w(u)=\alpha$ constant
- v white $\Longrightarrow \sum_{u \text { black }} w(u)=\beta$ constant

v black
v white

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=7 \\
& \sum_{u \text { black }} w(u)=7 \neq 11
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{u \text { black }} w(u)=11 \\
& \sum_{u \text { black }} w(u)=7
\end{aligned}
$$

Properties

Proposition

For any $G=(V, E), v \in V, w: V \rightarrow \mathbb{R}$ and $A \subseteq \operatorname{Aut}(G)$, a monochromatic coloring is a constant 2-labelling.

$$
\alpha=\sum_{u \text { black }} w(u)=\sum_{u \in V} w(u)
$$

NB: β is not defined.
11

Properties

Proposition

For any $G=(V, E), v \in V, w: V \rightarrow \mathbb{R}$ and $A \subseteq \operatorname{Aut}(G)$, φ is a constant 2-labelling iff $\bar{\varphi}$ is a constant 2-labelling.
$A=\operatorname{Aut}(G), v=v_{3}$

$$
\begin{aligned}
& \alpha=6 \\
& \beta=4
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\alpha}=\sum_{u \in V} w(u)-\beta=16 \\
& \bar{\beta}=\sum_{u \in V} w(u)-\alpha=14
\end{aligned}
$$

Example of results

Lemma (Gravier, V.)

If c is a non-trivial constant 2-labelling of such cycle, then the number of vertices is a multiple of 3 and c is 3 -periodic of pattern period •• ○.

Example of results

Lemma (Gravier, V.)

If c is a non-trivial constant 2-labelling of such cycle, then the number of vertices is a multiple of 3 and c is 3 -periodic of pattern period •• ○.

For $r \geq 2$ and $|a-b|>4, \exists$ an (r, a, b)-code of \mathbb{Z}^{2} iff \exists a constant 2-labelling of some cycle \mathcal{C}_{p} with adequate constants.

Characterization

Theorem (Gravier, V.)
Let $r, a, b \in \mathbb{N}$ be such that $|a-b|>4$ and $r \geq 2$. For all (r, a, b)-codes of \mathbb{Z}^{2}, the values of a and b can be given explicitly.

If φ is an (r, a, b)-code with $|a-b|>4$,

- φ is one of the periodic diagonal colorings given by Axenovich's theorem.
- We can apply the projection and folding method.
- Using constant 2-labellings, we have the possible values of a and b.

Perspectives

Many ($1, a, b$)-covering codes of \mathbb{Z}^{d} are periodic.
[Dorbec, Gravier, Honkala, Mollard 2009]

Perspectives

Many ($1, a, b$)-covering codes of \mathbb{Z}^{d} are periodic.
[Dorbec, Gravier, Honkala, Mollard 2009]

- Similar periodicity result? Yes [Puzynina 2009]

Perspectives

Many $(1, a, b)$-covering codes of \mathbb{Z}^{d} are periodic.
[Dorbec, Gravier, Honkala, Mollard 2009]

- Similar periodicity result? Yes [Puzynina 2009]
- Which kind of weighted cycles?

Perspectives

Many ($1, a, b$)-covering codes of \mathbb{Z}^{d} are periodic.
[Dorbec, Gravier, Honkala, Mollard 2009]

- Similar periodicity result? Yes [Puzynina 2009]
- Which kind of weighted cycles?

Same question for the King Lattice

www.words2017.lacim.uqam.ca

Submission deadline: April 16

