On a conjecture about regularity and ℓ -abelian complexity

ÉLISE VANDOMME Postdoc at the LaCIM (UQAM)

Bridges between Automatic Sequences, Algebra and Number Theory CRM, Montréal – April 2017

Yesterday...

k-regular sequences are much more chaotic...

Equivalence between

- $\mathbf{w} = (w_i)_{i>0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]

Equivalence between

- $\mathbf{w} = (w_i)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue-Morse word

 $\mathbf{t} = 01101001100101101001011001101001 \cdots$

Equivalence between

- $\mathbf{w} = (w_i)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue–Morse word

$$\mathbf{t} = \begin{array}{cc} \mathbf{0}1101001100101101001011001101001 \cdots \\ (\mathbf{t}_{2n})_{(n\geq 0)} = \end{array}$$

Equivalence between

- $\mathbf{w} = (w_i)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue-Morse word

$$\begin{array}{rcl} \mathbf{t} = & 01101001100101101001011001101001 \cdots \\ (\mathbf{t}_{2n})_{(n \geq 0)} = & 01101001100101101001011001101001 \cdots = \mathbf{t} \end{array}$$

Equivalence between

- $\mathbf{w} = (w_i)_{i>0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue-Morse word

$$\begin{array}{rcl} \mathbf{t} = & 011010011001011001011001101001 \cdots \\ (\mathbf{t}_{2n})_{(n \geq 0)} = & 01101001100101101001011001101001 \cdots = \mathbf{t} \\ (\mathbf{t}_{2n+1})_{(n \geq 0)} = & \end{array}$$

Equivalence between

- $\mathbf{w} = (w_i)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue-Morse word

```
\begin{array}{rcl} \mathbf{t} = & 011010011001011001011001101001 \cdots \\ (\mathbf{t}_{2n})_{(n \geq 0)} = & 01101001100101101001011001101001 \cdots = \mathbf{t} \\ (\mathbf{t}_{2n+1})_{(n \geq 0)} = & 10010110011011011011001100110110 \cdots = \mathbf{\bar{t}} \end{array}
```

Equivalence between

- $\mathbf{w} = (w_i)_{i \geq 0}$ is a k-automatic word
- $\mathbf{w} = \tau(\varphi^{\omega}(a))$ with φ k-uniform, τ 1-uniform, $a \in A$
- w_i is the output of a DFAO when reading $(i)_k$ [Cobham 72]
- the k-kernel of w

$$\mathcal{K}_k(\mathbf{w}) = \{ w(k^e n + r)_{n \ge 0} : e \ge 0 \text{ and } 0 \le r < k^e \}$$

is finite [Eilenberg 1974]

Example: 2-kernel of the Thue-Morse word

$$\begin{array}{rcl} \mathbf{t} = & 011010011001011001011001101001 \cdots \\ (\mathbf{t}_{2n})_{(n \geq 0)} = & 01101001100101101001011001101001 \cdots = \mathbf{t} \\ (\mathbf{t}_{2n+1})_{(n \geq 0)} = & 10010110011011011011001100110110 \cdots = \mathbf{\bar{t}} \end{array}$$

$$\mathcal{K}_2(\mathbf{t}) = \{\mathbf{t}, \overline{\mathbf{t}}\}$$

Thue–Morse word $t = 0110100110010110 \cdots$

Factor complexity $\mathcal{P}_{\mathbf{t}}^{(\infty)}$ [Brlek 1989, de Luca–Varricchio 1989]

$$\mathcal{P}_{\mathbf{t}}^{(\infty)}(n) = \left\{ \begin{array}{ll} 4n - 2 \cdot 2^m - 4 & \text{if } 2 \cdot 2^m < n \leq 3 \cdot 2^m \\ 2n + 4 \cdot 2^m - 2 & \text{if } 3 \cdot 2^m < n \leq 4 \cdot 2^m. \end{array} \right.$$

Thue-Morse word $t = 0110100110010110 \cdots$

Factor complexity $\mathcal{P}_{\mathbf{t}}^{(\infty)}$ [Brlek 1989, de Luca-Varricchio 1989]

$$\mathcal{P}_{\mathbf{t}}^{(\infty)}(n) = \begin{cases} 4n - 2 \cdot 2^m - 4 & \text{if } 2 \cdot 2^m < n \le 3 \cdot 2^m \\ 2n + 4 \cdot 2^m - 2 & \text{if } 3 \cdot 2^m < n \le 4 \cdot 2^m. \end{cases}$$

Abelian complexity $\mathcal{P}_{\mathbf{t}}^{(1)}$

$$\mathcal{P}_{\mathbf{t}}^{(1)}(2n) = 3 \text{ and } \mathcal{P}_{\mathbf{t}}^{(1)}(2n+1) = 2$$

Two words u, v are ℓ -abelian equivalent if

$$|u|_{\scriptscriptstyle X} = |v|_{\scriptscriptstyle X} \qquad \text{for any x of length at most ℓ}.$$

Example:

и							
11010011	3	5	1	2	2	2	
11101001	3	5	1	2	2	2	

Two words u, v are ℓ -abelian equivalent if

$$|u|_{\scriptscriptstyle X} = |v|_{\scriptscriptstyle X} \qquad \text{for any x of length at most ℓ}.$$

Example: 2-abelian equivalent

и	$ u _0$	$ u _1$	$ u _{00}$	$ u _{01}$	$ u _{10}$	$ u _{11}$	
11010011	3	5	1	2	2	2	
11101001	3	5	1	2	2	2	

Two words u, v are ℓ -abelian equivalent if

$$|u|_{\scriptscriptstyle X} = |v|_{\scriptscriptstyle X} \qquad \text{for any x of length at most ℓ}.$$

Example: 2-abelian equivalent but not 3-abelian equivalent

и	$ u _0$	$ u _1$	$ u _{00}$	$ u _{01}$	$ u _{10}$	$ u _{11}$	$ u _{111}$
11010011	3	5	1	2	2	2	0
11101001	3	5	1	2	2	2	1

Two words u, v are ℓ -abelian equivalent if

$$|u|_x = |v|_x$$
 for any x of length at most ℓ .

Example: 2-abelian equivalent but not 3-abelian equivalent

и	$ u _0$	$ u _1$	$ u _{00}$	$ u _{01}$	$ u _{10}$	$ u _{11}$	$ u _{111}$
11010011	3	5	1	2	2	2	0
11101001	3	5	1	2	2	2	1

Number of factors of length n up to ℓ -abelian equivalence: $\mathcal{P}_{\mathbf{w}}^{(\ell)}(n)$

$$\mathcal{P}_{\mathbf{w}}^{(1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{w}}^{(\ell)}(n) \leq \mathcal{P}_{\mathbf{w}}^{(\ell+1)}(n) \leq \cdots \leq \mathcal{P}_{\mathbf{w}}^{(\infty)}(n)$$

The ℓ -abelian complexity of a word \mathbf{w} is the sequence $\mathcal{P}_{\mathbf{w}}^{(\ell)}(n)_{n\geq 0}$.

• Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]

- Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]
- ullet Behavior? In $\log(n)$ [Karhumäki-Saarela-Zamboni 2014]

- Bounded? No [Berthé-Delecroix 2014, Karhumäki-Saarela-Zamboni 2014]
- Behavior? In log(n) [Karhumäki–Saarela–Zamboni 2014]
- Regular?

A definition of regularity [Allouche-Shallit 1992]

A sequence $\mathbf{s} = s(n)_{n \geq 0}$ is k-regular if the \mathbb{Z} -module generated by its k-kernel

$$\mathcal{K}_k(\mathbf{s}) = \{ s(k^e n + r)_{n \geq 0} : e \geq 0 \text{ and } 0 \leq r < k^e \}$$

is finitely generated.

A definition of regularity [Allouche-Shallit 1992]

A sequence $\mathbf{s} = s(n)_{n \geq 0}$ is k-regular if the \mathbb{Z} -module generated by its k-kernel

$$\mathcal{K}_k(\mathbf{s}) = \{ s(k^e n + r)_{n \geq 0} : e \geq 0 \text{ and } 0 \leq r < k^e \}$$

is finitely generated.

Example: s(n) = sum of digits in the representation in base 2 of n

$$s(2n) = s(n)$$
 and $s(2n+1) = s(n) + 1$
 $\implies s(2^e n + r)_{n \ge 0} = s(n)_{n \ge 0} + s(r) \cdot 1_{n \ge 0}$
 \implies **s** and **1** are generators
 \implies **s** is 2-regular

Complexity and regularity

- The factor complexity of a *k*-automatic sequence is *k*-regular. [Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
 - the Thue-Morse sequence
 - the paperfolding sequence [Madill-Rampersad 2013]
 - the period-doubling sequence [Karhumäki–Saarela–Zamboni 2014]
 - the 2-block coding of Thue-Morse sequence [Parreau-Rigo-Rowland-V. 2015]
 - the 2-block coding of period-doubling sequence [Parreau-Rigo-Rowland-V. 2015]
 - the Rudin-Shapiro sequence [Lü-Chen-Wen-Wu 2016] are 2-regular.
- The 2-abelian complexity of
 - the Thue-Morse sequence [Greinecker 2015, Parreau-Rigo-Rowland-V. 2015]
 - the period-doubling word [Parreau-Rigo-Rowland-V. 2015] are 2-regular.
- ullet The ℓ -abelian complexity of the Cantor sequence is 3-regular for all $\ell \geq 1$ [Chen-Lü-Wu 2017]

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

• Find?

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

Find?

We need to compute $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ for large n!

Naive idea

- Construct the first N letters of t with N large enough
- If the value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is unchanged for several values of N, then we can suppose that the detected value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is correct.

How to prove regularity?

One method: find and prove relations for the sequences of the 2-kernel

Find?

We need to compute $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ for large n!

Naive idea

- Construct the first N letters of t with N large enough
- If the value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is unchanged for several values of N, then we can suppose that the detected value of $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ is correct.
- ightarrow Impossible to compute $\mathcal{P}_{\mathbf{t}}^{(\ell)}(n)$ for large n

Proposition

Two words u,v (of length at least $\ell-1$) are ℓ -abelian equivalent if and only if

- (a) $|u|_x = |v|_x$ for any x of length ℓ ;
- (b) $pref_{\ell-1}(u) = pref_{\ell-1}(v)$.

Proposition

Two words u,v (of length at least $\ell-1$) are ℓ -abelian equivalent if and only if

- (a) $|u|_x = |v|_x$ for any x of length ℓ ;
- (b) $pref_{\ell-1}(u) = pref_{\ell-1}(v)$.

For $\ell = 2$, we associate a vector in \mathbb{N}^{10} to each word $u = u_1 u_2 \cdots u_{n-1} u_n$,:

$$\Psi_{2}(u) = \begin{pmatrix} |u_{1}|_{0} \\ |u_{1}|_{1} \\ |u|_{00} \\ |u|_{01} \\ |u|_{11} \\ |u_{n-1}u_{n}|_{00} \\ |u_{n-1}u_{n}|_{01} \\ |u_{n-1}u_{n}|_{10} \\ |u_{n-1}u_{n}|_{11} \end{pmatrix} \qquad \Psi_{2}(11101) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Two words u and v are 2-abelian equivalent if and only if

(a)
$$[\Psi_2(u)]_{2+i} = [\Psi_2(v)]_{2+i}$$
 for $i \in \{1, \dots, 2^2\}$,

(b)
$$[\Psi_2(u)]_i = [\Psi_2(v)]_i$$
 for $i \in \{1, 2\}$.

In this case, we write $\Psi_2(u) \sim \Psi_2(v)$.

	001	010	011	100	101	110
	1	1	1	0	0	0
$ u_{1} _{1}$	0	0	0	1	1	1
$ u _{00}$	1	0	0	1	0	0
$ u _{01}$	1	1	1	0	1	0
$ u _{10}$	0	1	0	1	1	1
$ u _{11}$	0	0	1	0	0	1
$ u_{n-1}u_n _{00}$	0	0	0	1	0	0
$ u_{n-1}u_n _{01}$	1	0	0	0	1	0
$ u_{n-1}u_n _{10}$	0	1	0	0	0	1
$ u_{n-1}u_n _{11}$	0	0	1	0	0	0

From a factor of length n to a factor of length 2n-1

From a factor of length n to a factor of length 2n-1

We know precisely what is happening

odd length factor at even position (p = 0, r = 1)

odd length factor at odd position (p = 1, r = 1)

Computation for even length factors

$$\mathbf{t}$$
 φ $2j$ $2n$ ψ

even length factor at even position (p = 0, r = 0)

even length factor at odd position (p = 1, r = 0)

Generalization for $\ell \geq 3$

$$\begin{split} \Psi_{\ell}(u) = &\underbrace{(|\mathit{pref}_{\ell-1}(u)|_{a_{i_1} \dots a_{i_{\ell-1}}}, i_j \in \{1, \dots, |A|\}}_{\substack{\mathsf{size} \ |A|^{\ell-1}}, \\ &\underbrace{|u|_{a_{i_1} \dots a_{i_\ell}}, i_j \in \{1, \dots, |A|\}}_{\substack{\mathsf{size} \ |A|^{\ell}}, \\ &\underbrace{|\mathit{suff}_{\ell-1}(u)|_{a_{i_1} \dots a_{i_{\ell-1}}}, i_j \in \{1, \dots, |A|\})}_{\substack{\mathsf{size} \ |A|^{\ell-1}}} \end{split}$$

Proposition

Two words u,v (of length at least $\ell-1$) are ℓ -abelian equivalent if and only if

- (a) $[\Psi_{\ell}(u)]_{|A|^{\ell-1}+i} = [\Psi_{\ell}(v)]_{|A|^{\ell-1}+i}$ for $i \in \{1, \dots, |A|^{\ell}\}$;
- (b) $[\Psi_{\ell}(u)]_i = [\Psi_{\ell}(v)]_i$ for $i \in \{1, \dots, |A|^{\ell-1}\}.$

In this case, we note $\Psi_{\ell}(u) \sim \Psi_{\ell}(v)$.

Let φ be a k-uniform morphism and $\mathbf{w} = \varphi(\mathbf{w})$.

Let φ be a k-uniform morphism and $\mathbf{w} = \varphi(\mathbf{w})$.

Let φ be a k-uniform morphism and $\mathbf{w} = \varphi(\mathbf{w})$.

with $q \ge 1$, $p \in \{0, \dots, k-1\}$ and $r \in \{2-k, \dots, -1, 0, 1\}$.

Let φ be a k-uniform morphism and $\mathbf{w} = \varphi(\mathbf{w})$.

with $q \geq 1$, $p \in \{0, \ldots, k-1\}$ and $r \in \{2-k, \ldots, -1, 0, 1\}$. Then

$$\Psi_{\ell}(v) = \begin{pmatrix} B_1 & 0 & 0 \\ \hline C & B_2 & D \\ \hline 0 & 0 & B_3 \end{pmatrix} \Psi_{\ell}(u)$$

From matrices to the 2-abelian complexity of t

$$S_{3} = \{ \mathbf{v} \in \mathbb{N}^{10} \mid \exists u \in A^{3} : \mathbf{v} = \Psi_{2}(u) \text{ and } u \text{ is a factor of } \mathbf{t} \}$$

$$S_{4} = \{ M^{(0,0)}\mathbf{v}, \ M^{(1,0)}\mathbf{v} \mid \mathbf{v} \in S_{3} \} /_{\sim}$$

$$S_{5} = \{ M^{(0,1)}\mathbf{v}, \ M^{(1,1)}\mathbf{v} \mid \mathbf{v} \in S_{3} \} /_{\sim}$$

$$S_{3}$$

$$M^{(0,0)}, M^{(1,0)}$$

$$S_{4}$$

$$M^{(0,0)}, M^{(1,0)}$$

$$S_{5}$$

$$S_{6}$$

$$S_{7}$$

$$S_{8}$$

$$S_{9}$$

$$\mathcal{P}_{\mathbf{t}}^{2}(n) = \# S_{n}$$

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

• Find?

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

• Find? Mathematica experiments $x_{2^e+r} = \mathcal{P}_{\mathbf{t}}^{(2)}(2^e n + r)$

```
x5
        = x_3
                                                                               = -x_3 + x_{11} + x_{19}
                                                                       X39
Xα
        = x_3
                                                                       X40
                                                                               = -x_3 + x_{10} + x_{11}
        = -x_6 + x_7 + x_{11}
X12
                                                                       x41
                                                                               = x_{11}
X13
        = x_7
                                                                       X42
                                                                               = -x_3 + x_{10} + x_{11}
X16
        = x_8
                                                                               = -2x_3 + 3x_{10}
                                                                       X43
X17
        = x_3
                                                                               = -2x_3 - x_6 + x_7 + 3x_{10}
                                                                       X44
X18
        = x_{10}
                                                                               = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{10}
                                                                       X45
X20
        = -x_{10} + x_{11} + x_{10}
                                                                               = -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{19}
                                                                       X46
x<sub>21</sub>
        = x_{11}
                                                                               = -2x_3 + x_7 + 3x_{10} - x_{10}
                                                                       X47
        = -x_3 - 2x_6 + x_7 + 3x_{10} + x_{11} - x_{19}
X22
                                                                               = -x_3 + x_7 + x_{10}
                                                                       x<sub>48</sub>
        = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{19}
X23
                                                                               = x_7
                                                                       X49
        = -x_3 + x_7 + x_{10}
x<sub>24</sub>
                                                                               = -x_3 + x_7 + x_{10}
                                                                       X50
X25
        = x_7
                                                                               = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{10}
                                                                       X51
X26
        = -x_3 + x_7 + x_{10}
                                                                               = -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{10}
                                                                       X52
        = -2x_3 + x_7 + 3x_{10} - x_{10}
X27
                                                                      X53
                                                                               = -2x_3 + x_7 + 3x_{10} - x_{10}
X28
        = -2x_3 + x_7 + 3x_{10} - x_{14} + x_{15} - x_{10}
                                                                               = -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 2x_{14} + x_{15}
                                                                       X54
X29
        = x_{15}
                                                                               = -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 3x_{14} + 2x_{15}
                                                                       X55
X30
        = -x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{10}
                                                                               = -x_3 + x_{10} + x_{15}
                                                                       X56
        = -3x_3 + 6x_6 - 2x_{11} - 3x_{14} + 2x_{15} + x_{19}
X31
                                                                       X57
                                                                               = x_{15}
X32
        = x_8
                                                                               = -x_3 + x_{10} + x_{15}
                                                                       X58
X33
        = x_3
                                                                               = -2x_3 + 3x_6 - x_7 - x_{11} + x_{15} + x_{19}
                                                                       X59
X34
        = x_{10}
                                                                               = -4x_3 + 6x_6 + x_{10} - 2x_{11} - 3x_{14} + 2x_{15} + x_{10}
                                                                       X60
X35
        = x_{11}
                                                                       X61
                                                                               = -3x_3 + 6x_6 - 2x_{11} - 3x_{14} + 2x_{15} + x_{10}
X36
        = -x_{10} + x_{11} + x_{10}
                                                                               = -x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{19}
                                                                      X62
X37
        = x_{19}
                                                                               = x_{15}
                                                                       X63
X38
        = -x_3 + x_{10} + x_{19}
```

How to prove regularity?

Find and prove relations for the sequences of the 2-kernel

• Find? Mathematica experiments $x_{2^e+r} = \mathcal{P}_{\mathbf{t}}^{(2)}(2^e n + r)$

```
X5
        = x_3
                                                                               = -x_3 + x_{11} + x_{19}
                                                                      X39
Xα
        = x_3
                                                                      X40
                                                                               = -x_3 + x_{10} + x_{11}
        = -x_6 + x_7 + x_{11}
X12
                                                                      x41
                                                                               = x_{11}
X13
        = x_7
                                                                      X42
                                                                               = -x_3 + x_{10} + x_{11}
X16
        = x_8
                                                                              = -2x_3 + 3x_{10}
                                                                      X43
X17
        = x_3
                                                                               = -2x_3 - x_6 + x_7 + 3x_{10}
                                                                      X44
X18
        = x_{10}
                                                                               = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{10}
                                                                      X45
X20
        = -x_{10} + x_{11} + x_{10}
                                                                               = -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{19}
                                                                      X46
x<sub>21</sub>
        = x_{11}
                                                                      X47
                                                                               = -2x_3 + x_7 + 3x_{10} - x_{10}
        = -x_3 - 2x_6 + x_7 + 3x_{10} + x_{11} - x_{19}
X22
                                                                               = -x_3 + x_7 + x_{10}
                                                                      x<sub>48</sub>
        = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{10}
X23
                                                                               = x_7
                                                                      X49
        = -x_3 + x_7 + x_{10}
x<sub>24</sub>
                                                                               = -x_3 + x_7 + x_{10}
                                                                      X50
X25
        = x_7
                                                                               = -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{10}
                                                                      X51
X26
        = -x_3 + x_7 + x_{10}
                                                                               = -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{19}
                                                                      X52
        = -2x_3 + x_7 + 3x_{10} - x_{10}
X27
                                                                      X53
                                                                               = -2x_3 + x_7 + 3x_{10} - x_{10}
X28
        = -2x_3 + x_7 + 3x_{10} - x_{14} + x_{15} - x_{19}
                                                                               = -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 2x_{14} + x_{15}
                                                                      X54
X29
        = x_{15}
                                                                               = -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 3x_{14} + 2x_{15}
                                                                      X55
X30
        = -x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{19}
                                                                               = -x_3 + x_{10} + x_{15}
                                                                      X56
        = -3x_3 + 6x_6 - 2x_{11} - 3x_{14} + 2x_{15} + x_{19}
X31
                                                                      X57
                                                                               = x_{15}
X32
        = x_8
                                                                               = -x_3 + x_{10} + x_{15}
                                                                      X58
X33
        = x_3
                                                                               = -2x_3 + 3x_6 - x_7 - x_{11} + x_{15} + x_{19}
                                                                      X59
X34
        = x_{10}
                                                                               = -4x_3 + 6x_6 + x_{10} - 2x_{11} - 3x_{14} + 2x_{15} + x_{19}
                                                                      X60
X35
        = x_{11}
                                                                      X61
                                                                               = -3x_3 + 6x_6 - 2x_{11} - 3x_{14} + 2x_{15} + x_{10}
X36
        = -x_{10} + x_{11} + x_{10}
                                                                               = -x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{19}
                                                                      X62
        = x_{19}
X37
                                                                               = x_{15}
                                                                      X63
X38
        = -x_3 + x_{10} + x_{19}
```

https://people.hofstra.edu/Eric_Rowland/packages/IntegerSequences.m

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_n for $n \geq 32$ is a linear combination of $\mathbf{x}_1, \dots, \mathbf{x}_{19}$.

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_n for $n \geq 32$ is a linear combination of $\mathbf{x}_1, \dots, \mathbf{x}_{19}$.

Example:
$$\mathbf{x}_{154} = \mathcal{P}_{\mathbf{t}}^{(2)} (128n + 26)_{n \geq 0}$$

Using $\mathbf{x}_{58} = -\mathbf{x}_3 + \mathbf{x}_{10} + \mathbf{x}_{15}$,
 $\mathcal{P}_{\mathbf{t}}^{(2)} (128n + 26) = \mathcal{P}_{\mathbf{t}}^{(2)} (32(4n) + 26)$
 $= -\mathcal{P}_{\mathbf{t}}^{(2)} (2(4n) + 1) + \mathcal{P}_{\mathbf{t}}^{(2)} (8(4n) + 2) + \mathcal{P}_{\mathbf{t}}^{(2)} (8(4n) + 7)$
 $= -\mathcal{P}_{\mathbf{t}}^{(2)} (8n + 1) + \mathcal{P}_{\mathbf{t}}^{(2)} (32n + 2) + \mathcal{P}_{\mathbf{t}}^{(2)} (32n + 7)$.

So

$$\mathbf{x}_{154} = -\mathbf{x}_9 + \mathbf{x}_{34} + \mathbf{x}_{39} = -2\mathbf{x}_3 + \mathbf{x}_{10} + \mathbf{x}_{11} + \mathbf{x}_{19}.$$

Regularity via relations

If the relations hold, then any sequence \mathbf{x}_n for $n \geq 32$ is a linear combination of $\mathbf{x}_1, \dots, \mathbf{x}_{19}$.

Example:
$$\mathbf{x}_{154} = \mathcal{P}_{\mathbf{t}}^{(2)} (128n + 26)_{n \geq 0}$$

Using $\mathbf{x}_{58} = -\mathbf{x}_3 + \mathbf{x}_{10} + \mathbf{x}_{15}$,
 $\mathcal{P}_{\mathbf{t}}^{(2)} (128n + 26) = \mathcal{P}_{\mathbf{t}}^{(2)} (32(4n) + 26)$
 $= -\mathcal{P}_{\mathbf{t}}^{(2)} (2(4n) + 1) + \mathcal{P}_{\mathbf{t}}^{(2)} (8(4n) + 2) + \mathcal{P}_{\mathbf{t}}^{(2)} (8(4n) + 7)$
 $= -\mathcal{P}_{\mathbf{t}}^{(2)} (8n + 1) + \mathcal{P}_{\mathbf{t}}^{(2)} (32n + 2) + \mathcal{P}_{\mathbf{t}}^{(2)} (32n + 7)$.

So

$$\mathbf{x}_{154} = -\mathbf{x}_9 + \mathbf{x}_{34} + \mathbf{x}_{39} = -2\mathbf{x}_3 + \mathbf{x}_{10} + \mathbf{x}_{11} + \mathbf{x}_{19}.$$

Theorem (Greinecker 2015)

The relations hold and the 2-abelian complexity of ${\bf t}$ is 2-regular.

A more general approach

- ullet Symmetry of the form $\mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell+1}-r)=\mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell}+r)$
- Some relation between $\mathcal{P}_{\mathbf{t}}^{(2)}(2^{\ell}+r)$ and $\mathcal{P}_{\mathbf{t}}^{(2)}(r)$

It is the case for lots of 2-abelian complexity functions

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell}+r)$

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell}+r)$

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathsf{x}}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{\mathsf{x}}^{(1)}(2^{\ell}+r)$

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{x}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{x}^{(1)}(2^{\ell}+r)$

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{\mathsf{x}}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{\mathsf{x}}^{(1)}(2^{\ell}+r)$

- Recurrence: $\mathcal{P}_{x}^{(1)}(2^{\ell}+r) = \mathcal{P}_{x}^{(1)}(r)+3$
- Symmetry: $\mathcal{P}_{x}^{(1)}(2^{\ell+1}-r) = \mathcal{P}_{x}^{(1)}(2^{\ell}+r)$

Symmetry and recurrence relations

Do these nice symmetry and recurrence relations imply regularity?

- These relations use the most significant digits
- The kernel is made with the least significant digits

Symmetry and recurrence relations

Do these nice symmetry and recurrence relations imply regularity?

- These relations use the most significant digits
- The kernel is made with the least significant digits

Theorem (Parreau–Rigo–Rowland–V. 2015)

If $s(n)_{n\geq 0}$ satisfies

$$s(2^{\ell} + r) = \begin{cases} s(r) + c & \text{if } r \le 2^{\ell - 1} \\ s(2^{\ell + 1} - r) & \text{if } r > 2^{\ell - 1} \end{cases}$$

then $s(n)_{n>0}$ is 2-regular.

Consequences of the relations and the regularity

Using the recurrence and reflection relations, we immediately have that:

- it is not bounded,
- it is equal to $c\ell/2$ in $2^{\ell} + 2^{\ell-2} + 2^{\ell-4} + ... + 2^2 + 1$,
- it is constant and minimal in 2^{ℓ} .

$$s(2^{\ell}+r) = egin{cases} s(r) + c & ext{if } r \leq 2^{\ell-1} \ s(2^{\ell+1}-r) & ext{if } r > 2^{\ell-1} \end{cases}$$

But how to prove the recurrence and reflection relations?

For abelian complexity of the fixed point of $0 \rightarrow 12, 1 \rightarrow 12, 2 \rightarrow 00$

$$\mathbf{x} = 120012121200120012001212120012121200 \cdots$$

Consider

$$\Delta_0(n) = \max_{|u|=n} |u|_0 - \min_{|u|=n} |u|_0$$

- It is closely related to the abelian complexity since 1 and 2 alternate.
- ullet Prove the recurrence and reflection relations for Δ_0

$$\Delta_0(2^{\ell} + r) = egin{cases} \Delta_0(r) + 2 & \text{if } r \leq 2^{\ell-1} \\ \Delta_0(2^{\ell+1} - r) & \text{if } r > 2^{\ell-1} \end{cases}$$

But how to prove the recurrence and reflection relations?

For abelian complexity of the fixed point of $0 \rightarrow 12, 1 \rightarrow 12, 2 \rightarrow 00$

$$\mathbf{x} = 120012121200120012001212120012121200 \cdots$$

Consider

$$\Delta_0(n) = \max_{|u|=n} |u|_0 - \min_{|u|=n} |u|_0$$

- It is closely related to the abelian complexity since 1 and 2 alternate.
- ullet Prove the recurrence and reflection relations for Δ_0

$$\Delta_0(2^\ell + r) = egin{cases} \Delta_0(r) + 2 & ext{if } r \leq 2^{\ell-1} \ \Delta_0(2^{\ell+1} - r) & ext{if } r > 2^{\ell-1} \end{cases}$$

ullet Deduce the recurrence and reflection relations for $\mathcal{P}_{\mathsf{x}}^{(1)}$

$$\mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell}+r) = \begin{cases} \mathcal{P}_{\mathbf{x}}^{(1)}(r) + 3 & \text{if } r \leq 2^{\ell-1} \\ \mathcal{P}_{\mathbf{x}}^{(1)}(2^{\ell+1}-r) & \text{if } r > 2^{\ell-1} \end{cases}$$

Consequence

The abelian complexity of the fixed point of $~0\rightarrow 12, 1\rightarrow 12, 2\rightarrow 00$

 $\mathbf{x} = 120012121200120012001212120012121200 \cdots$

is 2-regular.

Consequence

The abelian complexity of the fixed point of $0 \rightarrow 12, 1 \rightarrow 12, 2 \rightarrow 00$

$$\mathbf{x} = 120012121200120012001212120012121200 \cdots$$

is 2-regular.

It is the 2-block coding of the period-doubling word

$$\mathbf{p} = 01000101010001000100 \cdots$$

 The abelian complexity of x is closely related to the 2-abelian complexity of p

$$\mathcal{P}_{\mathbf{p}}^{(2)}(n+1) = \mathcal{P}_{\mathbf{x}}^{(1)}(n)$$
 if *n* is odd

Consequence

The abelian complexity of the fixed point of $0 \rightarrow 12, 1 \rightarrow 12, 2 \rightarrow 00$

$$\mathbf{x} = 120012121200120012001212120012121200 \cdots$$

is 2-regular.

It is the 2-block coding of the period-doubling word

$$\mathbf{p} = 01000101010001000100 \cdots$$

 \bullet The abelian complexity of x is closely related to the 2-abelian complexity of p

$$\mathcal{P}_{\mathbf{p}}^{(2)}(n+1) = \mathcal{P}_{\mathbf{x}}^{(1)}(n)$$
 if n is odd

Theorem (Parreau–Rigo–Rowland–V. 2015)

The 2-abelian complexity of the period-doubling word is regular.

• Consider the 2-block coding of Thue-Morse

fixed point of $0 \rightarrow 12, 1 \rightarrow 13, 2 \rightarrow 20, 3 \rightarrow 21$.

• Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.

• Consider the 2-block coding of Thue-Morse

fixed point of $0 \rightarrow 12, 1 \rightarrow 13, 2 \rightarrow 20, 3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.

• Consider the 2-block coding of Thue-Morse

fixed point of $0 \rightarrow 12, 1 \rightarrow 13, 2 \rightarrow 20, 3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.
- Prove the recurrence and reflection relations for $\Delta_{1,2}(n)$.

• Consider the 2-block coding of Thue-Morse

132120132012132120121320 · · ·

fixed point of $0 \rightarrow 12, 1 \rightarrow 13, 2 \rightarrow 20, 3 \rightarrow 21$.

- Its abelian complexity is closely related to the 2-abelian complexity of the Thue-Morse sequence.
- Consider the function $\Delta_{1,2}(n)$.
- It is closely related to the abelian complexity since 1,2 alternate and 0,3 alternate.
- Prove the recurrence and reflection relations for $\Delta_{1,2}(n)$.
- Deduce the abelian complexity of the 2-block coding is 2-regular.

Theorem (Parreau-Rigo-Rowland-V. 2015)

The 2-abelian complexity of the Thue–Morse word satisfies a "slightly more complicated" recurrence and symmetry relation. It is 2-regular.

Summary

- The factor complexity of a k-automatic sequence is k-regular.
 [Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
 - the Thue-Morse sequence
 - the paperfolding sequence [Madill-Rampersad 2013]
 - the period-doubling sequence [Karhumäki–Saarela–Zamboni 2014]
 - the 2-block coding of Thue-Morse sequence [P.-R.-R.-V. 2015]
 - the 2-block coding of period-doubling sequence [P.-R.-R.-V. 2015]
 - the Rudin-Shapiro sequence [Lü-Chen-Wen-Wu 2016]

are 2-regular.

- The 2-abelian complexity of
 - the Thue-Morse sequence [Greinecker 2015, P.-R.-R.-V. 2015]
 - the period-doubling word [P.-R.-R.-V. 2015]

are 2-regular.

• The ℓ -abelian complexity of the Cantor sequence is 3-regular for all $\ell \geq 1$. [Chen-Lü-Wu 2017]

Summary

- The factor complexity of a k-automatic sequence is k-regular.
 [Carpi-D'Alonzo 2010, Charlier-Rampersad-Shallit 2012]
- The abelian complexity of
 - the Thue-Morse sequence
 - the paperfolding sequence [Madill-Rampersad 2013]
 - the period-doubling sequence [Karhumäki–Saarela–Zamboni 2014]

Conjecture ock coding of Thue-Morse sequence IP_R_R_V 2015]

The ℓ -abelian complexity of a k-automatic sequence is always k-regular.

- THE Z abelian complexity of
 - the Thue-Morse sequence [Greinecker 2015, P.-R.-R.-V. 2015]
 - the period-doubling word [P.-R.-R.-V. 2015] are 2-regular.
- The ℓ -abelian complexity of the Cantor sequence is 3-regular for all $\ell > 1$. [Chen-Lü-Wu 2017]

Perspectives

It seems that lots of $(\ell$ -)abelian complexity functions satisfy similar recurrence.

For the 3-abelian complexity of period-doubling word \mathbf{p} , the abelian complexity of the 3-block coding \mathbf{z} of \mathbf{p} seems to satisfy:

$$\mathcal{P}_{\mathbf{z}}^{(1)}(2^{\ell}+r) = \begin{cases} \mathcal{P}_{\mathbf{z}}^{(1)}(r) + 5 & \text{if } r \leq 2^{\ell-1} \text{ and } r \text{ even} \\ \mathcal{P}_{\mathbf{z}}^{(1)}(r) + 7 & \text{if } r \leq 2^{\ell-1} \text{ and } r \text{ odd} \\ \mathcal{P}_{\mathbf{z}}^{(1)}(2^{\ell+1}-r) & \text{if } r > 2^{\ell-1}. \end{cases}$$

• 2-abelian complexity of t satisfies a reflection symmetry

- 2-abelian complexity of t satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

- 2-abelian complexity of **t** satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

abelian complexity of 2-block coding of t
 1321201320121321201 · · · satisfies a reflection symmetry

- 2-abelian complexity of t satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

- abelian complexity of 2-block coding of t
 1321201320121321201 · · · satisfies a reflection symmetry
- 2-block coding of **t** is not palindromic

01 factor, but 10 not a factor

- 2-abelian complexity of t satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

- abelian complexity of 2-block coding of t
 1321201320121321201 · · · satisfies a reflection symmetry
- 2-block coding of **t** is not palindromic

But its set of factors is closed under "reversal and coding"

u factor
$$\Rightarrow \tau(u)^R$$
 factor with $\tau: 1 \leftrightarrow 2$

- 2-abelian complexity of t satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

- abelian complexity of 2-block coding of t
 1321201320121321201 · · · satisfies a reflection symmetry
- 2-block coding of **t** is not palindromic

But its set of factors is closed under "reversal and coding"

u factor
$$\Rightarrow \tau(u)^R$$
 factor with $\tau: 1 \leftrightarrow 2$

• Same thing holds for the period-doubling word **p**

- 2-abelian complexity of t satisfies a reflection symmetry
- t is palindromic

$$u = u_1 \cdots u_n$$
 factor $\Rightarrow u^R = u_n \cdots u_1$ factor

- abelian complexity of 2-block coding of t
 1321201320121321201 · · · satisfies a reflection symmetry
- 2-block coding of t is not palindromic

But its set of factors is closed under "reversal and coding"

u factor
$$\Rightarrow \tau(u)^R$$
 factor with $\tau: 1 \leftrightarrow 2$

- Same thing holds for the period-doubling word p
- Link between reflection symmetry and closed under "reversal and coding"?

www.words2017.lacim.uqam.ca

Submission deadline

May 5