# How to count leaves in the trees from Tetris? 

Élise Vandomme<br>Postdoc at the LaCIM (UQAM)

Colloque panquébécois des étudiants de l'ISM Trois-Rivières - May 2017


Trees in Tetris


Trees in Tetris


## Trees in Tetris



## Polyomino

A polyomino is a connected union of unit squares, called cells.



Solomon W. Golomb (1932-2016)

## Combinatorial Problems

- Monomino:


## Combinatorial Problems

- Monomino: $\square$
- Domino:



## Combinatorial Problems

- Monomino: $\square$
- Domino:

- Tromino:



## Combinatorial Problems

- Monomino: $\square$
- Domino:

- Tetromino:



## Combinatorial Problems

- Monomino: $\square$
- Domino:

- Tromino:

- Tetromino:


How many polyominoes with $n$ cells?

## Combinatorial Problems

- Monomino: $\square$
- Domino:

- Tromino:

- Tetromino:


How many polyominoes with $n$ cells?
Unknown for $n \geq 57$

## Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:



## Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:


Yes, we can!


## Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:

Yes, we can!
- Polyominoes:



## Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:

Yes, we can!
- Polyominoes:


No, we can't!

## Combinatorial Problems

Can we pave the plane with a finite set of polyominoes?

Examples:

- Polyominoes:

Yes, we can!
- Polyominoes:


No, we can't!
In general, the problem is undecidable.

## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: $45 \times 36$ rectangle
- Polyominoes: all pentominoes



## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes?

http://www.knowltonmosaics.com

## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: a checkerboard

- Polyominoes: a domino



## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: a checkerboard

- Polyominoes: a domino

Yes, we can!

## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: a checkerboard without two opposite corners

- Polyominoes: a domino $\square$


## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: a checkerboard without two opposite corners

- Polyominoes: a domino $\square$
No, we can't!


## Combinatorial Problems

Can we pave a finite area with a finite set of polyominoes? Example:

- Area: a checkerboard without two opposite corners

- Polyominoes: a domino $\square$
No, we can't!
In general, the problem is NP-complete.

Behind each polyomino hides a graph


## Behind each polyomino hides a graph



- Vertices are the cells.


## Behind each polyomino hides a graph



- Vertices are the cells.
- Two vertices are adjacent if their corresponding cells have a common side.


## Behind each polyomino hides a graph



- Vertices are the cells.
- Two vertices are adjacent if their corresponding cells have a common side.
- Such graph can contain cycles.


## Tree-like Polyominoes



- If there are no cycles, we call it a tree-like polyomino.


## Tree-like Polyominoes



- If there are no cycles, we call it a tree-like polyomino.
- This tree-like polyomino has 9 cells and 4 leaves.


## Tree-like Polyominoes



- If there are no cycles, we call it a tree-like polyomino.
- This tree-like polyomino has 9 cells and 4 leaves.
- For a given $n$, what is the maximal number of leaves realized by a tree-like polyomino with $n$ cells?


## Maximal number of leaves?

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
For $n \geq 1$, the maximal number of leaves realized by a treelike polyomino with $n$ cells is given by

$$
\ell(n)= \begin{cases}0 & \text { if } n=1 \\ 2 & \text { if } n=2 \\ n-1 & \text { if } n=3,4,5 \\ \ell(n-4)+2 & \text { if } n \geq 6\end{cases}
$$

## Trees in Minecraft



## Trees in Minecraft


tree-like polyominoes

$\Rightarrow$ tree-like polycubes

## Trees in Minecraft


tree-like polyominoes $\Rightarrow$ tree-like polycubes

Theorem (Blondin Massé, de Carufel, Goupil, Samson 2017)
The maximal number of leaves realized by a tree-like polycube satisfies a linear recurrence.

- Tree-like polyominoes are induced subtrees of $\mathbb{Z}^{2}$.

- Tree-like polyominoes are induced subtrees of $\mathbb{Z}^{2}$.
- Tree-like polycubes are induced subtrees of $\mathbb{Z}^{3}$.

- Tree-like polyominoes are induced subtrees of $\mathbb{Z}^{2}$.
- Tree-like polycubes are induced subtrees of $\mathbb{Z}^{3}$.


Can we study this problem in other graphs?

## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Definition

For a graph $G=(V, E)$ and $n \geq 2$

- $\mathcal{T}_{n}=$ set of induced subtrees with $n$ vertices
- $L_{G}(n)=\max \left\{\#\right.$ leaves in $\left.T \mid T \in \mathcal{T}_{n}\right\}$
- Leafed sequence of $G: L_{G}(n)_{n \in\{2, \ldots,|V|\}}$



## Particular cases



$$
L_{K_{p}}(n)= \begin{cases}2 & \text { if } n=2 \text { et } p \geq 2 \\ -\infty & \text { if } 3 \leq n \leq p\end{cases}
$$

## Particular cases



$$
L_{K_{p}}(n)= \begin{cases}2 & \text { if } n=2 \text { et } p \geq 2 \\ -\infty & \text { if } 3 \leq n \leq p\end{cases}
$$



$$
L_{C_{p}}(n)= \begin{cases}2 & \text { if } 2 \leq n<p \\ -\infty & \text { if } n=p\end{cases}
$$

## Particular cases



$$
L_{K_{p}}(n)= \begin{cases}2 & \text { if } n=2 \text { et } p \geq 2 \\ -\infty & \text { if } 3 \leq n \leq p\end{cases}
$$



$$
L_{C_{p}}(n)= \begin{cases}2 & \text { if } 2 \leq n<p \\ -\infty & \text { if } n=p\end{cases}
$$



$$
L_{R_{p}}(n)= \begin{cases}2 & \text { if } 2=n \text { ou }\left\lfloor\frac{p}{2}\right\rfloor+1<n<p \\ n-1 & \text { if } 3 \leq n \leq\left\lfloor\frac{p}{2}\right\rfloor+1 \\ -\infty & \text { if } p \leq n \leq p+1\end{cases}
$$

## Particular cases



$$
L_{K_{p}}(n)= \begin{cases}2 & \text { if } n=2 \text { et } p \geq 2 \\ -\infty & \text { if } 3 \leq n \leq p\end{cases}
$$



$$
L_{C_{p}}(n)= \begin{cases}2 & \text { if } 2 \leq n<p \\ -\infty & \text { if } n=p\end{cases}
$$



$$
L_{R_{p}}(n)= \begin{cases}2 & \text { if } 2=n \text { ou }\left\lfloor\frac{p}{2}\right\rfloor+1<n<p \\ n-1 & \text { if } 3 \leq n \leq\left\lfloor\frac{p}{2}\right\rfloor+1 \\ -\infty & \text { if } p \leq n \leq p+1\end{cases}
$$



$$
L_{K_{p, q}}(n)= \begin{cases}2 & \text { if } n=2 \\ n-1 & \text { if } 3 \leq n \leq \max (p, q)+1 \\ -\infty & \text { if } \max (p, q)+1<n \leq p+q\end{cases}
$$

## Particular cases: hypercubes

Only partial results:


## Particular cases: hypercubes

Only partial results:

$$
L_{H_{3}}(n)=\left\{\begin{array}{ll}
2 & \text { if } 2 \leq n \leq 3 \\
3 & \text { if } n=4 \\
-\infty & \text { if } 5 \leq n \leq 8
\end{array} \quad L_{H_{4}}(n)= \begin{cases}2 & \text { if } n \in\{2,3\} \\
3 & \text { if } n \in\{4,6,8\} \\
4 & \text { if } n \in\{5,7,9\} \\
-\infty & \text { if } 10 \leq n \leq 16\end{cases}\right.
$$

Observations:

- The leafed sequence can increase by at most 1 each step.
- The leafed sequence is not always non-decreasing.
- The leafed sequence $L_{G}(n)_{n \in\{2, \ldots,|V|\}}$ is non-decreasing iff $G$ is a tree.


## Complexity

## Problem LIS

- Instance: a graph $G$ and two integers $n, k \geq 1$
- Question: Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?


## Complexity

## Problem LIS

- Instance: a graph $G$ and two integers $n, k \geq 1$
- Question: Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)
The LIS problem is NP-complete.

## Complexity

## Problem LIS

- Instance: a graph $G$ and two integers $n, k \geq 1$
- Question: Is there an induced subtree of $G$ with $n$ vertices and $k$ leaves?

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)
The LIS problem is NP-complete.

Reduction to the problem:

- Instance: a graph $G$ and an integer $n \geq 1$
- Question: Is there an induced subtree of $G$ with more than $n$ vertices?
which is NP-complet. [Erdös, Saks, Sós 1986]


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $G$ has an induced subtree with $>n$ vertices


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $G$ has an induced subtree with $>n$ vertices
$\Rightarrow \exists T$ induced subtree with $n+1$ vertices $\left\{v_{1}, \ldots, v_{n+1}\right\}$


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $G$ has an induced subtree with $>n$ vertices
$\Rightarrow \exists T$ induced subtree with $n+1$ vertices $\left\{v_{1}, \ldots, v_{n+1}\right\}$
$\Rightarrow H$ has a subtree induced by $\left\{v_{1}, \ldots, v_{n+1}\right\} \cup\left\{v_{1}^{\prime}, \ldots, v_{n+1}^{\prime}\right\}$


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $G$ has an induced subtree with $>n$ vertices
$\Rightarrow \exists T$ induced subtree with $n+1$ vertices $\left\{v_{1}, \ldots, v_{n+1}\right\}$
$\Rightarrow H$ has a subtree induced by $\left\{v_{1}, \ldots, v_{n+1}\right\} \cup\left\{v_{1}^{\prime}, \ldots, v_{n+1}^{\prime}\right\}$ with $2(n+1)$ vertices and $n+1$ leaves


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $H$ has an induced subtree $T$ with $2(n+1)$ vertices and $n+1$ leaves


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $H$ has an induced subtree $T$ with $2(n+1)$ vertices and $n+1$ leaves
$\Rightarrow T$ has $\geq n+1$ vertices in $V$


## LIS is NP-complete

- Polynomial transformation $f:(G, n) \mapsto(H, 2(n+1), n+1)$


G


- If $H$ has an induced subtree $T$ with $2(n+1)$ vertices and $n+1$ leaves
$\Rightarrow T$ has $\geq n+1$ vertices in $V$
$\Rightarrow G$ has an induced subtree with $>n$ vertices


## What about trees?

Theorem (Blondin Massé, de Carufel, Goupil, V. 2017)
For a tree $T$ with $m$ vertices, the leafed sequence $L_{T}(n)$ is computed in polynomial time and space.

Algorithm based on the dynamic programming paradigm

## Idea of the algorithm



## Idea of the algorithm

For a directed tree $\widehat{T_{u}}$ rooted in $u$

- $f\left(\widehat{T_{u}}\right)=\#\left\{x \in \widehat{T_{u}} \mid \operatorname{deg}^{+}(x)=0\right\}$
- $L_{\widehat{T_{u}}}(n)=\max \left\{f\left(\widehat{T_{u}^{\prime}}\right): \widehat{T_{u}^{\prime}} \subseteq \widehat{T_{u}},\left|\widehat{T_{u}^{\prime}}\right|=n\right\}$
- Generalization to a directed forest $\widehat{F}$ with $k$ connected components $\widehat{F}_{i}$ :

$$
L_{\widehat{F}}(n)=\max \left\{\sum_{i=1}^{k} L_{\widehat{F}_{i}}(\lambda(i)) \mid \lambda \in C(n, k)\right\}
$$

- If $\widehat{F}$ is the forest of the subtrees rooted in the children of $u$,

$$
L_{\widehat{T_{u}}}(n)= \begin{cases}n & \text { if } n=0,1 \\ L_{\widehat{F}}(n-1) & \text { otherwise }\end{cases}
$$

## Idea of the algorithm



## Idea of the algorithm

Assuming $L_{\widehat{F}_{i}}$ are known,

- Naive computation of $L_{\hat{F}}$ via

$$
L_{\widehat{F}}(n)=\max \left\{\sum_{i=1}^{k} L_{\widehat{F}_{i}}(\lambda(i)) \mid \lambda \in C(n, k)\right\}
$$

is not polynomial

## Idea of the algorithm

Assuming $L_{\widehat{F}_{i}}$ are known,

- Naive computation of $L_{\widehat{F}}$ via

$$
L_{\widehat{F}}(n)=\max \left\{\sum_{i=1}^{k} L_{\widehat{F}_{i}}(\lambda(i)) \mid \lambda \in C(n, k)\right\}
$$

is not polynomial

- Computation of $L_{\widehat{F}}$ via

$$
L_{\widehat{F}}(n)=\max \left\{L_{\widehat{F-F_{1}}}(i)+L_{\widehat{F}_{1}}(n-i) \mid 0 \leq i \leq n\right\}
$$

in time $\Theta\left(k|F|^{2}\right)$

## Idea of the algorithm



## Idea of the algorithm

- Maximal number of leaves in the subtrees with $n$ vertices, containing the edge $\{u, v\}$ :

$$
L_{\{u, v\}}(n)=\max \left\{L_{\widehat{T_{u}}}(i)+L_{\widehat{T_{v}}}(n-i) \mid 1 \leq i \leq n-1\right\}
$$



$$
L_{\{u, v\}}=012234456677889
$$

## Idea of the algorithm

- Maximal number of leaves in the subtrees with $n$ vertices, containing the edge $\{u, v\}$ :

$$
L_{\{u, v\}}(n)=\max \left\{L_{\widehat{T_{u}}}(i)+L_{\widehat{T_{v}}}(n-i) \mid 1 \leq i \leq n-1\right\}
$$



$$
L_{\{u, v\}}=012234456677889
$$

- $L_{T}(n)=\max \left\{L_{\{u, v\}}(n) \mid\{u, v\} \in E\right\}$


## Could we improve the time and space complexity?

- We can not hope to obtain a procedure computing $L_{T}(n)$ which deletes leaves successively.
- Counter-example :


$$
L_{T}(7)=5 \quad \text { et } L_{T}(9)=6
$$

## From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L=\left(L_{i}\right)_{i \geq 2}$.
- For any graph, $L_{i+1}-L_{i} \leq 1$.

The difference word $\Delta L:=\left(L_{i+1}-L_{i}\right)_{i \geq 3}$ is a binary word.

## From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L=\left(L_{i}\right)_{i \geq 2}$.
- For any graph, $L_{i+1}-L_{i} \leq 1$.

The difference word $\Delta L:=\left(L_{i+1}-L_{i}\right)_{i \geq 3}$ is a binary word.


- Leafed sequence: $L=223445567789$
- Difference word: $\Delta L=01101011011$


## From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L=\left(L_{i}\right)_{i \geq 2}$.
- For any graph, $L_{i+1}-L_{i} \leq 1$.

The difference word $\Delta L:=\left(L_{i+1}-L_{i}\right)_{i \geq 3}$ is a binary word.


- Leafed sequence: $L=223445567789$
- Difference word: $\Delta L=1101011011$


## From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L=\left(L_{i}\right)_{i \geq 2}$.
- For any graph, $L_{i+1}-L_{i} \leq 1$.

The difference word $\Delta L:=\left(L_{i+1}-L_{i}\right)_{i \geq 3}$ is a binary word.


- Leafed sequence: $L=223445567789$
- Difference word: $\Delta L=1101011011$

The language of a class of graphs is the set of all their difference words.

## From graph theory to combinatorics on words

- Each tree has a non-decreasing leaf sequence $L=\left(L_{i}\right)_{i \geq 2}$.
- For any graph, $L_{i+1}-L_{i} \leq 1$.

The difference word $\Delta L:=\left(L_{i+1}-L_{i}\right)_{i \geq 3}$ is a binary word.


- Leafed sequence: $L=223445567789$
- Difference word: $\Delta L=1101011011$

The language of a class of graphs is the set of all their difference words.
Language of Trees =???

## Caterpillars

## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?

## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?
Language of caterpillars $\subsetneq$ Language of trees

## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?
Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars


## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?
Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words


## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?
Language of caterpillars $\subsetneq$ Language of trees

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon, 0,1,00,10,11,0000,1000,1001,1010,1100,1101, \ldots$


## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?

$$
\text { Language of caterpillars } \subsetneq \text { Language of trees }
$$

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon, 0,1,00,10,11,0000,1000,1001,1010,1100,1101, \ldots$
- Count them by length

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 5 | 8 | 14 | 23 | 41 | 70 | 125 |

## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?

$$
\text { Language of caterpillars } \subsetneq \text { Language of trees }
$$

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon, 0,1,00,10,11,0000,1000,1001,1010,1100,1101, \ldots$
- Count them by length

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 5 | 8 | 14 | 23 | 41 | 70 | 125 |

- Check OEIS


## Caterpillars



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

What is the language of caterpillars ?

$$
\text { Language of caterpillars } \subsetneq \text { Language of trees }
$$

- Enumerate caterpillars
- Get their associated difference words
- $\varepsilon, 0,1,00,10,11,0000,1000,1001,1010,1100,1101, \ldots$
- Count them by length

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 5 | 8 | 14 | 23 | 41 | 70 | 125 |

- Check OEIS It is A194850!


## Prefix normal word

A prefix normal word $w_{1} \cdots w_{n}$ is a binary word such that $\forall \ell \leq n, i \leq n-\ell$,

$$
\left|w_{1} \cdots w_{\ell}\right|_{1} \geq\left|w_{i} \cdots w_{i+\ell}\right|_{1} .
$$


$L=223455667778$ and $\Delta L=1110101001$

## Prefix normal word

A prefix normal word $w_{1} \cdots w_{n}$ is a binary word such that $\forall \ell \leq n, i \leq n-\ell$,

$$
\left|w_{1} \cdots w_{\ell}\right|_{1} \geq\left|w_{i} \cdots w_{i+\ell}\right|_{1} .
$$



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

Conjecture:
Language of Caterpillars $=\{$ prefix normal words $\}$

## Prefix normal word

A prefix normal word $w_{1} \cdots w_{n}$ is a binary word such that $\forall \ell \leq n, i \leq n-\ell$,

$$
\left|w_{1} \cdots w_{\ell}\right|_{1} \geq\left|w_{i} \cdots w_{i+\ell}\right|_{1} .
$$



$$
L=223455667778 \text { and } \Delta L=1110101001
$$

Conjecture:
Language of Caterpillars $=\{$ prefix normal words $\}$

Proposition (Blondin Massé, de Carufel, Goupil, Lapointe, V.)
Language of Caterpillars $\supseteq$ \{prefix normal words $\}$

Perspectives

## Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph


## Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph
- Find an application in Chemistry or Biology


## Perspectives

- Determine when an integer sequence corresponds to a tree or to a graph
- Find an application in Chemistry or Biology
- Extend the results obtained in $\mathbb{Z}^{2}$ to the infinite triangular grid (polyiamonds) and to the infinite hexagonal grid (polyhexes)

$$
\begin{aligned}
& \text { ) }
\end{aligned}
$$

