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ABSTRACT 

An experimental determination of effective modal masses 

of a mechanical structure is proposed using environmental 

vibration tests on an electro-dynamic shaker. The method 

is based on the identification of electro-mechanical param­

eters of the electro-dynamic model of the shaker. An ex­
perimental example is presented to illustrate the proposed 

procedure. 
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(rAj k) modal residues 

(rAjk) complex conjugate of modal residues 

magnetic flux density 

damping coefficient associated to the shaker 
symmetric and non negative damping matrix 

unit amplitude vector in x-direction 
Fourier transform of force 

diagonal transfer matrix 

diagonal element of transfer matrix 

individual FRF element 

transfer function 

current intensity 
Fourier transform of current 

identity matrix 

stiffness associated to the shaker 
modal stiffness of rth mode 

modal stiffness matrix 

symmetric and non negative stiffness matrix 

coil length 
circuit electrical inductance 
number of included modes in the direction of 

the excitation 

mass of the test object 

moving mass of the shaker table 
modal mass of rth mode 
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effective modal mass of rth mode 

modal ma.ss matrix 

mass associated to the support 

total structural mass 
symmetric and non negative mass matrix 

effective modal mass matrix 
condensed mass matrix 

dynamic mass matrix 
Fourier transform of dynamic mass matrix 

number of unrestrained DO Fs 
number of restrained DOFs 

vector of generalized forces 

vector of generalized displacements 

current mode number 
vector of reaction forces 

circuit electrical resistance 

Fourier transform of reaction forces 

matrix of constrained modes matrix 

vector of rigid body displacements 

voltage 

Fourier transform of voltage 

displacement 

Fourier transform of displacement 

Fourier transform of relative displacement 

vector of displacements 

modal participation matrix 

viscous damping ratio of rth mode 

viscous damping ratio matrix 

vector of modal coordinates 

Fourier transform of { 11} 
eigenvalue (complex conjugate) of rth mode 

acceleration law 

mode shape matrix 

mode shape matrix of the restrained structure 

natural frequency of rth mode 

frequency 



I. INTRODUCTION 

The effective modal mass concept is very helpful for the dy­

namic analysis of structures submitted to base excitation. 

It has been first used in aerospace engineering to character­

ize the dynamic behavior of satellites or flight equipments. 

As vibration testing is now widely used in other areas such 

as mechanical, electrical and nuclear industries, the effec­

tive mass concept is more and more applied. 

Environmental vibration testing on an electro-dynamic sha­

ker is used to perform qualification and acceptance tests of 

equipments. It also allows to identify the modal parameters 
of the structure (eigenvalues and mode shapes) using some 

adaptation of classical modal identification methods. The 

advantage of environmental vibration testing compared to 

other excitation techniques is the possibility to exactly re­

produce the vibration levels encountered in service. 

Effective modal masses can be computed easily from the 

structural model of the equipment using for example the fi­
nite element method, but are rather difficult to be deduced 

from vibration tests on an electro-dynamic shaker. The ex­

perimental determination of the effective masses requires 

to measure the reaction forces between the test object and 

the work-table of the shaker and can be very difficult in 

practice. Once the electro-mechanical model of the shaker 
has been clearly identified, the reaction forces can be deter­

mined if the drive voltage fed to the shaker and the control 

acceleration of the work-table are known. Thus, the dy­

namic mass and the effective modal masses of the structure 

can be calculated. 

2. STRUCTURES EXCITED THROUGH 

GLOBAL SUPPORT MOTION 

2.1. Dynamic equilibrium equations 

The dynamic response of a structure submitted to envi­

ronmental vibration testing (figure I) may be split into a 

global acceleration induced by the shaker table and associ­
ated to the rigid body motion and a vibration of the struc­

ture clamped onto the supports. The general equations of 

motion of a damped structure are of the form : 

[MJ {q} + [CJ {q} + [KJ {q} = {p} (I) 

The response of the system shown in figure 1 to global 

motion of the shaker table can be written by partitioning 

the degrees of freedom in two sets : 

- the n 1 displacements { qd remaining completely free; 
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the n2 displacements { q 2 } imposed at the supports: 

-
Fig. 1: 

••••••••••••••••••• 

' ' ' 
' ' 

Environmental vibration testing 

In the following, we will consider the conservative system 

associated to the <~.ctnal damped system. In terms of abso­

lute displacements, the equations of motion take the form : 

[ 

[M]n [M]I,] 

[Mj, [M]n {{q,}}+ 
{ q,} 

[

[K]n 

[K]21 

[K]I,] { h}} { {0} } 

[K]n {q2 } - {r,} 

The first set of equations extracted from (2) 

[M]n {q,} + [K]11 {q,} =- [K]I, {q2 } 

-[M]I,{q,} 

(2) 

(3) 

allows to compute the response of the unrestrained degrees 

of freedom, while the second one 

{r,J = [Kj, {q,} + [Mj, {iii} 
+ [K],, {q,} + [M]n {ii,} 

(4) 

gives the reactions { rz} between the structure and the 

shaker table. The solution of equation (3) can be decom­

posed in the form : 

{ci.J={{ii
1
}} {{YI}}+{{ui}} ,P(t) (5) 

{ii2 } {0} {u2 } 

In this equation, 
{y 1} represents the sole dynamic part of the re­

sponse, i.e. arising from the vibration of the 

structure on its support, 

{ u}T is the rigid body displacement mode of the sys­

tem {uV = [ {ut} {u,}], 
¢(t) is the acceleration law of the shaker table. 

The rigid body displacement mode satisfies the static equi­

librium equation 

[K] {u} = {0} (6) 



so that the vector of the support displacements { u2} can 

be related to the vector of unrestrained displacements { lil} 
by 

{ul} = [S] {u,} with [S] = -[K]]/ [K]I 2 (7) 

where [S] is defined as the static condensation matrix at 

the shaker table. Through substitution of the solution de­
composition (5) into (3), the equation governing the motion 
of the unrestrained degrees of freedom takes the form : 

[M]n {Yd + [K]u {y1 } = 

-([M]u {ud + [M]I, {u,}) ¢(t) 
(8) 

The expanded mode shape matrix ['II] can be defined as 

[ 

[ili]n 
[iii] = 

[OJ 
[S] ] 

r- LJ 
(9) 

where ['ll]n is the mode shape matrix obtained from the 

solution of the eigenproblem related to the system fixed on 
its support, i.e. 

[K]u { qd = w' [M]n { qd (10) 

and the eigenvector matrix [ [S] [· L ]] is related to the 

rigid body mode of the structure. 

2.2. The effective modal mass concept [1-5] 

The solution of equation (2) can be developed in terms of 
eigenmodes as follows 

{ q} = [iii] { 17} ( 11) 

so that the equations of motion become 

[M] [iii] {i)} + [K] [iii] {17} = {p} (12) 

Premultiplying equation (12) by the transpose of the ex­
panded mode shape matrix ['II ]T and partitioning, one ob­

tains the following normal equation 

[

["mr-] 

[rjT 
[r] ] { {i)d} 

[M]2, { i),} + 

[

["kr.] [OJ] 

[OJ [OJ 
(13) 

in which 

650 

[· mr .] = [iliJE [M]u ['li]n is the modal mass matrix 
of the restrained system. 

[· kr .] = ['li]f1 [K]u ['li]u is the modal stiffness matrix 
of the structure fixed at its support. 

(r] = -['li]f1 ([M] 11 [S] + [M]J 2) ( 14) 

is the modal participation matrix of dimension n1 X n2. 

[M]i, = 

[ [SJT [· L]] [ [M]n [M]n] [ [S] ] (15) 

[Mb [Mhz ['1.] 

is the matrix resulting from the static condensation of the 
mass at support level. 

With the assumption of a lightly damped structure, equa­

tion (13) can be generalized to 

[ 

[" mr .] [r] ] { { ijJ } + 
[r]Y [M];, { i),} 

[
2 [" (r ffir Wr .] [OJ] { {ilJ}} + (!6) 

[OJ [0] { q2 } 

[

[-mr w;.] [OJ] { {171}} = { {O}} 

[OJ [OJ {17
2

} {r,} 

From equation (16), the equation governing the reaction 
forces between the structure and the shaker table can be 
written in the frequency domain as 

{R2 (w)} = -w 2 ([rjT {1J1 (w)} + [M];, {1J2 (w)}) 
( 17) 

and the motion equation of the structure clamped on its 
support can be written in the form 

{1J1 (w)} = -[· H(w).] [r] {1J2 (w)} ( 18) 

where [' H(w),] is a diagonal transfer matrix in which the 

diagonal element of rth mode is defined by 

w' 
Hrr(w) = 2 . 

w 2 - w -2 z ( w w r r r 
( 19) 

Eliminating { 1JJl from equations (18) and (17), it follows 

{R,(w)} = 
-w2 ([M];2- [rt [r] [· mr_]-

1 [· H(w).l) {1J2(w)} 

(20) 
The matrix defined by 

[M] = [rjT [r] [· mr T 1 (21) 

is the effective modal mass matrix. 



Owing to equation (14), one obtains 

[r]T [r] [' mrT1 = [M];,- [Mb 

+ [Mlf2 [M][,' [M],2 
(22) 

In many cases the term [M]n may be neglected (it is 
strictly zero if the mass matrix is diagonal) and thus the 
term [M]f2 [M] 1} [M] 12 is of second order and is no longer 
involved into equation (22), i.e. 

(23) 

The concept of effective modal masses is very useful to se­
lect the system eigenmodes which have dominant partici­

pation to the support motion response. 

2.3. The dynamic mass concept 

The dynamic mass matrix is defined as the transfer func­
tion between the reaction force applied by the table on the 

structure and the table acceleration, i.e. 

{r,} = [Mv] {ii2 } (24) 

or, in the frequency domain 

{R,(w)} = -w 2 [Mv(w)] {172(w)} (25) 

From equations (20) and (25), it can be deduced that the 
dynamic mass matrix is related to the effective modal mass 
matrix through the relation 

[Mv(w)] = [MJ22 - [M] [' H(w),] (26) 

3. ENVIRONMENTAL TESTING 

3.1. Description of the test facility 

The main vibration test facility installed at the University 
of Liege is a LING ELECTRONICS shaker of 7350 daN 
peak sine force. The shaker is coupled to a KIMBALL slip 
table mounted on horizontal hydrostatic bearing line. It 

allows random, sine and shock excitations in the frequency 
range of 5 Hz to 3000Hz. The data acquisition is done using 
a HP 9000 workstation and a DAC-ADC HP3565-S with 
up to 24 channels. The control and modal identification 

software used is GADA-X from LMS International. 

3.2. Electro-dynamic model of the shaker 

The electro-dynamic shaker can be modeled as the lumped­
parameter electro-mechanical system shown in figure 2. It 
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consists of a work-table constrained to move in the x­
direction in a magnetic field. The table, where the test 
object is mounted, is supported by an equivalent spring 
and damper system. The exciting signal is provided to the 
drive coil by the inductive electrical circuit shown in ftg­

ure 2. Applying Kirchhoff's voltage law to the drive coil 

electrical loop, we obtain : 

d" 
v=Ri+Ld;+B£x 

The mechanical equation of motion of the system is : 

(m, + m,) x + c, x + k, x = B£ i 

v~ i 
X 

~ m, cgField 
oocail 

k, c, 

Fig. 2: Electro-dynamic model of the shaker 

(27) 

(28) 

In the frequency domain, equations (27) and (28) become 

respectively 

V(w) = R I(w) + i w L I(w) 

+ i w B£ X(w) 

-(m, + m,) w2 X(w) + i w c, X(w) 

+ k, X(w) = B£ I(w) 

(29) 

(30) 

The transfer function between the acceleration at the shaker 
table and the voltage is defined as 

H ( ) 
= w2 X(w) 

v w V(w) ( 31) 

The acceleration at the table and the voltage were mea­
sured simultaneously in the whole frequency range during 
a sine-sweep vibration test without any payload. The iden­

tification of the electro-mechanical parameters of the shaker 
from the measured transfer function (31) gave the following 

results : 

m, 161 kg 
k, 125 488 N/m 
c, 10 925 Nx s/m 

(32) 
B£ 38.19 Wbx m /m2 

L 8.115 to- 6 H 
R = 0.028 !1 



4. MODAL IDENTIFICATION USING ENVIRON. 

MENTAL VIBRATION 

For the purpose of modal identification of parameters, the 

frequency response function (FRF) of the structure at coor­
dinate j due to excitation at coordinate k is usually written 

in the general form : 

X(w) 
Hjk(w) = F(w) 

_ ~ rAjk rAjk 
-L_.· ,+. " 

r:::llW-Ar ZW-Ar 

(33) 

Thus identification can be performed using classical meth­

ods such as the least squares complex exponential method 

(L.S.C.E.), .. [6]. 

When environmental vibration testing is being performed 

on a shaker table, the base of the structure is submitted to 

a rigid body displacement of amplitude x in the direction 

of the excitation {ex}, i.e. 

(34) 

where 

(38) 

is the total structural mass associated to the rigid body 

displacement, 

is the mass associated to the support. 

It is worthwhile noticing that 

m;- mz = {e,}T [MJ {e,} 

= {ex}T [rf [r][· m,,r' {ex} 

=f({r},{ex})' =fm, 
r:::l mr r:::l 

(39) 

( 40) 

In this equation, each term of the sum represents the ef­

fective mass of the corresponding mode. It is important to 

note that the effective modal mass concept is related to a 
given direction of motion. In equation (40), the summa­

tion is expanded to the number of modes defined in the 

dir~ction of the excitation. For purpose of modal parame­

ter identification, equation (37) may also be written in the 

In order to perform identification with measurement data form 
collected during an environmental vibration test, the FRF 

has to be written in the following form : 

, Z(w) 
Hjk(w) = X(w) 

m A' ="' c jk 
L-iw-A 
r=:l r 

A
,. 

r jk 

+. " l W- /'\r 

(35) 

where Z(w) represents the relative displacement of the test 

structure. 

5. THE EXPERIMENTAL DETERMINATION OF 

THE DYNAMIC MASS [5] 

From equations (20) and (23), the reaction forces can be 
written in the form 

{R,(w)} = -w 2 ([Mb+[M]-[M] [- H(w) .]) {1/2 (w)} 

(36) 
By projection of equation (26) in the direction of the exci­

tation (ox), it follows 

MD,x(w) = {e,}T [MD(w)] {ex} 

(w, -w'f: -w~ i (, w wJ 

m 

( 1 - w2 - w'f: _"'~ i (, w w,) 

(37) 
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m rA'.k rA'·k 
MD,x(w) = m, +I: . 1 

A + . 1 
A• 

r:::l Z W - r 1 W - r 
( 41) 

with 
Ar :::: -(r Wr + i Wr v'l - c; 

A' _ (( . 2 (
2 

- I ) 
r jk :::: ffir Wr r + l ~ 

2 v 1- ('/: 

( 42) 

and the effective modal mass of rth mode is related to the 

modal parameters by the relation 

(43) 

Refering to figure 3, the reaction force applied from the 

table on the structure in the direction of the excitation is 
also given by 

r2,x = Bi i- (m$ + mt) X- c$ X- k$ x 

or, in the frequency domain, 

Rz,x(w) = BC I(w) + w 2 (m, + m1) X(w) 

- i w c, X(w)- k, X(w) 

Using equations (25) and (29), it follows 

Rz,x(w) = -w 2 MD,x(w) X(w) 

=BC (V(w)-iwBfX(w))+ 
R+z w L 

(44) 

( 45) 

w 2 (m, + mt) X(w)- i w c, X(w)- k, X(w) 
(46) 



Equation ( 46) allows to determine the frequency evolution 

of the dynamic mass by measuring simultaneously the volt­

age and the table acceleration. Thus the effective modal 

masses for each identified mode in the direction of the ex­

citation can be found from equation ( 43) after performing a 

modal parameter extraction on the basis of equation ( 41 ). 

Fig. 3: Environmental vibration testing 

6. PRACTICAL APPLICATION EXAMPLE 

The procedure described in the previous section was ap­

plied to the three-dimensional beam-like structure shown 
in figure 4. The structure was tested using a sine-sweep 

vibration in the frequency range from 5 Hz to 500 Hz. The 

experimental dynamic masses deduced from equation ( 46) 

using the measured voltage and table acceleration are plot­

ted in figure 5 for each test direction. The experimental 

and theoretical frequencies of the structure are listed in ta­

ble 1 along with the corresponding damping coefficients. 

Tables 2 to 4 give the effective modal masses associated to 

each identified mode in the direction of the excitation (ox, 

oy and at an angle of 45° respectively). The experimental 

effective modal masses were found to be in good agreement 

with the theoretical effective modal masses obtained by a 

theoretical computation using the finite element program 

Samcef (7]. 
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X 

y 

Fig. 4: Three-dimensional beam-like structure 

Fig. 5: Experimental dynamic mass 



Table 1 : identified modal parameters 

Mode Theoretical Measured Damping 

n' frequencies frequencies coefficients 

(Hz) (Hz) (%) 

1 74.1 77.5 0.45 

2 128.8 77.5 0.45 

3 140.0 139.2 0.61 

4 159.9 159.0 0.27 

5 182.2 186.3 0.28 

6 195.5 209.4 0.23 

7 227.6 244.5 0.59 

8 240.2 258.7 0.79 

9 277.3 296.6 0.23 

10 306.4 332.0 0.22 

Table 2: Effective modal masses in x-direction 

Mode Theoretical (f.e.m.) Experimental 

n' mass (kg) mass (kg) 

I 1.54 (42.6 %) 1.65 (46.1 %) 

4 1.63 (46.0 %) 1.46 (40.8 %) 

10 0.15 (4.2 %) 0.15 (4.2 %) 

Total 3.32 (92.8 %) 3.26 (91.1 %) 

Table 3 : Effective modal masses in y-direction 

Mode Theoretical (f.e.m.) Experimental 

n' mass (kg) mass (kg) 

2 3.32 (92.8 %) 3.33 (93.1 %) 

Table 4 : Effective modal masses in 45° -direction 

Mode Theoretical (f.e.m.) Experimental 

n' mass (kg) mass (kg) 

1 0. 77 (21.5 %) 0. 79 (22.1 %) 

2 1.62 (45.3 %) 1.54 (43.0 %) 

4 0.86 (24.0 %) 0.81 (24.6 %) 

10 0.07 ( 2.0 %) 0.08 ( 2 2 %) 

Total 3.32 (92.8 %) 3.22 (91.9 %) 
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7. CONCLUSION 

An experimental determination of the effective modal mas­
ses of a structure submitted to a sine-sweep vibration on 
an electro-dynamic shaker was presented. The procedure is 
based on the identification of the electro-dynamic parame­
ters of the shaker and the measurement of the voltage fed 
to the drive coil of the exciter. As the proposed method 
does not require sophisticated instrumentation, it appears 
to be very helpful either to verify theoretical results or to 
be used for mechanical structures for which finite element 
modelisation is not available or cannot be economically jus­
tified. 
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