Canopy aerodynamic distance (z-d) estimation and impact on eddy covariance measurements

Hurdebise Q., De Ligne A., Vincke C., Heinesch B., Aubinet M.
• Objectives:
 – Is turbulent transport impacted by canopy aerodynamic distance \((z - d)\) variability in the roughness sublayer?
 – How to estimate canopy aerodynamic distance?
• The Vielsalm Terrestrial Observatory (VTO)

- Increased heterogeneity at FLUXNET stations might be a more general problem for trend analysis of long-term data sets.
- Babel, 2016
• The Vielsalm Terrestrial Observatory (VTO)
• The Vielsalm Terrestrial Observatory (VTO)
Aerodynamic measurement height estimation based on cospectra:

- Observed mean cospectrum
- Theoretical cospectrum

Poster A29, 17:30–19:00, Hall A
• Canopy aerodynamic distance ($z-d$):
 – Validation by confronting the results to:
 • the expected changes in d (as canopy height was variable)
 • the observed changes in z (as the measurement height was changed)
Correlation coefficients:

- Correlation coefficients may be referred to as normalized covariances or transport efficiencies as they indicate how much \(w \) is related to \(u \), \(T \) and \(c \).
- Repeatable measurements require constant correlation coefficient during all the measurement period.

\[
\begin{align*}
r_{uw} &= \frac{u'w'}{\sigma_u \sigma_w} ; \\
r_{wT} &= \frac{w'T'}{\sigma_w \sigma_T} ; \\
r_{wc} &= \frac{w'c'}{\sigma_w \sigma_c}
\end{align*}
\]

- \(r_{uw} \) (neutral conditions): pronounced temporal dynamics
- \(r_{wc} \) and \(r_{wT} \) (unstable conditions): no temporal dynamics.
- \(r_{uw}, r_{wc} \) and \(r_{wT} \): pronounced spatial variability (\(r_{uw} > r_{wT} > r_{wc} \)).
• Canopy aerodynamic distance and correlation coefficients:

- Momentum correlation coefficient \(r_{uw} \) is strongly linked to \(z-d \).
 → Characteristic of the roughness sublayer.
- Heat and CO\(_2\) correlation coefficients \(r_{uw}, r_{wc}, r_{wT} \) independent of \(z-d \).
 → More homogeneous sources-sinks distribution.
- Difference between azimuthal direction sectors in \(r_{wc} \) and \(r_{wT} \) (more pronounced).
 → Not related to \(z-d \) variability.
• Why is there a difference between NE and W for r_{wT} and r_{wc}?
 – Tree height transition between high Douglas firs and beeches?
• Why is it more pronounced for r_{wT} than for r_{wc}?
 – Horizontal/vertical heterogeneity in sources/sinks distribution?
 – Large turbulence structures?
 – Occurrence of cloud passages?
 – Active role of temperature?
• **Canopy aerodynamic distance (z-d) estimation:**
 - Original z-d estimation method based on single point eddy covariance measurements with a relatively high temporal and spatial resolution.
 - z-d temporal dynamics and spatial variability fairly well reproduced.

• **Relation to turbulence statistics**
 - r_{uw} directly related to z-d \rightarrow roughness sublayer.
 - r_{wc} and r_{wT} not related to z-d even in the roughness sublayer
 - Other parameters need to be considered in order to explain the observed spatial variability.

• **Next step**
 - Consider the fluxes themselves by considering footprint issues.
Thank you for your attention
More information?

- quentin.hurdebie@ulg.ac.be
- Poster session (A29, 17h30, Hall A)
- Paper submitted (AFM)