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Fire safety: a major issue
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The Great Fire of London in 1666 (unknown artist, c. 1700)
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Fire safety: a major issue
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L’Innovation Fire, Brussels, 1967 World Trade Center attacks, NYC, 2001
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Fire safety: a major issue

 First and foremost: life safety

 But also: property protection, infrastructure protection

 Total cost of fire: ≈ 1% of GDP in developed countries1

- Cost of direct fire losses (casualties, property losses, etc.)

- Cost of indirect fire losses (rehousing, business interruption, etc.)

- Cost of fire fighting organizations

- Cost of fire protection to buildings 

- Cost of fire insurance administration
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1Geneva Association World Fire Statistics Centre (WFSC)

T. Gernay, 2017



Fire Safety Engineering: a multidisciplinary field

Structural fire engineering is a key component

Design the structures for adequate response under fire

→ compartmentation and structural stability
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To achieve the goal in Fire Safety Engineering, it requires implementation         

of multiple objectives based on various disciplines

↘ proba of ignition ↘ proba of fire spread allow safe evacuation

T. Gernay, 2017



Prescriptive vs Performance-Based approach
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Prescribes methods to build vs Prescribes a result (performance)

→ Simplicity vs → Flexibility

PRESCRIPTIVE
following codes and standards

PERFORMANCE-BASED
based on the physics of the problem

DESIGN APPROACH
For a structure against fire hazard

PBD: opportunity for more efficient, economic and elegant design solutions, 

but requires a more advanced understanding of the physics of the problem

T. Gernay, 2017



Performance-Based: Why it matters? What can we gain?
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 Realistic fire scenarios
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Performance-Based: Why it matters? What can we gain?
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 Realistic fire scenarios

 Robustness and whole building behavior

Cardington fire test, UK, 1997

T. Gernay, 2017



Performance-Based: Why it matters? What can we gain?
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 Realistic fire scenarios

 Robustness and whole building behavior

 Consideration of specific risk associated with the building

Input variable

𝑔 𝐷𝑉 =    𝑝 𝐷𝑉|𝐷𝑀 𝑝 𝐷𝑀|𝐸𝐷𝑃 𝑝 𝐸𝐷𝑃|𝐼𝑀 𝑔 𝐼𝑀 𝑑𝐷𝑀 𝑑𝐸𝐷𝑃 𝑑𝐼𝑀

T. Gernay, 2017



Performance-Based: Why it matters? What can we gain?

10

 Realistic fire scenarios

 Robustness and whole building behavior

 Consideration of specific risk associated with the building

 Cost effective fire resistance designs

The Shard, London

T. Gernay, 2017
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Research goal: Develop Performance-Based design in SFE  

 Comprehend the behavior of building materials and structures in fire

 Propose models to accurately capture this behavior

 Develop numerical tools for structural fire engineering analysis

11
T. Gernay, 2017



Example of research project: How to model concrete in fire?
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Challenges

numerically robust applicable to large structuresmaterial behavior 
+ at elevated temperature

Need

 Concrete is one of the most used materials

 Its behavior is affected by fire

 There was no satisfying model available for concrete at elevated temperature

T. Gernay, 2017



A model for concrete in fire: Theory
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Plasticity Damage Plastic-damage

Modeling

 Traditional plasticity approach

 Damage proposed at ambient temperature

 Actually concrete exhibits a combination of both

T. Gernay, 2017



A model for concrete in fire: Theory
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 Can handle the shift from one to the other

 Essential because of thermal stresses
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A model for concrete in fire: Theory
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Effects of temperature on stress-strain relationships

Compression Tension
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A model for concrete in fire: Implementation
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To achieve the greatest impact in practice and be useful to the community:

 The model is implemented in a Finite Element software

 SAFIR®: non linear FE software for modeling structures in fire

 Widely available to the SFE community (+200 licensees)

 Compatibility is ensured with the different types of FE:

 Model formulated in fully triaxial stress (SOLID FE)

 Algorithm for solving in plane stress (SHELL FE)

 Also a uniaxial formulation (BEAM FE)

X Y

Z

Diamond 2009.a.5 for SAFIR
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A model for concrete in fire: Validation
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At the material scale
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A model for concrete in fire: Validation
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At the structural scale

Reinforced concrete slab in fire

 Slab 4.30m x 3.30m

 Applied load 3.0 kN/m²

 ISO fire during 180 minutes

from Lim et al., Eng. Struct. (2004)

T. Gernay, 2017



A model for concrete in fire: Validation
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At the structural scale

Reinforced concrete slab in fire: Thermal model
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A model for concrete in fire: Validation
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At the structural scale

Reinforced concrete slab in fire: Mechanical model
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Diamond 2011.a.2 for SAFIR
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• Compartment 15m x 9m

• Composite structure with cellular steel beams

• Two central steel beams are unprotected

• Mechanical load: 3.25 kN/m²

• Fire load: 700 MJ/m² (wood cribs) 
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European project to investigate tensile membrane action 

A model for concrete in fire: Simulation of a large-scale fire test

T. Gernay, 2017
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A model for concrete in fire: Simulation of a large-scale fire test

T. Gernay, 2017
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A model for concrete in fire: Simulation of a large-scale fire test

T. Gernay, 2017



1. Fire model to get the gas temperature evolution in the compartment

2. Thermal analysis of the sections of the structural components

3. Structural analysis of the composite floor and beams system
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Diamond 2011.a.2 for SAFIR
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A model for concrete in fire: Simulation of a large-scale fire test
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A model for concrete in fire: Simulation of a large-scale fire test
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A model for concrete in fire: Implications for the field

Example: composite building design taking advantage of tensile membrane action

26

Protect all elements individually

Performance-based design

40-55% of steel beams can be left unprotected

Prescriptive design

The target performance (stability) can be achieved with the PBD

→ significant cost reduction

→ but to demonstrate it, advanced analysis tools are needed

T. Gernay, 2017



Conclusion
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Performance based design in Structural Fire Engineering

 Challenge: not a simple recipe… but a physically-based, specific solution

 Opportunities: flexibility, efficiency and cost reduction for safe design

 To understand the physics: models and numerical methods are crucial

New concrete model

 For multiaxial stress states and elevated temperature

 Successfully applied in a large range of applications

Impact

 Better understanding of the behavior of materials and structures

 Enables advanced analyses of structures in fire for innovative solutions

 Implemented in SAFIR® thus available to the SFE community

T. Gernay, 2017
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