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Status of the Brueckner-Hartree-Fock approximation to the nuclear matter binding energy
with the Paris potential
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A new calculation of the binding energy of nuclear matter in the Brueckner-Hartree-Fock approximation
with the Paris potential using the standard and continuous choices of single particle energies is presented,
paying special attention to the numerical accuracy and higher partial waves. Comparison with other calcula-
tions is made and the accuracy of the state of the art for the Brueckner-Hartree-Fock method is assessed.
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with e(k) = k /2m+ U(k), and the single particle potential

U(k) =Re g (kk'lG[e(k)+e(k')]lkk') . (2)
I'&uF

The binding energy per nucleon is given by

k 1
+ —U(k) (3)

It is generally considered that the Brueckner-Hartree-Fock
(BHF) method [1,2] gives a good estimate of the binding
energy of infinite nuclear matter, although there is no really
precise evaluation of higher order terms in the Bethe-
Goldstone expansion. Moreover, even for a given nucleon-
nucleon potential, the various results found in the literature
may appear scattered. For instance, for the Paris potential
[3],which is one of the most microscopically founded poten-
tials, the published results for the BHF method differ, around
normal nuclear matter density, by more than a few MeV
[4—11], as pointed out in [ll] and [12]. In particular the
results of [4] and [6) are in serious disagreement with each
other and the rest of the calculations.

Besides the choice between the so-called continuous and

gap prescriptions for the intermediate states, these differ-
ences basically arise from the numerical methods, e.g. , dis-
cretization in r space or in p space, number of partial waves,
integration grids, and iteration procedure. One has also to
consider that sometimes separable versions of the Paris po-
tential [13,14] are used. We believe it is the right time to
reanalyze the situation, to improve it by a new detailed cal-
culation, and to assess the accuracy that can be achieved
nowadays in the BHF calculations.

Let us quickly recall the definition of the BHF method.
The 6 matrix corresponding to the NN potential U is given
by

These equations (to be solved self-consistently) define the
BHF scheme with the continuous choice of the single par-
ticle energies. For the gap (or standard) choice, U(k) is set to
zero for k) kF . The continuous choice is expected to yield a
faster convergence of the Bethe-Goldstone expansion [2].
There is an intermediate choice, adopted in Ref. [7], which
consists in introducing Eq. (2) up to k=kM (larger than

kF) and in neglecting the potential energy beyond this value.
The G matrix can also be obtained from the correlated wave
function, which fulfills an integral equation, similar to Eq.
(1), but in r space [2]. In all the calculations we discuss here
an angle-averaged form of the Pauli operator Q in Eq. (1) is
used and can thus be considered as part of the definition of
the BHF scheme (see, however, Ref. [15]).

In this present work, we recalculate the binding energy
per nucleon of nuclear matter, with the Paris potential and
with the standard and the continuous choices, including par-
tial waves beyond 8=4 (listed in Table I). The method is the
discretization of the correlated wave functions in r space. We

pay particular attention to the following points:
(1) In contradistinction with previous works [2,6], we

abandon the effective mass approximation in the calculation
of the Green function appearing in Eq. (1), keeping the true
spectrum.

(2) We use a much finer grid (compared to [6]) for the
integration on the intermediate states. In fact, we use an ad-
aptative subroutine guaranteeing a relative accuracy better
than 1%.

(3) We use the calculated single particle spectrum as the
input to the next iteration, and no longer a smooth interpo-
lation of it. Contrary to what is sometimes stated [2], we did
not observe any instability in the kF range investigated here
and the so-called wiggle (enhancement of the effective mass
near kF) is present at every iteration step, converging quite
well.

Our present results differ from those of Ref. [6], espe-
cially for kF larger than 1.4 fm . Apparently, this differ-
ence comes mainly from point (2) above: The number of
mesh points and the mesh itself for the integration on the
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TABLE I. Partial wave contributions to the binding energy per nucleon (MeV). HPW denotes estimates of contributions of higher partial
waves.

Standard BHF (kF = 1.40) Continuous BHF (kF = 1.36)

Ref.

1S

S)
3D

'Po
3p
1 p ].

3p

3F
1D

D

Sum

D3

G3
1F
3F

F4
H4

1G

3G

Gq

I5
'H~

H5
1I

I6
HPW

BlA

[7]

—16.97
—17.99

1.69

11.96
4.87

—8.14
—0.69
—3.21
—4.65

—36.28

0.13

0.25

0.79
1.84

—0.51
—0.11
—0.56
—0.87

0.09
0.04

0.31
—11.2

[5]

—16.98
—17.98

1.69
—3.83

11.69
4.88

—8.14

—3.21
—4.65

—36.53

0.13

0.86
—11.2

Present work

—16.72
—17.98

1.70
—3.97
11.90
4.99

—8.13
—0.68
—3.22
—4.67

—36.10

0.11

0.25

0.95
1.80

—0.51
—0.11
—0.53
—0.84

0.09
0.04

0.23

0.40
—0.13
—0.18

—10.8

[4]

—16.81
—22.44

1.48
—3.61

10.08

4.26
—7.73
—0.61
—2.85
—4.21

—42.44
—0.00

0.22

—19.2

[10,11]'
—16.34
—19.90

b

—3.16

9.92
4.15

—7.84

—2.74
—3.98

—39.89

1.87
—15.0

Present work

—16.13
—20.74

1.48
—3.71
10.34

4.41
—7.59
—0.59
—2.86
—4.23

—39.62

0.02

0.21

0.84

1.58
—0.44
—0.09
—0.46
—0.72

0.07

0.03
0.20

0.34
—0.11
—0.15

—15.3

'Separable Paris potential.
Contained in 5] .

'Contained in P2.
Without F2.

intermediate states in the Green function were misleadingly
chosen in Ref. [6]. We will thus exclude these old results
from our discussion and proceed to the comparison of our
new results with those of Refs. [4,5,7—11].

We start, in Table I, with a detailed comparison of the
partial wave contributions to the binding energy at nuclear
matter density in both the standard and continuous schemes.
The standard scheme is numerically much easier to realize
and we therefore expect a good agreement between our and
two independent, previous calculations [5,7]. This is indeed
confirmed by comparing the values for the various partial
waves for the three calculations, where we find a maximal
variation of about 5%. For the sum of the partial waves up to
D2, the variation is even only about 1% (0.4 MeV).

The situation concerning the continuous choice is worse.
There is only one exactly comparable calculation with the
full Paris potential [4], in which, however, only partial waves
up to 8=2 are consistently taken into account. The total
results are not corrected for higher partial waves and there-

fore unrealistic. Another comparable calculation [10,11] em-
ploys a separable version of the Paris potential [14],' again
only up to 8=2. In this case, however, an empirical correc-
tion for higher partial waves, derived from the standard
choice results of Ref. [7], is applied. Nevertheless, we can
again compare the partial waves up to D2, and find here a
variation of about 8' for the three calculations. This is
mainly due to the contribution of the S& channel in Ref. [4],
which is fairly large and renders the total sum about 3 MeV
larger than for the other two calculations, which agree within
2% on the 8~2 contribution.

With variations of this size and in view of the discrepancy
observed with Refs. [5,7] (see further below), it is fairly
important to estimate the numerical accuracy of our results.
Apart from the number of partial waves that are taken into

'We do not compare with the results of Refs. [8,9], which use an

older version of the separable Paris potential [13].
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account, this is influenced by four discretization procedures
that are necessary for the numerical treatment: (1) the grid in
r space that is used for the numerical diagonalization of the
Bethe-Goldstone equation and for the determination of the
G-matrix elements from the correlated wave functions by
numerical integration, (2) the grid in k space for the compu-
tation of the intermediate nucleon-nucleon Green functions
(see remarks above), (3) the grid for the k' integration in Eq.
(2), in order to compute the single particle potential from the
G matrix [most often (but not in our case) this integration is
replaced by an integration over the relative momentum be-
tween the nucleons k and k', with a suitably averaged total
momentum, thus introducing a further source of inaccuracy],
and (4) the grid for the discretization of the single particle
potential, i.e., the points in k space at which the self-
consistency Eq. (2) is enforced.

Each of these grids is characterized by (i) a typical inter-
val spacing and (ii) a maximum cutoff value. In order to
achieve acceptable performance, the choice of these param-
eters has to be compromised. We can, however, vary them
independently, in order to estimate the error of the final re-
sults. By doing so, we estimate the accuracy of the calculated
values of the single particle potential U(k), including the
effects of nonexplicitly treated partial waves c ~5, to be
~2%. This relatively small value translates into a much
larger inaccuracy of the binding energy B/A, however, since
this is the result of a subtraction of two large numbers: At
nuclear matter density kF=1.36 fm ' we obtain an accu-
racy of ~0.6 MeV (4%), whereas at kF=1.8 fm ' it is
~ 1.3 MeV (11%).These error estimates are slightly smaller
than those of Ref. [5], whereas the other publications do not
give errors.

We then compare in Fig. 1 the results of the various cal-
culations for the total binding energy per nucleon, including
corrections for higher partial waves. For the standard calcu-
lations, we find good agreement of the three curves with a
maximum variation of = 1 MeV within the range
kF = 1.2—1.8 fm '. For the continuous choice, the only rea-
sonable comparison can be made with Refs. [10,11] (sepa-
rable Paris potential), since in Ref. [4] higher partial waves
are not included. Here the deviation of the two curves lies
within 1.2 MeV. For the sake of comparison we display in
the same figure two curves that are obtained in calculations
with the Paris potential closely related to the continuous
BHF scheme: (a) the "model space" calculation of Ref. [7],
in which the self-consistency condition Eq. (2) is only main-
tained up to kM = 2kF, and (b) the work of Ref. [5], in which
the so-called three-body cluster energies D3 are added to the
standard BHF values. According to the authors of Ref. [5],
this is basically equivalent to the continuous choice.

We observe that compared to the continuous BHF results
the binding energy in the model space calculation is system-
atically smaller at low densities, whereas the three-body
cluster calculation gives more binding energy at, and a satu-
ration curve shifted to, larger densities.

Finally, Fig. 1 shows also the result of the continuous
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BHF calculation with the Argonne V,4 potential of Ref. [11],
which turns out to be in amazing agreement with our Paris
result.

In summary, we presented the first calculation of the bind-
ing energy of symmetric nuclear matter in the BHF approxi-
mation with the Paris potential and with the continuous
choice of single particle potentials that takes into account all
partial waves up to 8=4 and the uncoupled 8=5,6 waves.
Our results for the standard choice are in very good agree-
ment with two previous calculations, indicating that our
method of solving the Bethe-Brueckner equation in r space
is as reliable as the treatment in p space in the other works.
For the continuous choice we obtain slightly more binding
than the only directly comparable calculation, which, how-
ever, uses a separable form of the Paris potential, and only
estimates the effects of partial waves 8~2. We assess the
accuracy of our calculation to be better than ~2% for the
values of the single particle potentials. For the binding en-

ergy at nuclear matter density kF=1.36 fm ' we find
8/A=15. 3~0.6 MeV and the minimum of the saturation
curve lies at kF=1.51 fm ' and 8/A=16. 3 MeV. Around
these values of kF the dispersion of the binding energy evalu-
ated by the most sophisticated calculations using the Paris
(or Argonne) potential is less than 1.2 MeV.

FIG. 1. Saturation curves for various BHF calculations using the
standard choice or the continuous choice. Our results are repre-
sented by the white curves with the shaded areas indicating the
accuracy, and compared with previous results [7,10] (solid curves).
We also display the results of alternative choices close to the con-
tinuous choice [5,7] (long dashed), and those of a calculation with
the Argonne V,„potential [11](short dashed curve).

We estimate that this contribution is less than 0.1 MeV at

kF = 1.4 fm
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