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Abstract

The mechanisms of nuclear reactions from very low incident energy up to about a few GeV are
reviewed. The energy range is divided into three domains corresponding roughly to three different
regimes: the compound nucleus, the pre-equilibrium processes and the multiple scattering. The
emphasis is put on the concepts at the basis of the understanding of these regimes. The main
tools to evaluate cross-sections as well as their input data are briefly presented, but no detail,
no comparison with experimental data are provided or discussed. Section 1 is a short reminder
of nuclear reaction theory. Section 2 is devoted to the compound nucleus mechanism. Section 3
discusses the high energy regime and the validity of classical multiple scattering approach to this
regime. Section 4 deals with the intermediate energy regime, where pre-equilibrium processes are
at work. An attempt is made to clarify the various models that have been proposed for this type

of reactions. Finally, a brief summary is contained in Section 5.
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1. GENERAL FEATURES

We recall some basic features of nuclear reaction theory. We refer to Ref. [1] for more
detail. We consider two-body channels. Let ¢ be an indice (or collection of indices) which
labels the various channels (including the momentum vectors of the particles) and x. the
free wave function in this channel (a product of two plane waves, each normalized to a
momentum delta function). For illustrative purpose we will consider nucleon channels, but
most of the considerations made below can be extended to other channels. Let ¢} be the
scattering wave function with incoming plane wave in channel ¢ and containing only outgoing

waves in all exit channels. One can write

Ye =Xe+ VXe; (1.1)

E — Hy +ie
where H = Hy + V is the total hamiltonian, the same for all channels (these formulae can
be generalized if the separation of the hamiltonian depends upon the channels, which occurs
when the partition of the system is different in different channels). One can define the
S-matrix by

The S-matrix is related to the T-matrix by
Sc’c = 5(2’(: — 1270 (Ec — Ec/) Tc/c (13)

with
Tc’c = <Xc’ ‘T (Ec)‘ Xc) (]‘4)

where the operator 7" can be defined most generally by

1
TE)=V4+V—"7T-—"-V 1.5
(£) + E—H+ e (1.5)
The kinematical variables are related by (see Fig. 1)
n’k? Rk
E=_—°+E'=_—°+E], (1.6)
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FIG. 1: Energetics of compound nucleus reaction and illustration of the resonance and
continuum domains.

where ET| m, and k, are the target energy, reduced mass and relative momentum in channel

¢, respectively, or
R2k2 R%k?
= =—S-Q=E,—-Q, (1.7)

E. = =
¢ ch chl

where () is the reaction threshold. In all generality, the elementary cross-section (for a
reaction implying the target in state |i) and leaving it in state |f)) is related to the T-

matrix by

2
d 1.8
2m, v (1.8)

dO’ cc! =

om)t [ h2k? h2k2 Lo
O (e + 2 = 0 — B ) (RITiE

where dw is the density of final states and v, is the relative velocity in the entrance channel.

In Eq. (1.8), the tilda indicates that the matrix elements of T" are calculated with the



relative motion wave functions only, taken as plane waves. The differential cross-section, for

instance, is given by expression (1.8) with

k%dk.
dw = Ok dQ, (1.9)
which gives (after integration on k)
dO'CCI 2w k‘cl -~ ]2 me kcl 2
= —F ) — / = e cc! Q 5 1.1
o = Boma S R T = 222 (@) (1.10)

where f.. is the scattering amplitude. For elastic scattering, the scattering amplitude as-

sumes the following partial wave expansion

fee(0) = ﬁ E (20+1) (em‘ — 1) Py(cos 6). (1.11)

It is of pedagogical interest to consider the case where T' does not depend upon the angle (no
angular momentum), corresponding also to the sum in Eq. (1.11) reduced to the first term.
This academic case is realized for elastic and inelastic neutron scattering at low energy on

some particular nuclei. One obtains for the integrated cross-sections (*, = 1/k.)
Oeor = T2 |Sep|? (1.12)

and

Oee = X2 |, — 17 (1.13)

In this case ¢ reduces to a single indice. The scattering matrix S.~ is unitary, which is a

consequence of the conservation of flux (probability):

YIS = 1. (1.14)
Combining (1.12)-(1.14) yields for the total cross-section
ol = 0o + Z O = 05 4 08 = 27)%(1 — Re S,.). (1.15)
d#e
In Egs. (1.12)-(1.14), the matrix S, is the so-called on-shell S-matrix. It is related to the

S-matrix (1.3) by the relation

2
Scc’ = 5cc’ — 27

§(E, — Eu) Seo- (1.16)

mCC
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Some of the expressions can be generalized for more than two bodies in the final state.
In the following, we will consider the possibility of having many nucleons in the final state.
Depending upon the physical context, these channels can be described by repeated applica-
tions of two-body channel formula (sequential emmission). They may also be described by
emission in a two-body channel with the target in unbound states. For this purpose, we will
need to sum on numerous channels ¢’. At sufficiently high energy, the threshold energies

are so close that one consider that they form a continuum (see Fig. 1). Therefore, one can
2712
[4

focus on the exit energy E. = of the particle. One has

me

2

2
dc 2w , (1.17)

PR T,

> 6(Ey — E, — Ey,) [(kin|T|k.0)

n

where n is the target state in the exit channels and E,, its excitation energy (assuming the
target in its ground state initially), or

d20' . 27TECI

L
dE,d ~  ho, {ken|T|kc0)

(1.18)

‘ 2

Y 6(Ew — E. — Ep,)

2. THE COMPOUND-NUCLEUS MODEL

A Introduction

Many reactions at low energy take place by the capture of the incident projectile to form
a compound system in an excited state which subsequently decays by particle emission. At
very low energy, the most striking feature of these reactions is the presence of sharp and
pronounced peaks in the energy dependence of the cross-section. This strongly suggests that
the reaction proceeds through a single state (a resonance) of the compound nucleus. The
very existence of a small width AF indicates that a relatively long time 7 can be associated
with this process through the Heisenberg uncertainty principle: 7 ~ ii/AE. The latter is
substantially larger than the time of passage tpss & 2R/vin.. This strongly indicates that a
quantum-mechanical treatment is necessary. The observation of elastic (coherent) scattering
in which the target acts coherently is also pointing to the need of a quantum-mechanical

treatment.



Going higher in energy, one observes that the resonances start to overlap, which means
that the reaction process is proceeding faster and that a statistical treatment can be used.
However both regimes can be characterized by the Bohr hypothesis, formulated below. Still
higher in energy, deviations are progressively appearing, which indicate that the reaction

can proceed more directly and not through states of the compound system.

B The Bohr hypothesis

In view of the long time associated with compound nuclear reactions, Bohr [2] proposed
that reactions begin with the capture of the projectile by the target nucleons and the sharing
of the energy among all nucleons. Subsequently, long after the capture of the projectile,
particles are emitted by some statistical process, leading to some final state of the residual
nucleus. As a consequence, the decay process is independent of the formation process. This
is the famous loss of memory of the compound nucleus. Actually, this memory may not be
completely lost because some quantities are conserved and are thus the same in the initial
and final channels: angular momentum, parity and probability flux.

This hypothesis has observable consequences which can be tested experimentally. First,
ratios of cross-sections to different final states should be independent of the way the com-
pound nucleus is formed. Second, the particles are expected to be emitted isotropically.
However, conservation of angular momentum complicates the analysis and replaces this ex-
pectation by the one of a symmetric emission about 90°. Third, for sufficiently high incident

energy, the energy spectrum of emitted particles should be thermal-like.

C The Breit-Wigner formula

We disregard angular momentum for the sake of simplicity. In the resonance region (see
Fig. 1), the presence of isolated resonances can be related to the poles A of the S-matrix

(1.2) through the Breit-Wigner formula

S, = PRICER S — i Wi . , 9.1
; E — E)\ + ZF)\/Q ( )



where the d.’s are slowly varying quantities. This formula is also valid in the so-called
continuum region, where the widths of the resonances (I')) are larger than their average

spacing (D). The Bohr hypothesis implies that
wy =012, (2.2)

where the F}\/CQ ’s are real (positive or negative) quantities. Close to an isolated resonance,
the ¢ — ¢’ cross-section writes, according to Eq. (1.12)

F/\crz\c’
(E — B\ +

(2.3)

_ 2
O = T, T2

4
and expresses indeed that the cross-section can be seen as the product of the cross-section for

forming the compound nucleus state from channel ¢, i.e. the compound nucleus cross-section

JEN , times the probability P, for decaying into channel ¢/, which should be proportional to

I'ye. Since
Y e =Ty, (2.4)
where the summation is restricted to the open channels, one has
F)\c’
P, = . 2.5
c F)\ ( )

Therefore the compound nucleus cross-section assumes, in general, the following form in

the resonance region

r,I
o = x2S - (2.6)
» (B — E)) + 3

which can be decomposed into compound elastic and reaction cross-sections (around each

E)\)

ry-r r

CN CE R R CN1A Ac CE CN ' Xc

o, =0, +0o;, of=o0;" ===, o,"=0;" =. (2.7)
ry ry

The prediction of the cross-sections in the resonance region is a huge task, comparable to,
but much harder than the one of predicting bound states of a stable nucleus. Actually, it is
the continuation of this problem to open channels. We refer to Refs. [3-5] for a description
of the theories aiming at this issue. However, if one is interested in a statistical treatment,
simpler theories are available and cross-sections can even be related to known simple models.

This is described in the next section.



Before closing this section, let us mention that the simple factorization of Egs. (2.1-2.3) is
lost if resonances are overlapping, or if the background term in Eq. (2.1) is markedly different
from . or also if resonances with different angular momentum have to be considered. Indeed

in the latter case, Eq. (2.1) becomes

5 JZJFS Jif, o . 5> [ 12pd 12

Seer = (€0smg|Jmg) (£0s'm,|Jmg) | Sgis.crs — 1 < < :

T =|T—s| O=[T—s'| ’ ~ E— E\+i{/2
(2.8)

We considered an incident particle of spin s and emission of a particle of spin s’ and we have

taken account of the possible partial waves contributing to the resonances.

D The Hauser-Feshbach theory

Let us consider the resonance region and introduce average cross-sections. The way of
averaging is largely irrelevant. What matters is that the averaging interval I is much larger
than the average separation D between resonances. The average cross-sections are thus
smooth functions of energy.

For simplicity, we disregard spin and angular momentum. We have in general

2

1 B+ 12 rL/2pl/2
w) = = X2 Ac__Ac dE. 2.9
<U > I EfI/27T C;E—E)\-i-lr)\/Q ( )
We consider first the resonance region. Eq. (2.9) becomes
1 [E+I/2 IV
(0e) = %Y 2 dE, (2.10)
B-1/2 (B - By + 3
which yields
21 (T Iae
2 Act Ae
) = — . 2.11
(o) = a2 5 (22 (211)

The bar indicates an average over the resonances contained in the interval /. This can

formally be rewritten as [6]

P . 2 o
<Jcc’> = ﬂ—’)‘_Z (D )\)ED ’ ) Fcc’ (212)
c 27rF
DA
or
T.T.
(0) =00 F,0,  oF = g2 T (2.13)



with

F)\c
T, = 27 -2¢, 2.14
n (214)

The partial widths can be considered as stochastic variables; they fluctuate from resonance
to resonance without obvious correlation, obeying some overall distribution functions. This
seems reasonable in view of the complexity of the compound nucleus formation process. The
same reason induces to believe that I'y., ['y» and I'y are independent stochastic variables.
This gives F,.» = 1, if in addition ') does not fluctuate. In actual cases, F,.» # 1, because 'y
fluctuates and because the partial and total widths are not totally independent for various
reasons. The most obvious one comes from relation (2.4), which ultimately derives from
unitarity (conservation of probability).

It has been shown that the partial widths generally follow a Porter-Thomas distribu-
tion [7]

F2
p(Tae) dlye = tAz> dT xe, (2.15)

1
T ————¢Tp (_
\ QWPACP)\C 2rz\c

where T’y is the average value of I'y. in the energy interval under consideration. As a
consequence, the quantities F,.» can be evaluated from these probability distributions. We
do not display the final result, which is formally complicated.

On the other hand, the quantities 7, can be related to some average elastic cross-section
in channel c¢. Indeed, one has, from Eq. (2.1), taking account of (f(FE)) = f(E + zg) for

analytic functions in the upper complex E plane (see Ref. [4] for a demonstration),

. I
Se) = €1 — 72 2.16
(5 = e (1= w33 .10
On the other hand, one can write, from Eq. (1.12)

<O'CEL> = 7T/)\—§<|1 — Scc|2>
= wx2l = (Sl + 732 ({(ISe?) = 1(See)) (2.17)

= o + (o),



opt

P! and (¢F), and

where the last line introduces the definitions of o

<05> = 77'*3 ’Z¢ <|Scc"2> = 7T>\—z <1 - |Scc|2> :71')\—3 (1 — ‘(Scc>‘2) - <O'CCE> (2.18)

(o) = o’ = (05", (2.19)

The quantity ¢“% can also be rewritten as
0% = A 2(|Su — (See) ), (2.20)

and, owing to Egs. (2.1) and (2.2), assumes the same form as Eq. (2.12). Therefore

21T.\2 F,
CE __ 2 Ac cc
o = 7r)rc< 5 ) ol (2.21)

From Egs. (2.16), (2.19) and (2.21), one readily obtains

<af> = TA22m

F—)\C 7T2F§c FCC
D IE 1+

T
- 7rF_,\/D> ~ A 222, (2.22)

D

The interesting point here is that there exists a simple model for calculating (S..), namely
the optical model, which aims to describe the average elastic scattering by a potential model.
This potential should be absorptive, because |[(S..)|” < (|Se|”) < 1. The absorptive part is
responsible for the loss of flux from the incident channel which is transferred to the reaction
channels through the compound nucleus. In general, the second term in Eq. (2.22) is
negligible.

In the continuum regime, one can show that Eq. (2.11) is still correct, because the
interference terms in Eq. (2.9) vanish due to the fluctuating sign of the partial width

amplitudes. Eq. (2.13) still holds, but 7 is now given by

P)\c
T, =1- —9 , 2.23
cap (20 (229

generalizing Eq. (2.14), which retains the leading term when Ty./D is small compared to
unity. Eq. (2.22) becomes
o (m (oF)) = 72T, (2.24)

10



It is easy to see from Egs. (2.7), (2.11) and (2.22) that

o = (oMY, (2.25)

C

The quantity 7, (always smaller than unity) is called the transmission coefficient (in channel
¢): it is the probability for the incoming flux to feed the compound nucleus (on the average).

When angular momentum and spins are taken into account, the Hauser-Feshbach cross-
section (2.13) becomes

(2J+1) ], T
TS s+ D)2 +1) ¥ T

Vel

(2.26)

where J should satisfy [{—s| < J < l+s, |/ —s'| < J < £ +5'. The transmission coefficients
are related to the average reaction cross-section by o%* = X2 S TY, (for s =0).

One can easily generalize the Hauser-Feshbach formula by C(fnsidering a summation on
several selected channels. It is interesting to consider the case of exit channels generating the
same particle, an a-particle for instance, and a residual nuclei with excited states so close

that they can be considered as forming a continuum. Let us call E, the incident kinetic

energy and E. the outgoing particle kinetic energy. One has
E.=—Qy+ Es + E}, (2.27)

where gy is the @Q-value of the reaction leaving the target in the ground state and E the
excitation energy of residual nuclei in the exit channel. Let us call wy(E)) the density of
states of the residual nucleus, or in other words the density of exit channels. The cross-
section for generating a residual energy in the interval [E}, EY, + dE)| can be obtained from

Eq. (2.13) by introducing a suitable summation

TJ T{I c! E*/ dE*l

. . B ) 2] + 1 cl %: ce W < c) c

dO‘cc’ (Ecl) — 7TA_C Z i} E — Q * *
7 (25 + )28 + 1) ¥ [~ YTl pwe (E,)dE:

e

(2.28)

The necessity to evaluate Tc‘{y for a huge number of channels and associated excitation
energies reduce the applicability of this theory at low energy only.
In summary, average cross-sections can be calculated by first using an optical model for

the (average) elastic scattering. This amounts to solve the Schrédinger equation for partial

11



waves (£)

(_h_d_Z LA DRy z'W(T)> ue(r) = Bug(r). (2.29)

2m dr? 2mr?

The asymptotic behaviour of the latter generates a complex phase shift (52’pt and the trans-

mission coefficients (see Eq. (2.21)) through

T, =1— |2 = 1 — g~ tm" (2.30)

The cross-sections are then evaluated with the help of the Hauser-Feshbach formula corrected

for width fluctuations.

E The Weisskopf-Ewing theory

The Weisskopf-Ewing theory [8] is the prototype of evaporation theories for small systems.
For our purpose, it describes the properties of the particles emitted by an excited compound
nucleus. But it can be formulated as a theory for emitting a particle with given kinetic
energy after bombardment of a target by a projectile. We retain notation (2.27) of the last
paragraph. We use the generalization of Eq. (2.7) that we rewrite as
on Ty (Ey) we (E) dE
Xy T e (B)we (El) dE,

P

(2.31)

Ao = O

where the bar means average over resonances (\). We now use the reciprocity theorem that
relates the cross-section for the formation of the compound nucleus by an incident particle
of energy E. on a residual nucleus of excitation energy E¥ (channel ¢’) to the decay width
in this channel (Eq. (2.22))

FAC’ (E:')

CN(E.) =7Xx22
0g" (Ew) =mXx,2m D(E)

c

(2.32)

where D(E) is the level spacing in the compound nucleus and X2 = A?/(2mq E.). One has,
combining the last two equations

Ecl O'CC/’N (ECI )wc/ (E:/)dE:;
S Jo 9 EeoSN(Bp)we (Bp) dE:

c”?

doew (EL) = oSN (E,)

c c

(2.33)
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First of all, we compare the Hauser-Feshbach and Weisskopf-Ewing theories (Eqs. (2.28)
and (2.33)). Essentially the summation on the 7} in Hauser-Feshbach theory is replaced by
o, This is almost equivalent, owing to the relation following Eq. (2.26). However, this
is not exactly true as the density of states w. depends upon J (we did not explicitate this
dependence in order to not multiply the indices). Furthermore, Eq. (2.33) can be simplified
by a simple approximation on the compound nucleus cross-sections. This is done in the
second formulation of the theory described below. Let us finally mention that Eq. (2.33)
can be formulated as the cross-section for emission of a particle with energy E.. It suffices
to replace E} by E. in Eq. (2.33) using relation (2.27).

The Weisskopf-Ewing theory for evaporation can be derived in a very general approach.
We will outline this derivation. We change slightly our notation. We start with a compound
nucleus A in a volume V with excitation energy E* and consider the probability that it
emits a particle a of mass m, with kinetic energy between [E’, E' + dFE'] leaving the residual

nucleus B with excitation energy E%. One has of course
E*=E;+S+ F, (2.34)

where S is the separation energy. The probability per unit time, which is nothing but the
partial width in channel ¢'(= B + a), is given by

Vk?dk’
(2n)*

with E' = r2k"™ /2m,. This can be rewritten using the cross-section for the inverse process

_27T|

dl, == (A|T|Ba)|* w (E}) (2.35)

a + B — A. The latter is given by the probability per unit time of forming a compound

nucleus divided by the average flux (density 1/V times the velocity hk'/m,), i.e.:

27 [(Ba|T|A)[* wa (E3)

CN —
e R T

(2.36)

Note that expressions (2.35) and (2.36) are exact (in the limit of separated evaporation
steps), and that cross-section (2.36) refers to an excited nucleus B. Using (2.35) and (2.36)
and the micro-reversibility ((A|7'|Ba) = (Ba|T|A)*), one has

om, w(E%)
dl', =oc““(aB — A a B E'dE'. 2.37
g ( )(27r)3h2w(E:Z) ( )
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Now, the density of states is basically given by
w (E*) = pe ¥, (2.38)

where the prefactor p is not explicitated for the moment (details are given in Appendix A),

and the excitation energy can be related to temperature 7' by
E* = aT? (2.39)

A little algebra gives

2my,
(2m) B2

dT, = 0N (aB — A) e BdE. (2.40)

This shows that the spectrum of the emitted particles looks like a thermal spectrum (not
exactly a Boltzmann spectrum), sometimes called a surface evaporation spectrum.

Integrating Eq. (2.40) on E' gives the total width for the particular channels (a-particle
emission for instance) which have been selected. One obtains

2 E*-S ’
T, = o°NB —>A)(2)#h2 / e~ B'dE
m 0
2m,T?

(2m)® B?

(2.41)

e

Nl

~ 0“N(aB — A)

This relation shows that the emission is favoured for large m, and small separation energy.
For charged particles, the main additional feature is the limitation of the integration in Eq.

(2.41) to the region above the Coulomb barrier B, which leads to

2
I, ~oc“Y(aB — A) 2mol”  _sin (

B
@n’ b T> ' (242)

Evaporation calculations proceed as follows: the various widths are evaluated (not with

Eq. (2.41) but with the integration of Eq. (2.37)). A random number is compared to the

a

relative widths and a channel is selected accordingly. The energy of the emitted

a
a

particle is chosen at random according to distribution (2.37). The excitation energy of the
remnant is deduced from Eq. (2.34). This simple procedure allows for generating further

evaporation steps, until the excitation energy falls below the lowest emission threshold.

14



This multistep evaporation is evidently much harder to calculate with the Hauser-Feshbach
formalism.

The parameters entering Weisskopf-Ewing theory are the capture cross-sections (in prin-
ciple for excited targets) and the level density, basically the level density parameter a. The
fact that only relative widths are required makes the first parameter less crucial than the
second one.

Competition with fission is usually introduced through the transition state method [9,
10]. It is assumed that the transition probability is entirely given by the properties of the
barrier appearing in the potential energy curve drawn against the coordinate describing the
scission of A into two fragments B’ and B”. The probability of fission is assumed as the
number of states at the barrier which can be reached per initial states. Let us call p and ¢
the momentum and position associated with the motion along the fission coordinate. The

probability of fission per unit time is then given by

dl'y  w(Ep)dEg(dpdg/2nh)/dt

= 2.43
h w (E%) dE% ’ (243)
where E%, E’ (as well as dE} and dE%) are related through
Pz .
EZZEE+W+B=EE+€+B, (2.44)

where M is the mass associated with the motion to fission, € is the kinetic energy in this
motion and where B is the height of the fission barrier (relative to the ground state of the

compound nucleus). Using Eq. (2.43) and dq/dt = p/M and pdp = Mde, one readily obtains

1 w(Eyg)
=~ 2/ qF%,. 2.4
dl'y 21w (E%) dbp (2.45)

If £ is sufficiently larger than F7J, integration of Eq. (2.45) gives

T
y=g-e T, (2.46)

with the help of Eqs. (2.38)-(2.39).

The critical parameters are the fission barrier B and the level density parameter for the

deformed complex at the barrier, which could be different from the one for the spherical

15



original nucleus. Note that this model assumes a transmission coefficient equal to unity.
This needs to be corrected: it is usually done by introducing friction in the motion to
fission. It is most often formulated in the Kramers formalism [11, 12], that we will not

discuss here.

3. HIGH ENERGY REACTIONS

A Introduction

Here we have in mind the GeV range which, to fix the ideas, may be considered to extend
from ~ 250 MeV to a few GeV (the limit to the high energy side is set by the possible
manifestations of the subnucleon degrees of freedom). The basic idea here, first formulated
by Serber, is that the de Broglie wavelength A g of the incident particle is small and therefore
the latter “probes” the nucleons individually inside the nucleus. The reaction mechanism
can be viewed as a succession of separated binary collisions. For this to be correct however,
it is necessary that the wave packet of the incident particle striking a target nucleon recovers
its asymptotic form before it encounters another nucleon. This occurs after a distance which
is not well known, but generally considered to be of the order of the range r, of the nuclear
forces (in fact, it cannot be smaller!). Therefore the following condition is required for the

separation of successive collisions:
Ap< < 1y < < d, (3.1)

where d is the average distance between neighbouring nucleons. This is barely fulfilled in
the nuclear case. Observation of spectra, where the so-called quasi-elastic scattering (see
below) is well isolated, tells that the hypothesis of separated collisions is a good starting
point. However, condition (3.1) is probably much less fulfilled for secondary collisions and

thus some care should be exercised.
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B A simple model

It is interesting to look at a simplified Glauber model [13]. The incident particle is
assumed to travel along a straight line (Glauber aspect) in a nucleus characterized by a
density p(r). For pedagogical reason, we consider here a uniform density in a sphere of
radius R:

p(r) = pob (R — ). (3.2)

It is an easy exercise to calculate the total reaction cross-section. Let us consider an impact

parameter b. The incident particle enters the nucleus at z = —zg = —V/R% — b2 and leaves

it at z = 2o (see Fig. 2). The probability that it has not interacted at position z(|z| < zp)
is

Piuro(2) = e~ NN po(ztz0) (3.3)

Therefore the total reaction cross-section is simply

dr

FIG. 2: Kinematic variables relevant to the eikonal approximation.

R 2
Grot = /0 27 bdb / " Poure(2)poot® dz, (3.4)
e
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as pooeh.dz is the probability to interact in a path element dz. A little algebra yields

2 2
_ 2 _ = _ T P
Otot — TR |:1 2 (1 (& ) + q;e s (35)
with = = 20%% poR. For nuclei, 0%y = 0.6 fm™'. For R = 5 fm, one has roughly
Otor = TR*(1 — 0.05) ~ 0 geom- (3.6)

Taking account of the diffusivity, one obtains oty & 1.204¢om, Which agrees quite well with
experiment.

It is also interesting to split this cross-section into cross-sections for events in which the
incident particle undergoes n =1, 2,3, ... collisions. It is easy to show (although we will not
do it here) that, for a given impact parameter b, the probability for making n(> 0) collisions
is given by

_L

Po(b) = e (3.7)

“+00o

with L = 2pyo’ 2y for uniform density, and L = / p (F = (l;, z)) o't dz for a diffuse

—0o0
density. Let us look at the n = 1 cross-section for a sharp surface nucleus. We calculate this
quantity explicitly, requiring that the incident particule does not interact before and after

this single collision:

f R—— po(z+20) tot ,—a’o% po(z0—=2)
o] = 2mbdb e NN pPooNNE NN dz
0 —20

R
- /0 2mbdb20'%, po/ RE — B¢ 27KV (3.8)
1 1 1
— 2| — _ T\ _ T _ I
= 4R LEQ (1 e ) xe 26 ,

with z given below Eq. (3.5). It is interesting to look at the two limits: z < < 1 and
x > > 1. For the first one, one has

tot

47 R? pyo

R
o1~ ATRYE = NN Aglet . (3.9)

6 3

In this (weak interaction) limit, all nucleons contribute additively to the cross-section. In

the strong interaction limit, one has (neglecting the exponentials in Eq. (3.8))

A R?
o1~

$2 = Aeffaf\%v, (310)
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with

T
—.
g (o)

Here, only A.f; “effective” nucleons “contribute” to ;. This number can also be written as

Aepp = (3.11)

Agpp = ()\/3)3, where A (: 1/ po}:\%\,) is the mean free path and d is the average distance
between neighbouring nucleons. It is to be remarked that this approximation is valid for
very large A, but shows nonetheless that A,;; < < A. This is easy to understand since
the incoming particle has to escape interaction before and after the single one under con-
sideration. A precise calculation shows that A.;; ~ 8 for 208 pp. Later we will consider the
quasi-elastic case corresponding to a single elastic NN scattering. The calculation is the
same: it suffices to replace o2 by 0, outside the exponential in the first line of Eq. (3.8).

One obviously ends with

0" = Aoy, (3.12)

with the same value of A.y.

C Simplified quantum picture

A simple quantum approach is provided by the Glauber formalism [13] in the eikonal
approximation. The latter is based on four assumptions:
R
1. kR = — >> 1
C %c
2. incident particle-nucleon scattering at small angles (momentum transfer essentially

perpendicular to the incident direction €,)

3. de(k.) is a smooth function of £ and k., where £ is the angular momentum (¢ = k.b)

and &y is the incident particle-nucleon scattering phase shift
4. frozen nucleus approximation (no Fermi motion)

It is then possible to relate the total scattering amplitude to individual amplitudes. We

simply quote the result (which is demonstrated in Appendix B) for the scattering of the
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incident particle on a target in state ¢ suffering a momentum transfer ¢ = Ec, — EC and

leaving the target in a state f

k e x .
fri (@) = ;—W/d2bezq'b/d3r1...d3m O (71, -, Ta) X

A 1 2 ey (I_; ..) (313)
E( omik ) © 1€ 5@ | ¢ (7ry ey 7a)
where §; is the transverse position of nucleon j, §5; = 7; — (@'gz)gz’ and f, (@) is the

(elementary) scattering amplitude on nucleon j. One can expand the product in Eq. (3.13)

by using the formula

A A 1A A
H(1—aj)=1—2aj+52 > ajak+ .. (3.14)
7j=1 7j=1 7j=1

k=1
k #j
The first term gives the single-scattering amplitude
1 - .
@ = — / d2beiTd / Brydry ¢ (Fi, oy Ta) X
(3.15)
3 /d“ G5, () 60 ).
j=1
Using
bl T TN = § (7" 3.16
e [ 4 (7—3") (3.16)

and considering f; (¢) as independent of j (= f (¢)), one obtains

A
(@)= /d2§6 @/d ry..d’ra ¢ (7 Z_: b (Fiy .y 7a) . (3.17)

The last integral is nothing but the transition matrix density py; (5) (for transverse 5). One

finally gets
IR@=1@ 5@ = £ @ [ @575(5). (3.18)
For the elastic scattering

P@=0)=Af(@@=0). (3.19)

For inelastic scattering, the integral in Eq. (3.18) is much smaller than A and plays the

same role as A.¢s in the simple approach mentioned above.
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We simply plug the result for double scattering

1 = 5 o - 2922 1,108 ,i(q—q").8"' 2z
@ =g [ 0 @=T)F@) [ @55 E 55, (320)

where pﬁ) is the two-body transition function:

PP (5,57 = % [ @i dray (7o Ta) X0~ 5)8E = 5) 6 (s )
a (3.21)
This amplitude accounts for interference (integration on ¢') from all possible ways to gen-
erate a momentum transfer ¢ and also depends upon correlations inside the target. When
calculating the cross-section (at this order)

do fi
ds?

2
)

@ = @+ ) @

(3.22)

another interference, between single and double scattering contributions, may appear.

For the elastic scattering, the interference term in Eq. (3.22) does show up, as expected,
and is responsible for a destructive interference at ¢ values for which f® and f® are
approximately equal in absolute value. For inelastic scattering, even when p® ~ pp) (no
correlation) the many terms inside expression (3.21) wash out the relative phases between
f (@) and f (7 — ¢") and quantum interferences do not show up neither in (3.21) nor in (3.22).
The remaining effect of the addition of ) is a broadening of the angular distribution, as

expected.

D Fermi motion and Pauli blocking effects

Roughly speaking, the Fermi structure of the target does not play a very important role
in the scattering of the incident particle, unless the incident particle undergoes a very small
momentum transfer. Indeed, if the target can be viewed as a Fermi gas in a potential well,
the struck nucleon cannot always receive a small momentum transfer because this is blocked
by the Fermi sea. So the collision is forbidden.

This effect is most easily discussed for inclusive reactions, i.e. for reactions leading to

a momentum transfer ¢ for the incident particle irrespective of the final state in which the
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target is left. According to formula (1.17), this inclusive cross-section may be written as

do _ 2
37  ho,.

2

: (3.23)

> 6 (E' — E + Ey) |(F fITk0)
!

where we have slightly simplified our notation: Fy = E; — Ej is the excitation energy
gained by the target, E and k (E' and k') are the energy and momentum of the incident
particle in the entrance (exit) channel, respectively and 7 is the full T-matrix. Note that f
is not necessarily a bound state.

We introduce the single scattering approximation
~ A ~
7j=1

where £,; is the t-matrix for the scattering of the incident particle by nucleon j. We also
introduce the Fermi gas model for the target: |0) is the ground state of the Fermi sea, with
all states filled below the Fermi level, |f) is a one particle-hole state |f) = agzagl |0). Only
these states can be connected to |0) in the matrix element (3.23) since T is a two-body
operator. Momentum conservation imposes E = E’ + El — I;Q or Eg = El + ¢. One obtains
S8 (E' — E + Eyo) [(R fITIFi)|
d (3.25)

R

~

E, /_51)‘27&,;1 (1 — nE1—é’) y

pj

=Y 0(E' —E+eg_s—eg) (K Fi—q
3

where nj is the occupation number of state k: nip =1, if K < kp (the Fermi momentum)
and ng = 0if k > kp, and where &7, (= &) is the single-particle energy. Assuming the

t-matrix to be a smooth function of k; (which is rather justified), one obtains

do 2T

- — o
7 =y [(E+ @ =T O) AS (¢, ' = B), (3.26)
with e
J 550 (w + €z - — gg)ng (1l — ng_ -
S((T,CU) _ (27) ( k2 q k) k( k ‘1) (327)

Bk
S Gmy
It is not difficult to see that S depends on ¢ through its modulus only, owing to the rotational
invariance of the Fermi sea (n; = nj). The matrix element in Eq. (3.26) can be related

to the nucleon-nucleon cross-section. Cross-section (3.26) can be given in terms of E' and
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the scattering direction €. One has, requiring absence of interactions before and after the

single scattering under consideration:

do do
—=A — E' - FE 2
dEldQl eff (dQ (@) o S(q’ )a (3 8)

!
with g ~ 2k 5m5 This formula is rather transparent: once again, one obtains the additivity

of the target nucleons, limited to the “effective” nucleons, and the factor S accounts for
Pauli blocking effects. It also allows for a spreading of the so-called quasi-elastic peak

due to Fermi motion. Indeed in the absence of Fermi motion (Fermi momentum kr=0),
2

S(q, E' — E) reduces to & (E’ —FE— ;W)’ which is of course the ordinary recoil for a
nucleon-nucleon scattering. For kp # 0, S presents a maximum for E' — E = ¢°/2M but
is different from zero, for values of E' — E and ¢ not satisfying this condition. This leads
to a broadening of the quasi-elastic peak. The intensity of this peak is rapidly decreasing
when 6’ increases because S decreases with ¢, but mainly because the NN cross-section is
forward-peaked. Similar considerations can be made for quasi-charge exchange scattering,
when an incident proton produces, in a single scattering, a neutron (or vice-versa) in the
forward direction with roughly the beam velocity. Comparison of Eq. (3.28) with experiment
shows a satisfactory agreement for the quasi-elastic peak, well separated from the rest of the
spectra. There is however a systematic discrepancy on the location of the peak, which, in
the experiment, lies at a lower energy, by ~ 20-30 MeV, than in the predictions. Extension
of the above formalism, explains partly the quasi-inelastic scattering, corresponding to a
single NN — NA scattering, with the nucleon detected at forward angles.

Double scattering has also been studied in this formalism. The developments are heavy.

They do not indicate manifest interference effects, but they lead, as expected, to a (relatively

small) widening of the angular distribution.

E Classical multiple scattering

All the considerations above point out the absence of obvious quantum motion effects (no

interference, no coherent effects), except of course for the necessary introduction of the Pauli
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blocking. In the reaction process, quantum effects seem to be confined to the small region
(and small time interval) when two nucleons closely interact. Apparently, the description of
the space-time evolution of the system in this small domain may be by-passed, but quantum
effects should nevertheless be retained through the elementary cross-section and its quan-
tum probabilistic interpretation: the outgoing direction (and the outgoing channel, if one
considers possible inelastic channels in elementary collisions) is not uniquely determined,
but follows some probability law. These arguments strongly support the relevance of a clas-
sical multiple scattering approach supplemented by the two quantum “residual” ingredients:
Pauli blocking and stochasticity of the outgoing state of an elementary collision.

Classical multiple scattering is by far much simpler that its quantum counterpart. There
are two standard formulations of this theory, corresponding to two limits: (i) the mean free
path A < < D, the size of the system; (ii) A ~ D. The first one is well documented, as
it corresponds to the diffusion of a particle inside another medium (like also neutrons in
a nuclear reactor). Diffusion equations (heat equation is the prototype) or Fokker-Planck
equations are justified. They however apply to a whole population of “incident” particles or
to an average over many “incident” particles. They also imply averaging of the distributions
over a distance which is larger than A. In case (ii), the averaging over space dimensions
should be avoided. The standard approach is based on numerical simulation. The nuclear
case falls in this category, although A is smaller than, though comparable with the size of
the nuclei. If A > > D (the Knudsen regime), single scattering is dominating and simple
approaches, as the ones sketched above, are appropriate.

For nuclear collisions, the most standard simulation tool is embodied in the intranuclear
cascade (INC) model, to be shortly described below. This approach, which looks like an
empirical procedure, rests in fact on some theoretical foundation (not described here). It
has been shown that this model can be considered as a limit of the full quantum nuclear
process [14], when the following conditions are fulfilled:

AB < < Vpaleon < < d, (3.29)

where Xp is the average de Broglie wavelength for the relative motion of the colliding
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nucleons, v, is their relative velocity, t.o; is the collision time and d is the average distance

between neighbouring nucleons. This is roughly equivalent to

Ap< < 1, < < d, (3.30)

which ressembles condition (3.1), but for all pairs of colliding nucleons. These conditions
are once again barely fulfilled in the nuclear case, especially at the end of the reaction
process, when the average energy of the colliding particles are substantially lower than for
the incident particle.

The theoretical approaches that are mentioned above show that the INC model amounts
to solve the nuclear Boltzmann equation. They also show that there are three reminescences
of quantum effects in this equation: the Pauli blocking effect, the stochastic meaning of
elementary cross-sections and wave function effects occuring where the average nuclear field
is varying rapidly. In very rough terms, the latter refers to the existence of quantum reflexion

and transmission of particles hitting the nuclear surface.

F The intranuclear cascade for nucleon-induced reactions

There are basically two versions of the INC model [15] (see Fig. 3): (i) a “space-like”
version, in which the incident particle propagates inside a continuum representing the target
and providing a mean free path. The path length is taken at random. At the end of this
path the incident particle makes a collision with a nucleon promoted from the continuum.
The two outgoing particles are then propagated independently and make further collisions,
and so on. The particles are not followed in time. (ii) a “time-like” version, in which the
nucleons inside the nucleus are given initially position and velocity. All particles are followed
simultaneously in time and make collisions if their minimum distance of approach is small
enough.

We now describe the Liége INC model [16], which pertains to the second category. The

main features are the following:

e At time ¢ = 0, the target nucleons are positioned at random in a sphere of radius R

and their momenta are generated randomly in a sphere of radius pr. Neutrons and
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Intra—Nuclear Cascade (INC) model

time—like space—like

INC Liege (INCL) model BERTINI model

FIG. 3: Schematic illustration of “time-like” (left) and “space-like” (right) intranuclear
cascade model.

protons are distinguished according to their isospin. R and pp are given standard

values: R = 1.12 A'/? fm and pp = 270 MeV /c.
e Relativistic kinematics is used everywhere.

e All target particles are sitting in a (fixed and constant) attractive potential well of

radius R and depth V4.

e The incident particle (of incident energy 7Tj4) is provided with an impact parameter
b, generated randomly in a disk of radius R. It is positioned at the nuclear surface

within the potential well. Its kinetic energy is therefore Tj,, + Vo at t = 0.

e All particles are set in motion and are assumed to follow straight line trajectories until
two of them achieve their minimum distance of approach or until one of them hits the
nuclear surface. The time at which this occurs can be predicted and the particles are

therefore propagated in a single step.

e After this step, one has to distinguish between these two cases:
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1. A particle hits the surface. If the energy of the particle is below the emission
threshold, i.e. if its kinetic energy T; < Vj, the particle is reflected on the surface.

If T; > V,, the particle is allowed to be emitted according to the probability law

po_ WEE W) g (3.31)
2T, — Vo + 2T (T - Vo) |

where G is the usual Gamow factor (G = 0 for neutrons). In the latter, the

actual charge inside the nuclear volume is used. If the test for transmission
fails, the particle is reflected. Transmission is realized by assuming the same
straight line trajectory as before (no refraction) and the particle escapes from
the potential well with a final kinetic energy Ty, = T; — Vp. Its momentum
is changed accordingly. The escaping particle is given a tag, which forbids any

further interaction.

2. Two particles achieve their minimum distance of approach. Let us call Jmm the
corresponding relative coordinate, v/s the total center of mass energy of the two
particles and ﬁcm the velocity of their center of mass with respect to the lab
frame. Then

=d> + M (3.32)

mn 1= R,

is the squared impact parameter in the c.m. system. If wam-n > Ot <\/§),
Otot <\/§) being the total particle-particle cross-section at c.m. energy +/s, the
motion of the particles is not modified. If mb2,;, < 0 (\/E), the particles are
forced to scatter. Final channels are determined stochastically according to par-
tial cross-sections, relatively to the total cross-section. The energy of the outgoing
particles is determined by energy-momentum conservation. The outgoing polar
angle in the c.m. frame is determined stochastically following a probability law

consistent with prescribed angular distributions. Collisions are avoided when the

Pauli principle is not fulfilled, as discussed below.

e After these possible changes, straight line motion is resumed until a new possible

collision or reflection can occur. The process is followed up and terminated according
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to a criterion explicitated below.

The following possible reactions are considered:
NN & NN,NN & NA
NA & NA
AA & AA
A& TN

(3.33)

All the utilized cross-sections and angular distributions are taken from experiment, as
far as possible, and are based on the extensive analysis of existing data of Ref. [17]
and on recent measurements of np elastic and inelastic scattering in the 0.4-1.6 GeV

range [18].

Pauli principle is implemented as follows. Let us consider two particles at their mini-
mum relative distance and let ¢ and j denote the two particles predicted to be created
in the final state. If the two particles are nucleons, the phase space occupation num-
bers f; and f; are evaluated by counting particles of the same kind in a reference
volume, consisting of the direct product of a sphere in r-space (of radius r¢) and of a
sphere in p-space (of radius py). The quantities ry and py are taken as ry = 2 fm and
po = 200 MeV/c. If particles are close to the surface, only the overlap between the
sphere of reference and the target volume is considered. The collision is realized (as

explained above) stochastically with a probability

P=(1-f)(1-f). (3.34)
Pauli principle is not applied to A-resonances: only one blocking factor is retained in

NA channels. On the other hand, Pauli blocking is enforced in the final state of the

A-decay.

The interaction process is stopped at time ¢t = ty,,, determined by the average be-
haviour of some quantities. The crucial one is the target excitation energy E*. It is

defined through the energy conservation law (which holds at any time):

Nej Nx
T =3.T; +> e+ E*+5, (3.35)
7j=1 =1
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where the first sum runs over the kinetic energy of the (baryonic) ejectiles (the bar
indicates the possible inclusion of the A — N mass difference for A’s), the second sum

runs over the total energy of the pions and where S is the separation energy, here
S=(Nej—1) (Vo —Tr), (3.36)

where T is the Fermi energy. The average (over events) excitation energy displays a
typical behaviour: it first rises, then decreases quickly, corresponding to the ejection
of fast particles, and further decays at a much slower rate, akin to an evaporation

process; ts,p is taken as the time corresponding to this change of slope.

o At the end of the cascade (t = t50p), possibly remaining A’s are forced to decay and

final quantities are recorded.
e Physical quantities are evaluated by ensemble averages over events.

e In the most recent version, a diffuse surface is introduced.

4. PRE-EQUILIBRIUM REACTIONS

A Introduction

The cross-sections of many nuclear reactions, once the incident energy exceeds ~ 40 MeV,
are frequently much larger than would be expected from the statistical compound nucleus
theory. In many cases, the excess cross-section is forward-peaked and can be attributed to
a one-step direct interaction. The most famous model for the description of this mechanism
is the Distorded Wave Born Approximation (DWBA), especially relevant if one looks to the
reaction leading to selected low-lying states of the residue. In other cases, this explanation
is inadequate and it is necessary to consider the possibility of multi-step processes that
take place after the first direct collision but long before reaching statistical equilibrium.
These pre-equilibrium processes, as they are called, are conveniently divided into two types,
the multi-step compound reactions and the multi-step direct reactions. In a multi-step

compound reaction, all the particles are bound for at least one stage of the process, whereas
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in a multi-step direct reaction at least one particle is always in the continuum. In multi-step
compound (MSC) reactions, phases of competing processes interfer so that energy-averaged
cross-sections are roughly symmetric around 90°. Multi-step direct (MSD) reactions take
place rapidly and have forward-peaked cross-sections. A general formalism has been set
up by Feshbach, Kerman and Koonin. This formalism is outlined below, but before it is

instructive to look at simplified quasi-classical approaches.

B The Harp-Miller-Berne model

In this model [19], which is basically an excited Fermi gas model, one considers the
occupation number for single-particle levels in the average nuclear potential well. At ¢ = 0,

their distribution is given by
n; =1, fork; <kp
=1, fork;=ke (4.1)
=0, otherwise,

the second line corresponding to the incident particle. The evolution of this distribution is

assumed to follow the master equation:

cizf =3 Zejww {rene (1 =) (1= i) —ngmg (1= mg) (1 = 1)} = Aeseni- (4:2)

J

The first term corresponds to collisions which can feed or deplete n; and the second term
accounts for the possible escape of particle from state i, provided the latter lies above
the potential well. The transition probability could in principle be calculated numerically
Wijke = 2% (i |Twn| k£)[?, with single-particle wave functions and the NN T-matrix, but is

most of the time roughly related to the nucleon-nucleon cross-section

Wijke = annpo(v), (4.3)

where (v) is the average relative velocity. The escape probability Aes. can be calculated
from transmission factors, but is usually taken as a parameter. Even when the energy of
the incident particle is not very high, there is a tremendeous number of single-particle states
and these equations are not easy to solve. Therefore, this model has been abandoned for

the following one.
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C The Griffin exciton model

The basic idea [20] here is that, by successive collisions, the system evolves from 1p (one
particle) states to 2p — 1h, 3p — 2h, 4p — 3h,... states, or from 1 exciton to 3, 5, 7,...
excitons. Ericson [21] has evaluated the density of p particle-h hole states (with n = p+ h),

at excitation energy E:
gn En—l

pn(E) = Phln — 1)1 (4.4)

where ¢ is the average density of single-particle states. This expression disregards antisym-
metrization. Corrections, which are rapidly negligible when E increases have been derived
by Williams [22]. Griffin postulated that the probability for nucleon emission per unit time
in the range [, + de] by a n-exciton state is given by (basically the same argument as in

the transition state model, see Section 2.E, is used)

Py (e)de U, (4.5)

pu(E)
In this equation, U is the excitation of residual nucleus, i.e. U = E—¢. The total probability
for emission of nucleons is given by
r me <~ pa1(U)

P(g)de = [ngo] P,(¢)de = 7 [ngo} B Tade, (4.6)
where 7 is the “equilibrium number” of excitons, i.e. the value of n, for which the density
is the largest, according to Griffin. This value is basically 7 ~ \/QgiE In Eq. (4.6), the
summation is restricted to odd values of n. The quantities 7, are the lifetimes of the n-
exciton states. Initially, they were considered as free parameters. Later on, a so-called

Hybrid Exciton model was devised, which yields the following formula for the probability
P(e):

o= 5[] ]

[n=no

(4.7)

n

= Y P™(e)de.
]

[n=ng

the second set of brackets gives the fraction of those particles that are emitted in the con-

tinuum rather than generating a transition from the n to the n + 2 exciton states. The
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quantity /\TQ(S) is the mean free path for producing this transition. It is generally either
taken as the mean free path for nuclear collisions (possibly corrected for Pauli blocking):
M12(g) & 1/po™" or related to the imaginary part of the optical potential. The quantity
Ac(€) is the mean free path for collisions leading to the continuum. In Eq. (4.7), the quantity

D,, is the probability for surviving particle emission from simpler states:

n—2
D= ] / P™)(e)de, D, = 1. (4.8)
[n'=no]

A time-dependent version exists, which allows to study the relaxation of the nucleus

toward an equilibrium state and the evaporation-like evolution of the latter. It writes

dP,(1)
dt

= Paca(ONT2 + Poa(DA™? = Py (AT + A7) — A2, Py, (4.9)

€sc

where, again, A} gives the probability that the n exciton state disappears by collisions
leading to n &+ 2 exciton states and where A[,. is the probability for emission from the n
exciton state. This allows the emission of fast particles in the early stages of the process.

Up to this point, the exciton model is just able to predict the shape of energy spectrum of
the emitted particles. It can predict neither cross-sections nor angular distributions. On the
other hand, it is quite able to predict non-thermal energy distributions. Cross-sections can
be obtained by multiplication with some total reaction cross-section, taken from elsewhere
or from experiment.

Some attempts have been made to include geometrical effects. The idea is to take account

of the varying conditions along the (linear) trajectory of the incident particle for different

impact parameters. This model is named the Geometry Dependent Hybrid model. It yields:
d o
@ _ / 21bdbPy(e), (4.10)
de /

where P,(¢) is nothing but the quantity in Eq. (4.7), but evaluated with the conditions
(density, path length) typical of the impact parameter b and not with average conditions as
before.

Some procedure has been devised to describe angular distribution, namely by introducing

a factor which shortens the summation in Eq. (4.6) for peripheral collisions, and by trying to
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retain the preferential emission at forward angles, dictated by nucleon-nucleon cross-sections.

This gives

d?o " 2L +1
= (n)
7200 amact[ > P™ (e)de D i fr(n) Py (cos ), (4.11)

n=no] L

where in n = 3 (one collision), the summation on L reproduces the angular distribution of
the NN cross-section in the nuclear medium. Somewhat ad hoc procedures are used for
larger m, which of course corresponds to a flattening, since the emission is then expected
to be more and more isotropic. Systematics parametrizations of angular distribution and
L-dependence have been devised by Kalbach [24]. The same author constructed also a
phenomenological procedure to account for composite emission, generalizing Eq. (4.7). In

fact, this is the only satisfying approach to pre-equilibrium emission of composites.

D The Feshbach-Kerman-Koonin theory

This theory [25] can be viewed as a microscopic version of the exciton model, where
the probability for exciton transitions is calculated on a microscopic basis. Furthermore, it
makes a distinction between multiple compound and multiple direct processes.

The basic idea is, as in the exciton model, the successive excitation of particle-hole
pairs. One can say that the entrance state is a one-particle state which can lead to 2p — 1h,
3p—2h,...(n+1)p—nh states. One distinguishes between a P-chain, which involves excitation
of p — h states with at least one particle in a continuum single-particle state of the nuclear
well and the ()-chain, which involves excitation of p — h states with all nucleons in bound
states in this nuclear potential well. The system can propagate in the P and ()-chains, with
at each step n the possibility to escape, i.e. to generate a final channel with an emitted

nucleon. Several approximations are introduced:

1. no communication between the chains. This is a rather crude approximation, which
is however compensated by the possibility of escape from the (-chain. The theory
is thus split into one for multi-compound processes (()-chain) and another for multi-
direct (P-chain) processes. It seems that the first one is appropriate at low energy

(10-40 MeV) and the second one is more applicable at higher energy.
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2. the chaining hypothesis, namely that transitions only take place from the n to the
(nil)th state. This corresponds to the underlying picture of excitation or de-excitation

of particle-hole pairs by two-body interactions.

3. the never-come-back hypothesis, namely that transitions only take place from the n'"
to the (n+ 1)”‘ state. This is also physically plausible, since the transition probability is
proportional to the final state density, which increases dramatically with n, up to some
value (see above). In fact, this hypothesis has been checked by calculations without it

which indeed showed that the main flux is directed toward increasing complexity.

We first explain the theory for the multi-step compound process. The total width of the

n-state, i.e. the total probability by unit time from this state, can be divided as
r, =T} + I, (4.12)

where the spreading width '} corresponds to the transition n — n+1 and the escape width
I'! is related to the emission of a particle from the n' stage.

The total emission cross-section is thus given by a product of three factors

ol I (ML T
= X? _k)Zn 4.13
e =5 (I ) @

where the first factor is the probability to form the compound system (in 2p — 1h states
(n = 1), note the appearence of Dy, the density of 2p-1h states!), as given by an optical-
model-like expression, the parentheses correspond to the probability of proceeding until
step n without emission and the last fraction is the probability of emission from step n. In
principle, the summation should run until infinity, but the authors propose to stop at the
“equilibrium stage” r, somewhat arbitarily defined as the step for which I',/I",,; becomes
smaller than 10 percent. The reader is invited to compare Egs. (4.7) and (4.13) and convince
himself that the two approaches carry essentially the same physics.

We now briefly sketch the method for evaluating the various widths. We consider the

emission of a particle with energy €. One has

E.,=e+S+U, (4.14)
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where S is the binding energy of the emitted particle and U is the excitation energy of the

residual nucleus. The perturbative Fermi golden rule is used
I T aEET——
T = X (lVin+ D pn(U), (415)

where the bar indicates in principle the average over the states |n) and |n + 1), and where

pn(U) is the density of (n 4+ 1)p — nh states. In the Ericson formulation

g(gE)™"

PnlE) = G miEn)r

(4.16)

. 3A . . : . .
with g ~ 1 MeV ™! being the average single-particle state density. The average matrix
T

element is usually taken as resulting from a J-interaction force

/00 dr
0 71792793 774 7"2

where an average over representative single-particle states j; is to be taken. Furthermore

2.1'7}

[(n|VIn+1)]* =V : (4.17)

bound state wave functions are taken constant on the nuclear volume and only the scattering
wave function of the emitted particle is used entirely. A similar expression is used for the
spreading width TV with this time the matrix element involving only bound state wave
functions.

Note that formula (4.10) can be modified to predict angular distributions. Roughly

speaking one has

doysc o= 21T (S T Tl
=TA — Ces P 0)——, 4.18
T0de = ™ Z]: D, 2 191;[1 T, ; 1esPe(cos )Fn,se (4.18)

where the C’s are angular momentum coupling coefficients. Obviously, angular momentum
coupling should be introduced in the expressions for the spreading widths as well.
We now turn to the multi-step direct formulation. It can formally be written as (we

retain U instead of ¢ as the energy variable)

d’oarsp d*oy d*o
= 4.1
dQdU  dQdU T dQdU’ (4.19)
the sum over one-step and multi-step processes. The first term is usually taken as
d’oy do
= — 4.2
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where p,(U) is the density of states of the residual nucleus after the first interaction and
where <d_g> is the average nucleon-nucleon scattering cross-section, possibly corrected for

Pauli blocking. The multi-step contribution is

B Z/ d3kN Bk, PWyn_1 (/fN,kN 1)
deU WACHE dUndy

o (4.21)
d WN_LN_Q (E ];3’ ) d W21 (k27 kl) d20'1
AUy _1dQy_y NN T U,dQy AUy
The transition matrix elements are expressed by the Fermi golden rule
Wy N1 27 - e 2
Wnd f‘/ d*ox* (kN) X (kal) (WlV(r)|a)| p(kn) pr(Un), (4.22)

where p(k) = and where the matrix element can be recognized as the distorted wave

mk
(2m)° B? ) )
Born approximation (DWBA) for the transition ky_1v; — knty, ¢ referring to the target
state. The average is taken over the single-particle bound states involved in the transition.
The spectroscopic factors are taken equal to unity.

Using distorted waves instead of plane waves have been criticized since these waves are
not arising naturally from the theory (especially absorption). Feshbach has shown that
introducing appropriate averaging in Eq. (4.22) qualitatively justifies this procedure (fitting
experimental data favours it as well!). One has to keep in mind however that the intensity
of the interaction, which is also largely taken as a free parameter is somewhat making
these considerations a little bit useless, as the magnitude of the matrix element can then be
readjusted.

Calculations with MSD are rather cumbersome. However, clever approximations allow
to calculate up to N = 7-10 rather routinely.

It is to be remarked that the Feshbach-Kerman-Koonin theory is not a fully quantum

mechanical theory. Intensities of emission after various steps are summed up and not the

amplitudes. For MSD, quantum-mechanically calculated probabilities are used however.

5. CONCLUSION

A review of the description of (nucleon-induced) nuclear reactions below a few GeV

incident energy has been given. Emphasis has been put on the basic concepts and on
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the manifestation of quantum effects. The latter are important in the compound nucleus
reactions, for which a quantum description is mandatory. Compelling arguments indicate
that quantum motion effects are not manifesting themselves in the high energy regime and
that classical multiple scattering approaches can be used, provided they include quantum
aspects like Pauli blocking and the stochastic nature of elementary collisions, transmission
and reflection by the nuclear potential boundary. We made an exploration of the various
models which have been proposed for the intermediate energy regime. We have drawn the
attention on the fact that most of these models have the same basic premise: namely the
description of the reaction mechanism by an excited Fermi gas, whose evolution is governed
by collisions. From this point of view, these models are very close to the INC model;
they differ by the way they evaluate transition probabilities. The methods are often rather
crude. They are also sometimes inconsistent, based on different approaches for different
transition probabilities. This is to be contrasted with the unity and consistency of the INC
model. These considerations lead to speculate on whether the high-energy and intermediate-
energy regimes are just simply physically equivalent and could be described by some unified
approach. This will probably be a matter of discussion for the next few years. The renewed

interest in spallation reactions will certainly intensify such a study.

For those who want to know more.

We want to recommand a few books. For formal and less formal reaction theory, the old
book by Golberger and Watson [1] is still a good standard. The recent book of Frébrich
and Lipperheide [3] provides an easy reference, less complete however. Let us mention
also the well documented book by Feshbach [26]. For the compound nucleus reactions, we
recommand the book by Lynn [27]. Concerning high energy reactions, there is no good
dedicated book, but we can mention the one by Iljinov, Kazarnovsky and Paryev [28]. We
recommand Ref.[16] for a detailed description of the INC model. For the intermediate energy

domain, there exists a good reference book by Gadioli and Hodgson [29]. On the transition
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from the compound nucleus to pre-equilibrium reactions, the reader may have a look at the

excellent theoretical review by Mahaux and Weidenmiiller [30].
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APPENDIX A: DENSITY OF STATES

Formally, the density of states w(E) = >_ & (E — E;) is related to the partition function

1
through the relation (ﬁ = ﬁ)

B) =3 ePB = / dEe PEu(E) (A1)
- 0
and the inverse Laplace transformation
+i00
w(E) = / T dBePEZ(B). (A2)
Now Z(8) = e T, where F is the free energy. One can write
+200
w(E) = / ' dBePE+(8) (A3)

with ¢ = —BF(B). The last integral can be calculated by the stationary point method. If

Bo makes the phase of the exponential stationary, i.e. if 5, satisfies

d
E+—¢|ﬁ s =0, (Ad)

do
and if £ = —| 3=p,, the integral of Eq. (A3) is equivalent to

_ %ﬂeﬁomwo) _ /2%65, (A5)

The quantity S = 5y (E — F (fy)) fits to the definition of the entropy: dS = SydE and [y
thus fits to the definition of the actual temperature for a given E.

Now, the excitation energy of a nucleus follows roughly F = aT?. The volume can be
0Q dE

considered as fixed and thus dS = T =T = 2adT. Since the entropy should vanish at
T =0,
S =2aT (A6)
and
F:E—TS:—aTQ:—%. (A7)

It is then easy to calculate the density of states. One gets, from (A3) and (A7)

W(E) =1/ 227;31//22 exp {2VaE}. (A8)
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Better approximations yield different pre-factors, the exponential remaining basically the
same, with possibly a smooth energy-dependent a parameter.
The evaluation of a can be done most easily in the Fermi gas limit (in the grand canonical

ensemble). Then, the grand partition function writes

z (B) — Ze— B(E; — upZi — pnN;)

— B s (8 — pp) = B mg (e — pn)
= > e e (A9)

ny, Nog, ...

! !

Ny, Ny, ..

where we have distinguished between neutrons and protons, where p, and p,, are the proton
and neutron chemical potentials reapectively and where s and s’ label the proton and neutron

single-particle states, respectively. One has
hZ =InZ,+ InZ, (A10)

with

—B Ns ngp » »
nz=tn $ EE (Semi ) S (10 )

{n1,n2...}
(A11)
since the occupation numbers can be ng = 0,1 only for fermions. We now make the density
of single-particle states continuous for simplicity with density of states g;(¢),7 = p,n. One

has, generalizing (A11)

nhZ, = /oo degy(e)ln [1 + e’ﬂ(g’“”)]
0

= /up deg(e)en {ePEm) [1 4 i) }+/OO dzgy(2)en [1 + e=Piw)]
0
Hp ad " (A12)

g el beta(e—pp)
= —5/ gp(€) (e — pp) de + gple de
0 n:l n
- 9(e) D (=) e"ﬂ(s_“p)ds.
Hp n=1 n

The first integral is nothing but the (average)total energy at zero temperature minus y, times
the number of protons. The other integrals can be performed easily if g;(¢) is approximated

by its value at the chemical potential (Fermi energy) g¢;(i;) = ¢;- One has (taking account
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of the one-half spin of the nucleons)
7T2

nZ, = —B (E) — ipNN,) — 6% (A13)

where Eg is the energy at zero temperature. Since {nZ,+{¢nZz, is just —G = —3(F — uN),
1
one ends with (g = i(g],J + gn))

2 2

(9p + gn) = %g- (A14)

™

a=—
6

In a pure Fermi gas model for large nuclei

3A
= Al5
9(r) = 5 (A15)
where Tp is the Fermi kinetic energy (/38 MeV). One thus finally gets
A
a=-—MeV~! (A16)

16

More effects may be taken into account in level-density formula. Let us mention two of
them. In Eq. (2.39), only the randomized energy can be related to the temperature. The
collective energy should be subtracted from the available energy. This can rather easily be
done for rotational energy. Pairing effects are also playing some role, as they contribute to
the collective energy, but also because they can drastically change the single-particle level
density g(¢) around the Fermi energy.

We will also consider the density of p-particle-h hole states, based on a single-particle
spectrum with a constant density of single-particle states ¢g. In general, the density of states

pp(E) of p-particle states at energy E is given by

wlE) = [ pr©p(E - o), (A17)

since there are p ways of adding a particle. If p;(F) = constant = g, one readily gets

gPEP~!

oo(c) (A18)

and, of course, a similar expression for p,(F). Finally, the density of p-particle-h hole states,

with n = p + h is given by
FE
on(E) = [ pole)pn(E —e)de (A19)
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n

g E p—1 h—1
= ] /0 P E —¢)"de (A20)
gnEn—l
= - A21
ph(n —1)! (A21)

APPENDIX B: GLAUBER THEORY IN THE EIKONAL APPROXIMATION

Let us first consider potential scattering. The Schrédinger equation for the scattering

wave function can be written as
Atp + n*(P)k*p = 0, (B1)
2
with n(Mk = 4/k% — h—?V(f’) and E = h*k*/2m. The basic assumption of Glauber theory

is that for large k£ and small scattering angle, 1 is essentially a plane wave times a slowly

varying function. Writing ¢ = ¢*™, one has

Ay = ieié (quﬁ +i (%)2) ~ —c* (Vg)’, (B2)
neglecting higher order derivatives. Eq. (B1) simply becomes
N I VI
(Vo) =n*(Mk (B3)
whose solution is
8(7) = Fio+k [ n(F')ds' (B4)

where 77 is an arbitrary point, “long” before the potential domain. Choosing the z-axis along
the incident direction and 7" and 7 having the same transverse coordinate, one obtains
o(F)=kr+k [ [n(@F',2)—1]dz. (B5)

—

(fla —OO), TL

The point 7 can be taken “at minus infinity” ( 7',), without loss of

ﬁ
|

0

generality. Furthermore, for large £,

This leads to the following representation of the wave function (l; =7))
O(7) ~ exp {z’E.F— =" axvi, z')} . (B7)
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This function cannot be a good approximation everywhere, as it relies too much on ray
optics. It can be however a good approximation in the range of the potential. This is

sufficient to evaluate the scattering amplitude from the standard formula

0) = /d3 zkrv
10 = gz [ dre Vot -
= 2h2/d2b/ dze' PV bz)eacp{——/ szbz)}
T
The integral over z can be done analytically, using
VG eap (L [ a2V} =i e { L [ avE ). (B)
yz)exp )~ » z ) 2 ihv——exp z z
One gets
» L .
£(6) = ;—W / b7 {1 — PO (B10)
with the eikonal phase
» 1 gt
=—— . B11
x) =5 [ V(2 (B11)

This expression can be extended to multiple scattering, corresponding, in the frozen

approximation, to a generalized potential

V(i) = Yo - 7). (B12)

The corresponding eikonal phase is just the sum of the individual phases
J

where §; is the tranverse position (component of 7*; perpendicular to the incident direction).
One may transform back the individual phases to individual scattering amplitudes by in-
verting Eq. (B10). Of course, one has also to take the quantum average of position 7. We

just quote the result, which takes the same form for elastic or inelastic scatterings:
ik 27 iqb 3 - 3 .o .
Ff’((j) = _/d be'? /d 71...d°r 4 ¢f(7“1, ey T4)
A
— — b - 5 5
{1 B H ok /d2 O fy( 1)] } Gi(F1y .oy Ta)-

7j=1
Expanding the curly brackets allows to decompose the amplitude into single, double,...

(B14)
1 _

scattering contributions.
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