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A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar
sector, is studied in the framework of relativistic quantum constraint dynamics with the
Todorov choice for the potential. Case’s method of self-adjoint extension of singular
potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is
found that, as the coupling constant o increases, the bound state spectrum undergoes
an abrupt change at the critical value o = ac = 1/2. For a > @, the mass spectrum
displays, in addition to the existing states for o < ac, a new set of an infinite number
of bound states concentrated in a narrow band starting at mass W = 0; all the states
have indefinitely oscillating wave functions near the origin. In the limit a — a. from
above, the oscillations disappear and the narrow band of low-lying states shrinks to a
single massless state with a mass gap with the rest of the spectrum. This state has the
required properties to represent a Goldstone boson and to signal spontaneous breakdown
of chiral symmetry. :

1. Introduction

The question of the possible existence of an ultraviolet stable fixed point in QED
was investigated long ago by Gell-Mann and Low' and developed later by several
authors.2~% If such a point were to exist, then the electron mass would be entirely
dynamical in origin,?~* with a possible spontaneous breakdown of chiral symmetry.’
Although perturbation theory calculations do not seem to point to the existence of
such a solution, quenched lattice QED calculations displayed the existence of a
phase transition at the critical value a. ~ 0.3 of the coupling constant «, with the
occurrence of a spontaneous breakdown of chiral symmetry.® These observations
were also confirmed with unquenched lattice caleulations,” with a, ~ 0.4, but a
vanishing of the Callan-Symanzik function 3 was not found there and the question
of the validity of QED as a nontrivial consistent theory in the continuum limit was
raised.
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On the other hand, it is possible, in the continuum theory, to analyze a partial,
but simpler, aspect of the phase transition problem. namely that of the bound state
of strongly coupled positronium. If the ground state of the corresponding spectrum,
for some value of a, were massless, then this would be the signal of a possible sponta-
neous breakdown of chiral symmetry and the prelude of a phase transition in QED.
This result would not be, however, sufficient by itself to ensure the vanishing of the
Callan-Symanzik 3 function, which should be shown by independent calculations:
only in this case could the consistency of the whole procedure be guaranteed.

The above considerations have motivated us to further study the problem of
strong Coulomb coupling®® in the framework of relativistic quantum constraint
dynamics (RQCD).!%!! Let us emphasize, however, that the equations of RQCD in
this paper do not include vacuum polarization and radiative correction diagrams, so
that their consequences would be highly conjectural when applied to positronium
in strongly coupled QED. One may however hope that these effects would bring
quantitative changes only, leaving the qualitative aspects of the critical properties
unchanged.

RQCD provides a manifestly covariant three-dimensional description of the in-
ternal motion of two-body systems and can be shown to be equivalent to a three-
dimensional reduction of the Bethe-Salpeter equation.> When the approximation
of local potentials is made, the corresponding wave equations can be analyzed rather
easily and in many cases analytic solutions can be obtained. It was found that the
Todorov form of the electromagnetic two-body potential, first introduced in the
quasipotential approach,'® leads to the existence of a critical value of the coupling
constant, with a, = 1/2. For a > a., the potential becomes too singular and needs
some regularization, provided by a cut-off radius rq in the Coulomb interaction.
In the regularized theory, the bound state mass spectrum displays, for o > 1/2, a
rapid fall of the ground state mass to values close to zero, thus indicating a drastic
modification of the qualitative features of the bound system and presumably of the
theory itself. The above procedure requires, however, a numerical treatment of the
equations and makes it difficult to ascertain the existence of solutions for vanishing
values of ry.

The presence of a cut-off radius in the Coulomb interaction needs, in general, an
adequate interpretation. As long as one studies the behavior of charged particles
in supercritical Coulomb fields of heavy nuclei, the finite size of the latter naturally
regularizes the Coulomb interaction at short distances. If, on the other hand, it is
the strong interaction of pointlike particles that is considered, then the meaning of
7y remains unclear.

A similar problem also occurs with the Bethe-Salpeter equation in the ladder
approximation. It has been shown'# that, when the coupling constant « is larger
than a critical value a. (~ 7/3 in the Landau gauge and ~ 7/4 in the Feynman
gauge), the theory undergoes spontaneous breakdown of chiral symmetry. However.
for @ 2 ., the treatment and resolution of the equation necessitate the use of
an ultraviolet cut-off A. While the introduction of the latter can naturallv be
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justified in QCD as being an approximate way of parametrizing the asymptotic
freedom of the theory,'® it has not received a simple interpretation in QED. In
this respect, Miransky et al.l® suggested that, for a > ., QED undergoes an
additional charge renormalization that absorbs the infinities of the pointlike limit;
the renormalized charge remains equal to a. and then might be identified with
the ultraviolet fixed point of QED. It was also pointed out in this connection®”*®
that, for o = a., because of the new renormalization of «, the fermion composite
operator 1) acquires the dimension 2 instead of 3, and thus allows for the presence
of renormalizable four-fermion interactions.

In quantum mechanics, there exists an alternative method for dealing with sin-
gnlar interactions of pointlike particles, without the need of introducing cut-offs: this
is the self-adjoint extension method, discussed a long time ago for singular poten-
tials of the type 1/7" (n > 2) by Case.l® In his classic paper, Case showed that all
self-adjoint extensions of the Klein—-Gordon-Coulomb (or Dirac-Coulomb) problem
can be parametrized by a single constant B when the interaction becomes singular.

While Case’s method is only of academic interest for problems concerning
supercritical Coulomb fields of heavy nuclei, the size of the latter providing a
natural short distance cut-off, it reveals its full power in the present problem
of strong Coulomb interaction of pointlike particles. The self-adjoint extension
parameter B can be interpreted as parametrizing the short distance behavior of
the interaction and its choice amounts to fixing the energy of one of the bound
states (the values of the masses of the constituent particles of the bound states and
of the coupling constant o being already fixed) and calculating the other bound
state energies with respect to this one, without making explicit cut-offs appear.

In the case of § function interactions in two and three space dimensions, it was
shown?® that the self-adjoint extension method provides the renormalized version of
the theory, when the cut-off of the regularized theory is removed and a corresponding
renormalization of the coupling constant is performed. It is then natural to expect
from the same method of approach, applied now to the 1/7? singularity, to also
provide the finite renormalized version of the theory, provided one of the bound
state energies is fixed.

Motivated by these results, we have investigated with Case’s method of self-
adjoint extension the problem of strong Coulomb coupling in positronium-like sys-
tems. The relativistic wave equations of constraint theory, which, from now on,
will be referred to as the Todorov equation, lead, for the relative motion in 15p
states to a final three-dimensional equation which is very similar in form to the
Klein-Gordon (KG) equation,’ and therefore Case’s method can be readily applied
to it.

Our main results are the following: We find that the system undergoes a first-
order chiral phase transition at the critical value o = o, = 1/2. While the ground
state mass for a < 1/2 can be continued to the domain o > 1/2 and remains
different from zero, a new set of an infinite number of states, concentrated in a
finite domain of mass with accumulation at the value zero, appears, the zero mass
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state representing the new ground state of the system. This result occurs for any
fixed value of Case’s constant B. All the states have indefinitely oscillating wave
functions near the origin. While tachyonic solutions formally exist, they are ruled
out from the spectrum by the self-adjointness condition, and therefore the zero mass
state remains the physical ground state of the spectrum.

In the limit o — o, from above, the short-distance oscillations disappear from
the wave functions, and the states accumulated around the zero mass solution shrink
to a single massless state with a definite mass gap with the rest of the spectrum. It
turns out that the latter state has the required properties to represent a Goldstone
boson and hence to signal a spontaneous breakdown of chiral symmetry. The fact
that for o > a. a sensible theory, with finite and nonvanishing couplings to the
observable currents, can be defined only for & = a,+0 strongly suggests the possible
identification of a. with an ultraviolet stable fixed point of the theory, with the
distinction between two phases, governed by a. — 0 and a, + 0, respectively, and
joined to each other by a first-order chiral phase transition.

The paper is organized as follows: Section 2 discusses Case’s method for Klein—
Gordon particles in an external Coulomb field and is included to make the paper
self-contained. Section 3 is devoted to the study, in the framework of RQCD, of the
strongly coupled positronium spectrum in its pseudoscalar sector. Section 4 deals
with the question of an eventual appearance of tachyonic states in the spectrum of
states. In Sec. 5, the limit o — a+0 is considered and the presence of & Goldstone
boson established. The summary and discussion of results follow in Sec. 6. In the
appendix, some results of RQCD are summarized.

2. Case’s Method for the Klein—Gordon Equation

For the sake of completeness and for easy comparison with RQCD, we discuss here
Case’s method!® for a Klein-Gordon particle of charge e, mass M and energy E
in a Coulomb potential V(r) = —aZ/r. We have @=1/137 and A = ¢ = 1 in our
system of units. The radial KG equation for s-states is

2EaZ  oPZ?
; + u=0.

(1)

u’ + {E2 - M? + 5

r
From Eq. (2.1) one derives the orthogonality condition for two solutions u; and wus
of energy Ey and Ey (Ey # BEs):

1

ot 2aZ
(ur,uz)re = 5/ <E1 +Es + %——) Uy dr
0

o0

=0. (2)

= :'2'(162,“&1 - U«1/U2)
0

Note further that the KG norm is given by

(w,u)xkg = /Ooo (E + 9—?—) w? dr. (3)
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For aZ > 1/2, the square integrable solutions of Eq. (2.1) (vanishing at r = oc)
are given by

WE,7) = Wi(p)., (4)
where ¢ is a normalization constant, Wy, is the Whittaker function® and where
p=2(M> - E?)%r, (5)
EaZ
k= v — (6>
(M? — E?)3
w= i\, )\:(QQZQ——> : (7
4
Using the formula:*!
I D(=2p) 1 I'(2u) 1o
lim Wy =gt e T 8
piO k,u(p) F(%W[L“k)p F(%;—}*LL—]{?)IO ; ( )
one finds:
lim  ~ p% cos(B + Alnp), (9)
with r(_2i\)
—2
g =arg ———r""% . 10
ey (10)

It is easy to verify that the general behavior of the solution of Eq. (2.1) close to
r =0 is given by:!®
lim u ~ 7% cos (A\ln(Mr) + B) (11)

r—0
where B is an arbitrary constant. Comparison of Egs. (2.9) and (2.11) yields the
relation:

arg (1 — 24A) + g —argl (% e k>
(M2 ~ B)

+Aln2+ Aln i

=B+nw, (12)
where n is an arbitrary integer. Furthermore, it can be shown'? that keeping
the same value of B for all states guarantees the orthogonality condition (2.2).
Therefore, choosing the value of B provides a self-adjoint extension of the KG
equation and allows us to obtain the corresponding spectrum by solving Eq. (2.12)
for E. Notice that this equation is invariant under adding to B any multiple of =
and, therefore, it is sufficient to consider the values of B in the interval [0, 7].

Tt is of interest to investigate the small A behavior of (2.12). Using the formula:*?
argT(z +iy) = yu(a) + > Y arctan —— |, (13)
' r+n T+n

n=0
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where
IM(x)

NGO

Yla) = (14)

one finds from Eq. (2.12):

T (1 E2 5
—2)\@9(1)+5+/\w 5 k] +An2; 1—M2+O(/\~):BA (15)

(Without loss of generality, we can drop the n7 term for small values of \.) For
this equation to be satisfied (for B # §), as A — 0, it is necessary that

lim )\u‘?‘(1 — k> =B -

(16)

[N

or that 1
imk=pts, (an)

where p is any nonnegative integer. Using Eq. (2.6), it is easy to see that one

recovers the usual (¢ = 0) spectrum of the KG equation for aZ tending to 1/2 from

below. This means that the spectrum is continuous through aZ = %— for any value

of B # . However, the slope of the energy curves (in A or aZ) is not continuous.

For small values of A, one can show that the eigenvalues correspond to the following
behavior:

E(A) ~p+ = + 2 .

Prs ™5
On the other hand, for B = 7, another state with no correspondence with the
spectrum for a2 < % appears. Its energy is given, from Eq. (2.15), by the equation

1/,1 k In24/1 £ 20(1) =0 19
b5 k) +m2y1- S5 - 20() =0, (19)

and has the value E/M ~ —-0.049.

We now turn to the question of a possible instability of the system, described
by the KG equation (2.1) with a pointlike attractive Coulomb interaction, with
respect to the spontaneous pair creation. This would correspond to the existence
of a critical value of Z = Z, such that E(Z,) = —M, or, according to Eq. (2.6),
k = —oo. To see whether such a solution of Eq. (2.12) exists for small values of ),
it is advantageous to transform the third term of Eq. (2.12) by using the following
formula:??

(18)

ImInT(z +iy) = argT(z + iy)

1 1 ?
= (;zf—— 5) arctan%—i—y{ln:c-# Eln {1—% (%) } —y

Y 1 1
Y L batab) - b, 2
5022 +47) T 3600 1ago (P +abi) } (20)
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with
x y Y x
= — ~aq — by, = — sa; + 501,
T T T A R IR
9 2 (21)
o = e -y by = 2xy
LT @ g LT 22
One finds, using Eq. (2.12) for large values of |k| and Euler’s constant v = —¢(1) =
0.57721 ..., that the critical value of Z, is given by
ey + AcIn(20Z.) + ON2) =B~ ., (22)

where A, = (a?Z2-1/4)1/2. Note the cancellation between the two terms containing
In(M? - E?) in Eq. (2.12). From Eq. (2.22), we see that a critical value of aZ =
aZ. > 1/2 can only occur for B # 5. Also note that A is exactly 0 if B= %, and
will be larger and larger if B is increasing. There is no solution of Eq. (2.22) (at
least for small values of \.) for B < Z, as the left-hand side should be positive. The
above comments are illustrated in Figs. 1 and 2 which show respectively how the
energy of the lower bound states vary with A for B = 1.56 < T and B=158> %
respectively. One can see that no instability will occur (i.e. no state with £ = —M)
for A < 2 in the first case (B < %), while, for B > %, there is a state with energy
E = —M for A ~ 0. Furthermore, the solution given by Eq. (2.19) corresponds (for
small A\) to the boundary case B = m/2 between the two domains B < 7/2 and
B> /2.

Fig. 1. £ = 0 spectrum generated by Case’s method for solving the KG equation (2.1) in the strong
coupling case (.Z11/2), with Case’s constant B = 1.56. The variable A is defined by Eq. (2.7).
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Fig. 2. Same as Fig. 1, with B = 1.58. The eigenvalues for all states, except the lowest one, are
continuously continuing the eigenvalues for a2 < 1 /2.
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Fig. 3. Wave function of the lowest state generated by Case’s method for solving the KG equation
(2.1), with «Z = 1 and Case’s constant B = 1.58, corresponding to the dot~dashed curve in Fig. 2.

For the KG equation, the sign of the KG norm unambiguously distinguishes
between particle and possible antiparticle bound states. We have calculated numer-
ically the norm of the states of E ~ —M wave functions and established that they
are indeed particle states. We further show in Fig. 3 the radial wave function
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corresponding to the lowest state for «Z = 1 and B = 1.58 (the dot-dashed curve
in Fig. 2). It, of course, displays an infinite number of nodes consistent with the
behavior (2.9), but the outermost of these nodes occurs at a distance representing
a rather small fraction (here, it is of the order of one tenth) of the “radius” of the
state. Globally, the wave function has a “nodeless” structure, typical of a ground
state wave function.

We thus find that the stability property with respect to pair creation of a
Coulomb source with vanishing radius and charge Z > 137/2 crucially depends
on the choice of the self-adjoint extension characterized by the constant B. In prin-
ciple, this constant should be determined by comparison with experimental data.
However, the case of physical interest corresponds here to a finite radius R of the
source and has been extensively discussed in the literature.?* We shall not pursue
further the investigation of this academic problem. Let us simply note that the
Coulomb field of a charge with radius R satisfying MR <« 1 is supercritical for
aZ > aZ, = 1/22 so that the choice B > /2 would be mandatory to reproduce
finite radii results.

3. The Todorov Equation

We now consider the problem of two particles of equal mass m and opposite charges
with spin one-half, in mutual electromagnetic interaction. Within RQCD the 1S5,
states of the system with the Todorov choice of the interaction'® are described in
the c.m. frame by the radial equation®?® (see also the appendix):

d2

— ot m2 — (ew — A(r)) @ =0, (23)
with
83
Alr)y = —— 24
(r) = (24)
W2 — 2m? .
W oW (25)
2
m
YA TS e 2
mu W (26)

W being the c.m. energy of the two-body system. Equation (3.1) correctly describes
the physical positronium 'Sy energy levels to order a*,!%!! with a being the fine
structure constant. Our interest is in the solution of Eq. (3.1) for large arbitrary
values of a. From now on, we shall consider « as a free parameter.

As Eq. (3.1) is very similar to the Klein—Gordon equation (2.1), Case’s method
can be readily applied to it to obtain its solutions in a similar way. From Eq. (3.1) we
find, for two square integrable solutions 1 and s of energy Wy and Wy (W # W),
the orthogonality condition:

oo

1
(p1,92) = 5(992’#91 —i'ea)] =0, (27)
4 0
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where the scalar product is now defined by:

< W 1+ m/72 2‘1’)’&2
D1,¢2) = = = A 14 ] {p10n dr. 28
(1, ¢2) /0 [ 1 (v )( =+ Wi, Y12 ar (28)
The conserved norm N corresponding to Eq. (3.6) is given by:

. < IW 2m? .
N = /0 <7 — A(r) (1 + ;;2 ))L,OZ dr. (29)

For o > 1/2, the solutions of Eq. (3.1), vanishing at r = oo, are given by:

o(r) =Wy ,(n), (30)
with
7 agw _ o(W?—2m?) (31)
T (mE - )T WEAmE - W2
1\ /2
= 2Kr s (33)
K = (miy = bV = S (am? = W22, (34)

As r — 0, the wave function ¢(r) exhibits the behavior described in Egs. (2.8),
(2.9) and (2.11) (with % replaced by k). Choosing the same value of B for all
the wave functions guarantees the validity of the orthogonality condition (3.5) for
Wy # Wy. The corresponding energy spectrum is then given by a relation similar
to Eq. (2.12):

. T 1. - 2K ~
argf(l—?w\)—!—;—argl“ 5-1/\—/«3 +Aln — =B4nn. {35)
2 m

It is easy to see, using Eqs. (2.13) and (2.14), that, for small values of A, there

are solutions of Eq. (3.13) corresponding to

lim &k =p+ (36)

A—0

AR

where p is any nonnegative integer, meaning that the o < % spectrum?® is extended
continuously through a = 1.

On the other hand, Eq. (3.13) possesses a new set of solutions with energies
located in the positive vicinity of zero. To exhibit them, we consider small values of
A and large negative values of &, corresponding to small and positive values of W
[see Eqs. (3.9) and (3.12)]. Using Eqs. (2.20) and (2.21), we can rewrite Eq. (3.13)

in this case as
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- 2K ;
— 22+ Aln (l—k> + Aln <~——-\:-) +0ON) =B - z-{—nﬁ.,
2 m 2

or, using Egs. (3.9) and (3.12), as

7

—2X— /\ln(
m

a) +AIn2+ 0\ =B -
There are thus solutions of vanishing W as A — 0:

—Aln (z{—a> —~ B - T +nm,
m 2

Le. W
A ~ a—le—-(B-{—nﬂ-?r/Q)/A .

m

5313

(37)

(39)

(40)

wheren =0,1,2,...for B>w/2and n=1,2,3,... for B < x/2 (the reason being
that the right-hand side of Eq. (3.17) should be positive for small values of W).
The absence of these new types of solution in the Klein—Gordon equation case is
due essentially to the fact that in Bq. (2.12) the term In((M? — E*)'/2 /M) cancels,
in the limit £ — —M, the contribution coming from the large negative values of
k; no such cancellation exists in the present case, for the equivalent parameter K

[Eq. (3.12)] remains finite and different from zero in the limit W — 0.

TODOROV

W/ M

Fig. 4. £ = 0 spectrum generated by Case’s method for solving the RQCD equation (3.1) in the
strong coupling case {&11/2) and for Case’s constant B = 1.57. The A parameter is defined by
Eq. (3.10). All curves above and including the heavy bold curve are counected continuously to the
spectrum obtained for a tending to 1/2 from below. As indicated in the text, all the other curves
are merging to the origin of the axes as A — 0 (only the explicitly calculated parts are shown).
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TODOROV

1.5

W/ M

0.5

Fig. 5. Similar results as in Fig. 4, but for B = 1.58. The same conventions have been used.

Equation (3.18) shows that, for a fixed value of B and sufficiently small A, there
is an infinite number of states concentrated in a narrow band of energy and having
the zero energy as an accumulation point. Clearly, the zero energy state is the
new ground state of the bound state spectrum. The energy spectrum given by
Eq. (3.13) is plotted in Figs. 4 and 5 and illustrates the above comments again for
values of B < 7/2 (Fig. 4) and B > /2 (Fig. 5). Only a few states corresponding
to Eq. (3.18) are shown.

4. The Fate of Tachyons

To complete the analysis of the energy spectrum, we discuss in this section the ques-
tion of the status of tachyonic states. The presence of such states in the spectrum
of physical states would invalidate the conclusions of Sec. 3, since the zero energy
state would no longer represent the ground state of the spectrum, the latter then
displaying rather the characteristics of an unstable vacuum.

Tachyons are characterized by negative values of W2, i.e. by imaginary values of
W . Inspection of Egs. (3.9) and (3.12) shows that in this case & becomes imaginary,
while K remains real.

Equation (3.1) still has the Whittaker functions Wy , as normalizable solutions.
We define

k=1in, (41)

and examine the behavior of the wave function near the origin; it is given by
Eq. (2.8):
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19

D20 peon, _ TON  aoo
(L —iX—in) I(3+iX—in)
In order to display the main qualitative features of this type of solution, we

consider, in the following, large values of |g|, while keeping A small. Then, the
functions I'(§ & ¢) — in) can be expanded in terms of iA:

W;l:z,# ~ (42)

2

L

1 1 »
P(; + i — '2177) ~ r(— - m) eElA I [nl+e(m)an/2) (43)

[e(n) is the sign of ,] leading in turn to the following behavior of Wi

1

- Sy _iMIn s € w/2 L)
Weaule) = F gy D200 rrelmAn 2 s
2
+F(Qi)\>e~z}1n{n}—e(n)/\vr/Q.p%——iA} ) (44)

The wave function o has the same formal behavior as in Eqgs. (2.9) or (2.11),
with 3 defined as ,
B = arg T(=2i)) + Aln|n] — ie(n) A% - (45)

Notice that 3, and hence B, is complex.

In order to study the orthogonality conditions for these states, we observe that
when tachyons exist, there is a doubling of states: for each “eigenvalue” iz, the value
—1in is also a solution. The rules of constructing scalar products for such states have
been studied in the two papers of Ref. 25. For a state with complex “eigenvalue”
in one also considers the state with the complex conjugate “eigenvalue” —iz, called
the associated vector. While the norm of a state with complex eigenvalue is zero,
its scalar product with its associated vector is nonzero.?> Therefore, the following
rule should be adopted for the choice of admissible states. Define admissible states
as those corresponding to a definite sign of 5 in the “eigenvalues” in. Then, the
corresponding adjoint states in the scalar product are the associated vectors (with
“eigenvalues” —in); these appear there complex-conjugated.

The analysis of Case can then be repeated for the tachyonic states. Once the
same complex value of B is chosen for the tachyonic solutions, then these will satisfy
among themselves the orthogonality conditions (3.5) and might constitute admissi-
ble states. [Notice that associated vectors cannot be considered as admissible states,
for, according to Eq. (4.5), they would not have the same value of B; they appear
only as the adjoints of admissible states] However, the orthogonality condition
(3.5) fails when considered between a tachyonic state and a “normal” state (with
W2 > 0 and W > 0), because the coefficient B cannot be chosen as the same for
both types of solution (it must be complex for the former and real for the latter).
This is the reason why tachyons are rejected from the Hilbert space of physical
states.

Therefore, we end up with the conclusion that the physical spectrum is free of
tachyons and its ground state is the zero energy state.
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5. The Limit o — % + € and Spontaneous Chiral Symmetry Breaking

The occurrence of a zero mass ground state, with the quantum numbers of a pseu-
doscalar boson, in the bound state spectrum is suggestive of spontaneous chiral
symmetry breaking. However, the oscillatory nature of the wave functions near the
origin makes it difficult to define their couplings to the axial vector current. Fur-
thermore, the accumulation of an infinite number of states around the zero mass
state [Eq. (3.18)] does not allow the disentanglement of the ground state from the
rest of the states of its neighborhood.

Within these circumstances, the limiting value o = % +¢ (e = +0) plays a
particular role for a physical interpretation of the theory. In this limit, the oscil-
lating behaviors of the type (2.9) or (2.11) disappear from the wave functions and,
according to Eq. (3.18), all the low mass states shrink to a single state with zero
mass. A definite mass gap appears between the zero mass ground state and the
other massive states of the spectrum.

To study in more detail the properties of the corresponding wave functions, it is
preferable to reanalyze Eq. (3.1) for the particular value @ = %+e. The normalizable
solutions are the Whittaker functions Wj ,, which behave near the origin as

Wi o(p) = TNk D (m 20 + u( —k+ %) - 2@(1)) , (46)

3
the various parameters and variables being already defined in Egs. (3.9)-(3.12),
while the general behavior of the solutions of Eq. (3.1) is

(2p)}/?
+

; (47)

o~ 712 (aln(mr) + b)

where ¢ and b are constants.
The orthogonality condition (3.5) requires from the admissible normalizable
solutions to satisfy the condition

—=A, (48)

A being the same (arbitrary) constant for all the solutions. Equation (5.1) then
yields the eigenvalue equation:

In (3{‘—> +¢(—i§+3> —2p(1) = A. (49)
m 2

In order that the corresponding solutions be the limits of those found for o > 1/2
[Eqgs. (3.14) and (3.18)], it is necessary that the constant 4 equal +oc. One therefore
finds again the solutions (3.14), as well as the additional single solution 11~ = 0.

corresponding to k — —oc.
The infinite value of A means that for the solutions of the type (3.14) the
logarithmic piece in Eq. (5.2) is absent and the corresponding wave functions behave
as 71/2 near the origin. This is not true for the solution corresponding to W™ = (.
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for the limit £ — —oc cannot be straightforwardly taken in the Whittaker function
Wi o To analyze more accurately the properties of the corresponding wave function,
we consider small values of W (W = Wy ~ 0), make in Eq. (3.1) the change of

variable ,
mar
Y= T, 50
V=T (50)
and keep only leading terms, it being understood that the limit Wy — 0 should be
taken at the end of calculations of physical quantities. Equation (3.1) becomes at

leading order in W,

d? 1 1 .
—_—n — = 0o =0. 51
GEf T T e =0 (51)
the solution of which is
2 1
0o = comyte2v" ‘11(5,1.,4';/1/2) . (52)

where ¢p is a dimensionless normalization constant and ¥ (also denoted by U in the
literature) is the confluent hypergeometric function which behaves at infinity with
a power law;*! its dominant behavior near the origin is given by

1 1 .
algl_n})@(%lx) = —P—@—)—(lnm—i—@b(é-) —2‘2/;(1)) . (53)

The solution (5.7) is a nodeless function and represents the ground state of the
spectrum. [The function ¥(a,c;x) does not have positive zeros for a and ¢ real and
either a > 0 or a —c+1 > 0. Also, it can be checked that the formal tachyonic
solutions, found in Sec. 4, are absent in the present case.] Tt has a distribution-like
behavior, due to the fact that it is defined by the limiting procedure Wy — 0: taking
the limit Wy — 0, while keeping r fixed, shows that the wave function is actually
peaked at the origin (recall that the complete wave function is ¢/r).

To compute the normalization constant of this wave function (as well as of the
others), it is necessary to recomstruct the whole sixteen-component spinor wave
function and to use its relationship with the Bethe-Salpeter wave function, which
ultimately fixes the normalization coefficients. Some details of these calculations
can be found in the appendix. One finds for the norm N of Eq. (3.17) the expression:

w2
N = o (54)
where W is the mass of the bound state.

As to the massless state, after using the change of variable (5.5) in Eq. (3.7),
we find that the dominant contribution for small W comes from the third term in
the integral. This leads to the following behavior of the normalization constant ¢,
of the wave function ¢q(y) [Eq. (5.7)] for small W:

co ~ W /m?. (55)
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We now turn to the calculation of the coupling constants of the bound states to
the axial vector current. These are defined as

(lif5(0)|P) = B.F, (56)
where P is the four-momentum of the pseudoscalar state and 7 55 is the renormalized
axial vector current. In general, in the absence of anomalies, the axial vector current
undergoes only a finite multiplicative renormalization by radiative corrections.?®
This feature is, however, the result of compensating contributions from propagator
and vertex renormalizations (with factors Z, and Z7', respectively). More ex-
plicitly, one has

Jus = 2223 5l% (57)

where j,5 is the unrenormalized current, with ZQZ;{I finite.

27 and renormalization group analysis®®

From operator product expansion
one finds:

(O551P) = =24 Tr o750 (2)] (58)

where ¢pg is the Bethe-Salpeter wave function. Using the relationship of the
constraint theory wave function 9 with the Bethe-Salpeter wave function ¢gs
[Egs. (A.6)—(A.8)] one obtains (in the c.m. frame):

=07

: 20\ 2 ,
OIP) = ~Za T (14 ) wt) (59)
T 7r—0
20\ M2 &m
7 = 2 _— ) ) = fiA—
WF Z 4 (1 + T/Vr) Tr 14 (r) . Z 4 W.Tp(r) . (60)

The renormalization constant Z,4 should render finite the physical coupling
constants F. Let A be the ultraviolet cut-off (in momentum space) of the four-
dimensional theory and let 7y be the corresponding short-distance cut-off (in z-
space) of the three-dimensional theory. We shall admit the weak relation

Alim ro{A) =0, (61)

and shall transpose several known qualitative results of the four-dimensional theory
into the three-dimensional one. When r¢ # 0, the electron has a bare mass mo(ro)
that vanishes with ro with some power v:%4

Iim0 mol(re) ~ m{mrg)”, v>0. (62)

o

For mg # 0, the Ward identities of the axial vector current imply that the Goldstone
boson acquires a mass Wy, which behaves in terms of mg as®?52°

limo Wi(rg) ~mo(re)m. (63)
ro—
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We shall assume that v < 2; because of Eq. (5.18), it is only in this case (including
eventually the limiting case v = 2) that the wave function (5.7) can be consistently
defined. As a matter of rough comparison, the analog of v in the four-dimensional
theory, calculated at the two loop level, is equal to 3a/(27) 4+ (3/4)(a/(27))? ~ 0.25
for a = 1/2.24

We designate by W; and F; the mass and coupling constant of a massive
state of the bound state spectrum and by W, and Fj the similar quantities of
the ground state (the Goldstone boson) when rq # 0. Taking into account the
behaviors of the corresponding wave functions near the origin [p) ~ mey(mr)t/2,
o ~ meg(mPr/Wo)t/2 In(m?re /W), Eq. (5.15) leads for the two cases to the fol-
lowing equations:

8m3c1
Fi=Z4—n—r 4
1 A W"?(m’f’o)l/Q 3 (6 )
o 3 1 oy 2 A7
Fy = ZASm co In(m2rg /Wy) (65)

W’g (Y/ro Ty )1 /2

In Eq. (5.19), ¢; is a nonvanishing normalization constant in the limit ry — 0, while
the behavior of ¢y in Eq. (5.20) is given by Eq. (5.10). In order to maintain finite
the value of Fy in the limit rg — 0, we must have:

Zy ~ (Worg) 2/ In(mrg) ™" ~ (7nT0)%+%/1D(’ano>_1 . (66)

Replacing Z4 in Eq. (5.19) yields F; = 0. Therefore we obtain, when ro — 0, the
following behaviors of the coupling constants:

Fy#0, F=0. (67)

These are precisely the complementary conditions for having spontaneous break-
down of chiral symmetry: only the Goldstone boson couples to the axial vector
current.

The behavior of Z4 when ro — 0, given by Eq. (5.21), is in qualitative agreement
with its behavior in the four-dimensional theory: in the Feynman gauge, Zs, and
hence Z4, vanishes when the ultraviolet cut-off A goes to infinity.*

We can also calculate the matrix elements of the divergence operator 9* Jus;
actually, this should only lead to a check of the covariance property of the formalism.
We find:

(0l0*j % P)

i

R, ) 20\ 7 v
— W F = —Z42im{ 1+ e Tr y59(r)

r—0

v
Z

Wy

-1 X
= —Z 4im (1 + ) Tr s(r) = ~ZA8»im—f (68)

r—0 r—0
which yields back Eq. (5.15). [In obtaining the above results, the wave equations

of ¥ have been used; similar calculations can be found (see the second paper of
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Ref. 11). According to Egs. (5.22), for all states of the bound state spectrum, the
matrix elements (5.23) vanish, thus ensuring axial vector current conservation.

We end up with the conclusion that, in the limit a = % + ¢, the theory displays
the features of spontaneous chiral symmetry breaking: (i) the presence of a zero mass
ground state in the spectrum, with a mass gap with the rest of the bound states;
(ii) a nonvanishing coupling of the Goldstone boson to the axial vector current with
a decoupling of the massive states from the latter.

For completeness, let us also describe the situation that results from the limit
o= % —¢. For o < %, the positronium spectrum has the usual structure,® the same
as for small o, without massless bound states, and the limit o — % from below
does not introduce any qualitative changes, the ground state remaining massive. In
this case the renormalization constant Z4 is determined from the finiteness of Fy
[Eq. (5.19)]. The latter should be different from zero; otherwise, the axial vector
current would be conserved and, in the absence of a Goldstone boson, chiral sym-
metry would be realized through its normal mode, implying a parity doubling of
degenerate states; this is not realized in the bound state spectrum; furthermore, in
QED, with only electrons as massive fermions, this also is not possible. We there-
fore conclude that for a = -12— —¢, the axial vector current is not conserved and chiral
symmetry is explicitly broken by the electron mass.

6. Summary and Discussion

We applied Case’s method of self-adjoint extension of singular potentials, to the
study of strong Coulomb coupling in the pseudoscalar sector, in the framework of the
Todorov equation. We found that, as the coupling constant o increases, the bound
state spectrum undergoes, at the critical value o = a. = 1/2, an abrupt qualitative
change. For o > a., the mass spectrum displays, in addition to the existing states
for o < ¢, anew set of an infinite number of bound states, concentrated in a narrow
band starting at mass W = 0. The bound states have indefinitely oscillating wave
functions near the origin.

In the limit &« — a. from above, the short-distance oscillations disappear and
the states accumulated around the zero mass state, shrink to a single massless
state, representing the ground state of the spectrum, with a definite mass gap
with the rest of the states. This state has the required properties to represent
a Goldstone boson and hence it signals a transition to a new phase where chiral
symmetry is spontaneously broken. It is tempting to relate this feature to the
expected possibility from the existence of an ultraviolet stable fixed point in QED
and is therefore suggestive of an identification of the critical value o, with the
Gell-Mann-Low eigenvalue ag. The fact that the two boundary values a. — ¢ and
a. + € correspond to different phases, the former governing a phase where chiral
symmetry is broken by the electron mass term and the latter governing a phase
where chiral symmetry is spontaneously broken, necessitates the introduction of &
similar distinction for oy, with boundary values ag — € and g + €, with the scarch
for the relevant domains in the theory.
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In the model potential we were considering, the contribution of the one-photon
exchange diagram, besides kinematic factors, is represented in the three-dimensional
theory by a/r, which means that no distinction was made between the large- and
short-distance behaviors of the effective charge (the physical coupling constant o
being, in general, determined from the large distance behavior of the photon propa-
gator). In order to be able to determine the domains of each of the above phases with
respect to the values of the physical coupling constant, we define the effective charge
in four-dimensional momentum space*™® as a.g(—¢? /m?) = ad(—¢?/m?,a); dis the
Lorentz invariant part of the transverse part of the photon propagator multiplied
by ¢%; « is the physical coupling constant, measured at large distances: a.g(0) = a.
The asymptotic value of aeg is o [egr(00) = p), at which value the Gell-Mann—
Low function ¢ vanishes. Because of the positivity of the photon two-point spectral
function, one has in general the inequality aeg(—g?/m?) < ag for ¢ < 0,° which
implies in particular that o < ayp.

Another particular value of « is provided by the zero of the Callan-Symanzik
function 3, which we denote by a1, with oy < ayp, satisfying a;d*(1,a;) = aq,
where d*° is the asymptotic part of d. If radiative corrections are estimated to be
of the order of a/n in general, then, for a ~ ap = 1/2, they are of the order of
20% and ; should be of the order of 0.4. It was shown by Adler® that, according
to the ways of summing diagrams, either oy or aqg are essential singularities for the
corresponding defining functions (5 or ¢'). The value o appears then as a natural
separation point between two subdomains in the domain of variation 0 < a <
ag. The following scheme might provide a possible description of the conditions of
occurrences of each of the phases mentioned above.

When 0 < a < aq, the asymptotic behavior of the photon propagator is governed
by ap — € and we are in the phase where chiral symmetry is broken by the electron
mass. In this phase, the renormalized vertex function mI® (defined in Ref. 5),
corresponding to the divergence of the axial vector current, is different from zero
and the axial vector current is not conserved (in the absence of anomalies). The
structure of the two-body spectrum is the same as for small values of «, with a
massive ground state.

When a jumps from «; — € to a1 + €, this induces, through the relationship
between the 3 and v functions, a similar jump of the bare coupling constant from
ap —€ 10 ag + € and we enter the phase where chiral symmetry is spontaneously bro-
ken. In this phase mI” is identically zero and the axial vector current is conserved.
The two-body spectrum has now, in addition to the existing states for a < ay, a
massless ground state.

When « > g, because of the positivity condition already mentioned, the uni-
tarity of the theory breaks down.

Our conclusions also join those obtained by Miransky et al.'® from the Bethe—
Salpeter equation, who conjectured that the critical value a. could be identified
with the Gell-Mann-Low eigenvalue. The difference in the numerical values of o,
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found in the two approaches {a, = 1/2 here and o, = 7/4 in the ladder approxima-
tion of the Bethe—Salpeter equation in the Feynman gauge) is presumably related to
the different approximations used in the kernels of the bound state wave equations.
The Todorov potential, used in the present approach, takes into account multi-
photon exchange diagrams and correctly reproduces the physical positronium and
muonium spectra to order o;1%!! this is not the case for the ladder approximation
of the Bethe-Salpeter equation in covariant gauges. Let us nevertheless stress once
again that these conclusions remain conjectural when applied to positronium in
strongly coupled QED, as we have ignored so far vacuum polarization and radiative
correction diagrams.

In the course of the present analysis, the effects of anomalies were ignored; these
are known to modify the Ward identities of the axial vector current.®® However, in
QED, it turns out that these effects disappear at zero momentum transfer®’ and
hence they do not seem to be able to give a mass to the Goldstone boson, when
the latter exists. It is only in non-Abelian gauge theories that nonperturbative
effects, like those of instantons, succeed, through the anomalous Ward identities, in
providing the Goldstone boson with a mass.*?

Finally, a comment on the structure of the Goldstone boson is in order. This
state, in the present mechanism of chiral symmetry breaking, is not of the same
nature as that of the massive states. In particular, it does not result from the
continunous decrease of the mass of a massive state down to zero, when the physical
coupling constant increases, but rather appears abruptly as a new type of solution
when the physical coupling constant exceeds a critical value.
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Appendix

The wave equations of constraint theory for a fermion—antifermion system can
be written in the form!*

(n-p1— 'm'l)‘i’ = (~72 p2 + mz)‘:f‘i’a (A.la)

(=2 p2 = m2)¥ = (71 - p1 +my) VT, (A.1b)

where U is a sixteen-component spinor wave function of rank two and is represented
as a 4 x 4 matrix; the Dirac matrices 42 act on ¥ from the right. The compatibility
condition of the two equations (A.1) allow one to eliminate the relative time variable
and to define an internal three-dimensional wave function.

After using the parametrization

V =tanhV (A.2)
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and making the change of function

¥ = (cosh V)7, (A.3)

the norm of the internal three-dimensional wave function, denoted by %, becomes
(in the c.m. frame):
3 o 2 OV .
d'x Trep? |1+ 407208, T3 Y =25, (A4)
opP?
where P, is the total four-momentum of the system.

In this representation the Todorov potential’® takes the form (in the Feynman
gauge):

1 2a
VZ“/y’)’Qzl-ln(l—{—H?) ; W=vp?. (A.5)
A

Equations (A.1) can be solved by first decomposing % (the internal part of )
on the basis of the matrices 1, vg, 75 and vgvs:

¥ =1+ Yot + Y5¥s + Y0Ys¥4 (A.6)

with ¥; (1 = 1,...,4) considered as 2 x 2 matrices in the spin subspace. The
relationships of these components with the wave function ¢ used throughout the
text are (for the equal mass case and the quantum numbers s =0, { =0, j = 0):

2
o = W(Sl —82) p— Py =0
A7
L 1+2& ¥ y _ 2m 1 2a 1/2g9 (&.7)
¥s = Wrjr’ T W W r

where s; and sy are the spin operators of particles 1 and 2 in the 2 x 2 component
subspace of the ¥;’s.

In perturbation theory, a relationship can be established by means of an it-
erative series, between Egs. (A.1) and the Bethe-Salpeter equation.’? In general,
the potential V is a three-dimensional nonlocal operator in z-space, but becomes a
local function when appropriate approximations are used. In particular, when the
nonlocal operator (m? + p?)~1/2 is replaced by a mean value like (m?2 + (p2))~/2,
V becomes local in x (in the c.m. frame) and dependent on (m? + (p?))~1/2.

The Todorov potential (A.5) results, however, from a slightly different approxi-
mation: it is a function of x and W/2, rather than of x and (m? 4 (p?))~1/2. One
should then replace the latter quantity by W/2. It turns out that this approx-
imation provides even better results, since the Todorov potential reproduces the
correct spectrum to order o for positronium and muonium.'%!! In this approxi-
mation, at zero relative time (2 = 0), the relationship between the Bethe-Salpeter
wave function ¢gg and ¥ takes the form:
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dps(2” = 0,x) = 770V y(x), (A.8)

where V is given in Eq. (A.5). The normalization constant in the right-hand side
of Eq. (A.4) takes account of this relationship.
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