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ABSTRACT

We study, in the framework of Relativistic Quantum Constraint Dynam-
ics, the bound state problem of two oppositely charged spin-1/2 particles, with
masses My and Mg, in mutual electromagnetic interaction. We search for the
critical value of the coupling constant « for which the bound state energy
reaches the lower continuum, thus indicating the instability of the heavier par-
ticle or of the stongly coupled QED vacuum in the equal mass case. Two
different choices of the electromagnetic potential are considered, corresponding
to different extensions of the substitution rule into the nonperturbative region
of .

1. Introduction

The instability, due to spontaneous pair creation, of external strong Coulomb
fields!, raises the question of whether this phenomenon might be a preliminary
signal of an eventual phase transition in QED in its strong coupling regime. If the
instability phenomeﬁon persists in the case of a two-particle system, made of two
fermions with opposite charges and with masses my and mg , say, then this would
mean that the ground state of the two-particle system has a mass of |my — my|.
If the phenomenon still persists in the limit my = m; then one would obtain a
zero mass bound state, having the same quantum numbers as a pseudoscalar boson,

which might lead to a spontaneous breakdown of chiral symmetry in QED.
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Therefore, the study of the bound state spectrum of two oppositely charged
particles, with the search for a massless bound state in the equal mass case, is a

key probe of the existence of a phase transition in QED.

On the other hand, lattice calculations of quenched QED seem to predict a new
phase of QED for a > e, (@, ~ 0.3) , with spontaneous chiral symmetry breaking?.
This conclusion is also supported by the solution of the Bethe-Salpeter equation in
the ladder approximation®*., The latter results would imply an instability of the
QED vacuum itself accompanied by the occurrence of a zero mass bound state in

the two-body equal mass case.

Our purpose is to investigate, in the framework of Relativistic Quantum Con-
straint Dynamics®~® the stability properties, with respect to spontaneous pair cre-
ation, of charged particles heavier than the electron as well as of the QED vacuum.
This is done by studying the bound state problem of two oppositely charged spin
1/2 particles with masses m; and my in mutual electromagnetic interaction and
searching for the possibility that the bound state mass reaches the lower contin-

uum.

One of the main advantages of Relativistic Quantum Constraint Dynamics is
that it provides a three-dimensional manifestly covariant description of the internal
motion of the two-body system, once the redundant relative energy variable is elimi-
nated by means of the constraint. These equations correctly reproduce the muonium
and positronium spectra® up to terms of order a*. Furthermore, one can establish a
correspondence between the Feynman diagrams of the kernel of the Bethe-Salpeter
equation and the interaction potential of the Constraint Theory wave equations®.
When one of the particles becomes infinitely massive, the two-body wave equations

reduce to the one-body Dirac equation in an external Coulomb field.

The electromagnetic interaction (in local approximation) can be introduced
in the Constraint Theory wave equations by means of simple substitution rules.
However, extension of the substitution rule to higher orders depends on the stage at
which the latter is applied. In particular, two diffrent expressions of the interaction
potential are found, depending on whether one applies the substitution rule in the
final eigenvalue equation of the relative motion, or in the initial individual wave
equations. In the first case, one finds the Todorov potential, already introduced
in the Quasipotential approach!® and later used by Crater and Van Alstine and

collaborators in Constraint Dynamics®®. The main feature of the Todorov potential



is that it is dominated by the one photon exchange contribution even for large values
of the coupling constant and necessitates in this domain the use of a short-distance
regularization cut-off. In the second case, another potential is found, the main
feature of which is to be less dominated by the one photon exchange contribution in
the large coupling regime, exhibiting a regular behaviour at short distances. This
potential will henceforth be designated as "potential 1I”.

2. Wave Equations of Constraint Dynamics

The relativistic wave equations of Constraint Dynamics for two particles of

masses m; (fermion) and m, (antifermion) in mutual interaction are given by :

(v1.p1 — my)
(y2.p2 + ma)

el
I

- (72-272 - mz)
= — (n1p1 + m1)

<t <t
e

; (la)
: (15)

where the indices 1 and 2 refer to particles 1 and 2, respectively; p; and p; are the
four-momentum operators and 7; and 7, are the Dirac matrices relative to particles
1 and 2. V is a Poincaré invariant interaction potential. The wave function ¥ is a

4 x 4 matrix function and the matrices 73, acting on the antifermion indices, act on

¥ from the right.

o

Following an observation of Crater and Van Alstine!?, the potential V is

parametrized by means of a hyperbolic function :

?ztanh{%é’(ﬁr/g)}, (2)

where the Feynman gauge has been chosen in lowest order of the interaction. To

this order, the new potential C is related to the photon propagator®.

Equations (1) can be solved by decomposing the wave function ¥ along 2 x 2
matrix components and eliminating these with respect to one of them. For the
sector of solutions with quantum numbers j = £ = s = 0 the reduced wave function

o satisfies in the center-of-mass (c.m.) frame the eigenvalue equation :
E? 1 (m? — m32)®
(o) mrenp oo o Wpl Lo

— 4r®R' % 4+ R + 4r%A7 )cp =0, (3)



where one has :

A 1 (ml—mz)z —-2C ’
=1 - Sl , (4)

E being the c.m. value of the total energy :
E* = (p+p) =P, P =(m+p), (5)

while 7 is the invariant c.m. distance (or transverse relative coordinate):

2= - (@I (6)
Pz
mfmz:“—?)—z—P#, =2 —2z, (7)
and where ok
| A—
A = ——«a(rz) . (8)

(Details on the resolution of Eqs. (1) are presented in the Appendix of Ref. 12.)

The expression of potential C can be fixed with recourse to the substitution
rule. The result, however, depends on the stage at which this rule is applied. Two
possibilities can be distinguished.

In the first place, one can apply the substitution rule in the final eigenvalue
equation (3) by identifying it with the Klein-Gordon equation of a fictitious particle
in the presence of an external electromagnetic fleld. This method was used by
Todorov in the Quasipotential approach for two spin-0 particles'?; by identifying
the electric part of the eleciromagnetic field with the Coulomb potential, one finds
for C the expression (henceforth designated as the Todorov potential, or potential

v o 1. 2V
=3 (1—‘:@‘)’ (9)

where V is the Coulomb potential :

Vo= - (10)

o
r

In the second place, the substitution rule can also be used in the individual
wave equations (1). To lowest order of perturbation theory, the expression of C can

be determined from the Bethe-Salpeter kernel® (in the Feynman gauge). One finds



: C = —V/E ,V being the Coulomb potential [Eq. (10)]. It is seen in Eqgs. (1) that
the total energy E undergoes, to lowest order in V, the modification E — (E - V).
By extending this substitution to higher orders, one obtains for C the following
expression (henceforth designated as potential II) :

¢ =-=—, (11)

V being defined in Eq. (10).

We notice that both potentials [Egs. (9) and (11)] formally coincide up to
O(V'?), and hence lead to the same O(a*) effects in perturbation theory. For both
of them, Eq. (3) reproduces the correct O(a*) muonium and positronium spectra
for the * Sy sector and reduces to the Dirac equation for the (properly normalized)
ground state radial wave function and its radial excitations when one of the masses

becomes infinite®.

In the following, we first consider the case of potential II.

3, Potential I1

Potential II corresponds to the choice of C given by Eq. (11). We have solved
Eq. (3) with this potential. A particular feature of potential II is that it does not
need any short-distance regularization : no V-dependent term in Eq. (3) is singular.
Figure 1 shows the variation of the lowest 1S, eigenvalue E with respect to « in the
equal mass case. The quantity F approaches a constant value for large a values and
remains positive for any a. This feature can be related to the fact that for large o
one has C ~ 1, C',C" ~ 0. One then obtains from Eq. (3) the lower bound for F

in the equal mass case!? :

which represents the asymptotic value of £ in Fig. 1.

Figure 2 shows how E varies with a in the unequal mass case for various values
of my , while my; (m2 > m,) is kept fixed and equal to the electron mass. The
function which is plotted there (and also in Fig. 3) is the quantity

w E - -
- = <m2 ml) 3 (13)

my my

which is always contained in the interval [0,2] for a bound state.
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Fig. 1. The ground state energy F in the equal mass case, as a function
of the coupling constant, for potential I. The horizontal line indicates the lower
bound in inequality (12).
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Fig. 2. The ground state energy in the unequal mass case. The mass mq
is set equal to the electron mass. The quantity in ordinate is equal to 2, when
E = my +my, and to zero, when £ = mgy — mq .



As long as ™y is greater than a lower bound mgp (that will be specified below),
there exists a critical value a. of a , for which E = my — m, . This value of « is

critical in the sense that when « = a. , one can have the spontaneous decay

pE o (T pF) + T, (14)
where 4 is the heavier particle (of mass my) and e is the lighter particle (of mass
my), since the bound system ( e™ p¥ ) has energy (mz —m1) . In the equal mass

case, a zero energy state for the (e¥ e~ ) system would imply the instability of

the vacuum itself, according to the same argument.

The lower bound myg of ms for the existence of the instability phenomenon
can be obtained by analyzing the behavior of the effective potential of Eq. (3) for
large values of & . When m; is smaller than mgo , the instability phenomenon
disappears (as in the equal mass case) and one finds for the ground state energy
the lower bound

my + Mg

E > — > (15)
which generalizes Eq. (12) for the unequal mass case. The lower bound mag of my

is found by equating E to ms —my . This gives :

1
mae = ma (”1) = 2.16m; . (16)

e—-

This particular value (E = my — m;) is obtained at @, = oo only. For
larger values of ms , e, is finite and smaller. As m» increases, the critical value .
decreases smoothly down to a. = 1, which is the limiting value for m; — oo, as

expected from the static limit.

In summary, potential II does not predict any instability of the QED vacuum
(see the equal mass case), although instability occurs for heavy charged particles
when ma > mgg = 2.16m; and a > a(me/my) .

4, The Todorov Potential

The Todorov potential corresponds to the choice of C given by Eq. (9). Be-
cause of the singularity in 1/7% , a cut-off radius is needed to solve Eq. (3) with
this potential for values of a greater than 1/2. We adopt the following cut-off :

a
V(r)z-;, r > T,

:—-g, ?S?‘o. (17)
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Fig. 3. Same as Fig. 2 for the Todorov potential. A cut-off radius
satisfying myrg = 10~% has been chosen.

For my # my, Eq. (3) leads to a critical value a = a., depending on ma/m, ,
for any value of mz (> m;) . This is mainly due to the presence of the singular
interaction term (~ &?/r?) . It is well known that such a singular term implies
an instability of the bound state equation!!? for & > 1/2 (the instability is not
removed when a cut-off of the type of Eq. (17) is introduced'®). When my — o0,
a. — 1 (the critical value of  in the Dirac equation) and when my — my (but
mg > my), e — 1/2 (the critical value of @ in the Klein-Gordon equation). (See
Fig. 3 .)

The equal mass case is more difficult to analyze, because of the presence of the
term V(m? + m3)/(mz —m,) in Eq. (3), when Eis replaced by (ma —m;) . This
case was studied in detail in Ref. 14 . As long as rg is different from zero, there
is no critical value of a for my = m; and E remains positive. However, when the
cut-off radius vanishes, one finds zero energy solutions for & > 1 /2 , which can be

interpreted as a signal of vacuum instability, starting at a, = 1/2 .

In summary, the Todorov potential leads to an instability of the heavy charged
particle for any value of its mass (mz > m;) and with a critical value of & =
ac(my/m,) varying from 1/2 to 1, when my varies from m, to infinity. In the equal

mass case, instability occurs when the cut-off radius vanishes.



5. Conclusion

We found that the instability, due to spontaneous pair creation, in electromag-
netically bound systems, depends crucially on the way electromagnetic interaction
is extended to the strong coupling regime. The two potentials we considered co-
incide up to O(a*) effects, but drastically differ in the nonperturbative region of
the coupling constant « . The Todorov potential continues to be dominated for
large « by the one photon exchange contribution and hence displays short distance
singularities that are typical of the relativistic Coulomb potential. In potential II,
the multiphoton exchange contributions add up in such a way that they regularize
the potential at the origin.

The implications of these two potentials go in two different directions. The
Todorov potential leads to instability for all values of the ratio my/m; and with
1/2 < o, < 1, the upper bound being reached for ms/m; = co and the lower bound
for ms = my ; in the equal mass case, instability occurs only for a vanishing value
of the cut-off radius 7y . Qualitatively, these results agree with those obtained from
lattice calculations of quenched QED and from the Bethe-Salpeter equation in the
ladder approximation.

Potential II, on the other hand, does not lead to an instability of the QED
vacuum, although it predicts an instability of the heavy charged particle for 2.16 <
my/my < oo, with 1 < @, < 0o, the lower bound of a. corresponding to ma/my =
oo and the upper bound to my/m; = 2.16 .

The analysis of the above potentials in terms of Feynman diagrams might help
us to better understand their origin at the field theoretic level.
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