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Our calculation and analysis of the Born Effective
Charge (BEC) is outlined in the main text of the paper
where we show that the BEC of the hexagonal Transition
Metal Dichalcogenides (h-TMDs) have a counterintuitive
sign, with the transition metal atom taking the negative
charge and the chalcogen atoms the positive charge. In
the present supplemental material, we present supporting
information about these calculations and analysis to fur-
ther emphasize the conclusions of the main text. We start
by providing the details of the Density Functional The-
ory (DFT) and Density Functional Perturbation Theory
(DFPT) calculations, then discuss the electronic screen-
ing contribution to the BEC calculation and show exam-
ples of the localized electric field response in the h-TMDs.
Next, we show a projected band analysis detailing the
atomic contributions to each molecular orbital, provide
an analysis in terms of the change in the local polariza-
tion of the molecules, and then we compare our results
for the BEC to the dynamic change of the Bader charge.
Finally, we provide an example of the band-by-band de-
composition of the BEC and further details about ways
to experimentally confirm the sign of the BEC via mea-
surement.

CALCULATION METHODS

As mentioned in the main text, our calculation uses
Trouiller-Martins-type GGA-PBE pseudopotentials [1, 2]
generated with the fhi98pp code for all atomic elements
except W. For W we use a pseudopotential generated
with the OPIUM code, which produce more accurate lat-
tice parameters during our relaxation calculation. In ad-
dition to the exchange-correlation functional correspond-
ing to the GGA-PBE pseudopotentials, we used a van
der Waals (vdW) functional from Grimme [3], known
as DFT-D3, to correctly model the long-range electron-
electron correlations. Lattice parameters are deter-
mined using a Broyden-Fletcher-Goldfarb-Shanno min-
imization [4] and are summarized in Table S1. Through-
out the calculation, several checks were made to ensure
that the plane wave kinetic energy cut-offs (25− 40 Ha)
and electronic Brillouin zone sampling grid size (8×8×8
or 10 × 10 × 10) were converged. Additionally, we use
a ground state energy criteria of 1 × 10−10 Ha between

a(Å) aexp(Å) c(Å) cexp(Å) Ref.
MoS2 3.162 3.160 12.301 12.290 [5]
MoSe2 3.287 3.287 13.003 12.919 [6]
MoTe2 3.496 3.519 13.895 13.964 [6]
WS2 3.155 3.153 12.398 12.167 [7]
WSe2 3.270 3.286 12.957 12.976 [8]
TiS2 3.478 3.410 5.749 5.690 [9]
TiSe2 3.639 3.533 6.180 5.995 [10]

TABLE S1. Lattice parameters of the bulk TMDs calculated
within GGA-PBE and DFT-D3. The calculated lattice pa-
rameters are compared to experimental values.

changes of the self-consistent cycles and, for the vibra-
tional properties, the variance of the ground state wave-
function and the first-order wavefunction were less than
1×10−18 and 1×10−10. With these convergence param-
eters for the DFT calculation, we are able to compare
our calculated lattice parameters to those found in the
literature. This comparison indicates that our calculated
lattice parameters agree to within 0.7% of the measured
values.

ELECTRONIC SCREENING CONTRIBUTION
TO THE BEC

Our calculation of the BEC comes from a mixed second
derivative of the total energy with respect to an atomic
displacement and an applied electric field. This mixed
second derivative can be written as:

Z∗κ,βα =
∂2E

∂Eα∂Rκβ
(S1)

which can be rewritten [11] into two terms as

Z∗κ,βα = Zionκ,βα + ∆Zκ,βα. (S2)

The first term, Zionκ , is the valence charge of the κth atom
(6 for all elements considered here except W and Ti which
have 16 and 4, respectively). The second term is due
to the screening of an electric field perturbation by the
electronic wave functions, and to the electronic potential
change due to a displacement of an atom. Formally, the
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FIG. S1. (Color Online) Contour plots and isosurfaces of the
change in the electronic density due to an electric field per-
turbation along the x axis for (a)-(b) MoSe2, (c)-(d) MoTe2,
(e)-(f) WS2, and (g)-(h) WSe2. In each case, we show a con-
tour plot of the change in electronic density taken through
the transition metal ion and an isosurface for a single formula
unit. Visualization provided by XcrySDen [12].

electronic screening term can be written as [11]

∆Zκ,βα = 2

(
Ω

8π3

∫
BZ

occ∑
m

s〈u0
mk|v

Rκα
sep,k,k|u

Eβ
mk〉dk

+
1

2

∫
Ω

{[v′Rκαloc,q=0(r) + vRκαxc0,q=0(r)][nEβ (r)∗]}dr

)
(S3)

where s is the spin degeneracy, Ω the unit cell volume,

|u0,Eβ
mk 〉 are the ground-state and first-order wave func-

tions, nEβ (r)∗ is the change in the electron density due
to the electric field perturbation in the βth direction. The
potentials, v, are the non-local potential, local potential,
and exchange-correlation potential defined in Ref. 13.

From Eq. (S3) we see that there are two primary con-
tributions to the calculated BEC. The first is the change
of the wave functions due to an electric field perturbation
(i.e. the electron density) and the second is the electronic
potential due to an atomic displacement. As outlined in
the main text, the effect of the electric field perturbation
in these systems is unique and leads to the observed sign

FIG. S2. (Color Online) Contour plots, in the xy plane
through the transition metal ion, of the change in the elec-
tronic potential due to a change in the atomic position of the
metal atom along the x direction for a single unit cell of (a)
MoS2 and (b) TiS2. Visualization provided by XcrySDen [12].

inversion of the BEC. We have already shown the change
in the electron density for MoS2 in the main text. In
what follows, we show the change for the other h-TMDs,
which display very similar characteristics.

ANALYSIS OF THE CHANGE IN THE
ELECTRONIC DENSITY AND ELECTRONIC

POTENTIAL

As part of the analysis of Eq. (S3) we investigate the
changes in the electronic density due to an electric field
perturbation. As mentioned in the main text, for the h-
TMDs we find no change in the electron density around
the chalcogen atom and only find a localized response
near the transition metal ion. In Fig. S1 we show the
change in the electronic density due to an electric field
perturbation along x-axis for MoSe2, MoTe2, WS2, and
WSe2 in which red indicates a negative change, blue cor-
responds to a positive change, and green indicates ap-
proximately no change in the electronic density. In each
case, we find a localized change in the electronic density
around the transition metal ion, with slightly different
shapes, less symmetric for W.

In Fig. S2 we show a contour plot, in the xy plane
through the transition metal atom, of the change in the
electronic potential for (a) MoS2 and (b) TiS2 due to
an atomic displacement of the transition metal ion. Red
indicates a negative change in the potential, blue cor-
responds to a positive change, and green indicates no
change in the electronic potential. We find in both com-
pounds that the change in the electronic potential around
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FIG. S3. (Color Online) Atomic projections of the electronic
band structure of monolayer MoS2. The top panel corre-
sponds to a projection onto the atomic orbitals of Mo and the
bottom graph corresponds to a projection onto the atomic or-
bitals of S. The middle plot corresponds to the standard elec-
tronic band structure of monolayer MoS2. An isosurface of
the real part of the wavefunction at the zone-center is shown
to the right for the bonding or antibonding character of band
indicated by the arrow. Yellow indicates a positive value for
the wavefunction and blue a negative value.

the transition metal is similar and symmetric and the
change around S is negligible.

PROJECTED BAND ANALYSIS

In order to investigate the origin of the localized
change in polarization around the transition metal ion
in h-TMDs, and in order to validate the molecular or-
bital diagrams presented in the main text of the paper,
we have compared the projected electronic band struc-
tures of MoS2 and TiS2. The weight associated with
a given atomic species is normalized such that the sum
over the weights of all the atoms is equal to one for
any k-point and band (i.e. we ignore interstitial con-
tributions). The calculations are performed within the
PAW formalism [14, 15], with a GGA-PBE exchange-
correlation functional and the corresponding JTH pseu-
dopotentials [16, 17]. We work in the PAW formalism
for these projected band analyses to avoid the ambiguity
of the projected sphere radii. Here we simply use the
PAW augmentation radii as the projected sphere radii.
A plane-wave cut-off energy of 15 Ha for the main grid
and of 30 Ha for the auxiliary grid are found sufficient
for convergence purposes. We use the geometries found
within the norm-conserving approximation.

In order to simplify the analysis, we start by presenting
results for monolayer MoS2. While the global conclusions
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FIG. S4. (Color Online) Atomic projections of the electronic
band structure of bulk TiS2. The top panel corresponds to
a projection onto the atomic orbitals of Ti and the bottom
graph corresponds to a projection onto the atomic orbitals
of S. The middle plot corresponds to a standard calculation
of the electronic band structure. Isosurfaces of the real part
of the wave function at the zone-center for the last occupied
state and of the imaginary part of the wavefunction for the
lowest-energy state are shown to indicate the character of the
corresponding electronic states. The gray box represents the
unit cell. Yellow indicates positive value for the real (imagi-
nary) part of the wavefunction and blue a negative value.

are the same for the monolayer and the bulk, the doubling
of the number of atoms per unit cell (due to the AB stack-
ing) and the lifting of degeneracies, due to the interaction
between the layers, make the comparison less immediate
for the bulk. The stacking of bulk TiS2 is simply AA
and shows little difference with respect to monolayers.
The atomic projections for monolayer MoS2 and for bulk
TiS2 are shown in Figs. S3 and S4, respectively. We show
in the top panel the projection of the wave function on
the transition metal atomic orbitals; in the middle panel,
the “standard” electronic band structure; in the bottom
panel, the projection of the wave function on the chalco-
gen orbitals. The atomic projection for monolayer MoS2

corresponds well to the Molecular Orbital diagrams pre-
sented in the main text. Indeed, in terms of relative
weight of Mo and S, we find mixed character for most
of the bands, except for the last occupied band, which is
mostly of Mo character.

For the trigonal Transition Metal Dichalcogenide (t-
TMD) TiS2, the valence bands are primarily chalcogen in
nature (see bottom panel of Fig. S4) and the conduction
bands are almost entirely transition metal in character
(top panel of Fig. S4). To highlight the difference in the
atomic nature of the last occupied band and the others,
we depict the real part of the wavefunction (or imaginary
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FIG. S5. (Color Online) Atomic projections of the electronic
band structure of bulk MoS2. The top panel corresponds to
a projection onto the atomic orbitals of Mo and the bottom
graph corresponds to a projection onto the atomic orbitals of
S. The middle plot corresponds to a standard calculation of
the electronic band structure. An isosurface of the real part of
the wave function at the zone-center is shown to the right for
the bonding or antibonding character of the band indicated
by the arrow. The gray box represents the unit cell. Yellow
indicates positive value for the real part of the wavefunction
and blue a negative value.

part when this real part is zero) at the zone-center for
both cases in the bottom right corner of Figs. S3 and S4.
While the last occupied band is clearly antibonding in
MoS2 (no sharing of e− between Mo and S), the other
occupied orbitals are bonding orbitals, where both Mo
and S share electrons. In the case of TiS2, the isosurface
of the wave function reveal that the situation is quite
different: the last occupied orbital does not involve Ti
orbitals and corresponds simply to the S-S non-bonding
orbital. This stark difference in the projected band struc-
ture holds for all the h-TMDs.

Finally, we show the atomic projection for bulk MoS2

in Fig. S5, with the real part of the wavefunction for the
last occupied band and the lowest-energy state as for the
monolayer case in Fig. S3. The picture is similar to the
case of the monolayer i.e. the last two occupied orbitals
are antibonding, with a slight lifting of degeneracy with
respect to the monolayer, which indicates the weak in-
teraction between the layers.

BADER PARTITIONED DYNAMICAL CHARGES

As discussed in the main text, the Bader definition
of charge is static and determined by a partition of the
electronic density using both the valence and core charge,

while the BEC is a dynamic charge, corresponding to the
response of the system to a given perturbation. There-
fore, they cannot be directly compared as they simply
do not express the same physics. In order to compare
them, one has to construct a dynamic charge based on
the Bader partitioning. This newly-constructed charge
can be then compared directly to the BEC, and there-
fore allow us to accurately determine the origin of the
counterintuitive sign of these last charges.

Following the work of Ghosez and Gonze [11], we ex-
press the polarization of a given system Pα as a sum
of the atomic positions of the atoms, Rκ′α, times their
charge ZBκ′ (here determined using both the valence and
core charge) as:

Pα =
∑
κ′

ZBκ′Rκ′α. (S4)

The dynamical charge for such a system, expressed as the
change in polarization due to an atomic displacement, is

ZB,∗κβ,α =
∂Pα
∂Rκβ

=
∂
(∑

κ′ ZBκ′Rκ′α

)
∂Rκβ

= ZBκ δκκ′δαβ +
∑
κ′

Rκ′α
∂ZBκ′

∂Rκβ
. (S5)

Thus, the Bader Partitioned Dynamic Charge (BPDC)
is composed of (1) the Bader charge of the atom in ques-
tion and (2) the change of all of the Bader charges when
the atom is moved. This second term includes the ef-
fects of charge (de)localization, which are impossible to
account for in static charges. We estimate this dynamic
contribution by finite differences for bulk MoS2, displac-
ing the Mo atom in the z direction with respect to its
equilibrium position.

In Fig. S6, we show the change of the Bader charges
as a function of the displacement of the Mo atom in the
upper layer of the MoS2 unit cell, along the x̂ [panels
(a) and (b)] and the ẑ [panel (c) and (d)] directions. For
the in-plane displacement, one can see that this induces a
change of charge in the lower layer of the same magnitude
as in the upper one. This change is associated with the
creation of an electron current [11], whose contribution
to the dynamical charge appears as an integrated effect
in this approach. In contrast, for a displacement out-
of-plane, the change of charge for the lower layer is one
order of magnitude smaller. In this case, the response is
local (no electron current) and we analyze it further.

The BPDCs, computed with the method described
above, are presented in Table I of the main text. In TiS2,
the dynamical contribution is found to be too small to
explain the sign of the Born effective charge. As it will be
shown in the next section, this is due to the local change
of polarization close to the Mo atoms, that cannot be
accounted for by the finite difference Bader approach.
The same development has been performed for the other
h-TMDs and for TiSe2 (not shown) with similar results.
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FIG. S6. (Color Online) Calculated Bader charge as a func-
tion of the change in the x (upper panel) or z (lower panel)
coordinates (in Bohr) of the Mo atom in the upper layer of
the unit cell of MoS2. (a) and (c) the Bader charges for the
atoms in the upper layer and (b) and (d) the Bader charges
for the atoms in the lower layer. The blue line corresponds
to the Bader charge of Mo and the two sets of black points
correspond to the charges of the two neighboring S atoms
(multiplied by −2.0). The black dots and plus symbols cor-
respond to the S atoms above and below Mo.

CHARGE LOCALIZATION

In order to investigate the fundamental differences be-
tween the BEC and the BPDC, we developed a real space
approach based on the definition of these charges. It will
be shown that the main contribution to the BEC is lo-
calized around the Mo atom, a region that, as it will be
demonstrated, cannot be described by the BPDC. For
this purpose, we derive several mathematical expressions
that connect the BEC and the BPDC in term of compa-
rable real-space variables.

Born Effective Charge

The electronic screening contribution can be computed
with Eq. S3, which cannot be visualized easily due to the

separable part of the Hamiltonian (and its derivatives),
which are nonlocal. On the other hand, one can express
the electronic screening as [13]

∆Zκ,βα = 2
Ω0

(2π)3

∫
BZ

occ∑
m

s
〈
uRκαmk |iu

kβ
mk

〉
dk, (S6)

where uRκαmk is the derivative of the Bloch function with

an atomic displacement, and u
kβ
mk is the derivative of the

Bloch function with respect to the wave vector kβ . In the
case of well-separated monolayers, and considering the
electric field in the out-of-plane direction, this expression
can be approximated in the real space as

∆Zκ,βα ≈
∫

Ω0

n
(1)
Rκα

(r) (rβ −Rκβ) dr, (S7)

where Rκα is the position of atom κ in the direction α
and rβ is the spatial coordinate in direction β.

In what follows, we will focus on the displacement of
the Mo (or Ti) atom of the upper plane of the unit cell
in the out-of-plane direction. To simplify the following
analysis, we perform an integration of Eq. (S7) over the
a and b lattice vectors of MoS2. Eq. (S7) then becomes

∆ZMo,zz ≈
∫
c

(z − zMo) ñ(1)
τκα(z) dz, (S8)

where we have defined the planer integrated (a one-
dimensional quantity) perturbed electronic density as

ñ
(1)
τκα(z) which is simply the integrated electronic density

in planes spanned by the a and b lattice vectors.

Bader Partitioned Dynamic Charge

As shown previously (Eq. S5), the BPDC depends on
the Bader charge itself and its change with an atomic
displacement. Defining the Bader volume ΩBκ′ for the
atom κ′, the Bader charge is simply given by

ZBκ′ = Z ion
κ′ −

∫
ΩB
κ′

n(0)(r) dr, (S9)

where n(0)(r) is calculated electron density. The deriva-
tive with respect to atomic position of Eq. (S9) is thus

∂ZBκ′

∂Rκα
= −

∫
ΩB
κ′

n
(1)
Rκα

(r) dr + F

(
∂ΩBκ′

∂Rκα

)
, (S10)

where we include first the integration of the perturbed
electronic density over the Bader volume and the change
of Bader volume with the atomic displacement. This last
term cannot be easily represented in space, as discussed
in what follows, and is not necessary for the qualitative
explanation of the differences between the BPDC and the
BEC. Therefore, we will ignore it in the remainder of the
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discussion. By restricting ourselves to the displacement
of Mo (or Ti) in the out-of-plane direction and performing
the integration over a and b lattice vectors Eq. (S10)
becomes

∂ZBκ′

∂RMo,z
= −

∫
z̃κ′

ñ
(1)
RMo,z

(z) dz, (S11)

where z̃κ′ corresponds to the edge, in the z direction, of
the Bader volume. The “full” dynamical contribution is
obtained by summing over this last quantity, weighted
by the atomic coordinate along z, as

∆ZBMo,z =
∑
κ′

∂ZBκ′

∂RMo,z
Rκ′z. (S12)

With the set of approximations presented here, both
the dielectric screening contribution to the BEC and the
dynamical contribution to the BPDC are expressed in
terms of an integral over z of the linear perturbed elec-
tronic density weighted by a known factor. Their appli-
cation to MoS2 and TiS2 are presented in the following
subsection.

Analysis of the Dynamic Charges

This linear electronic density for MoS2 and TiS2 are
shown in Fig. S7 alongside their corresponding ground
state electronic density (plus core charge density) to give
an idea of the range of the Bader volume. The contribu-
tion due to adjacent layers is negligible and not shown.

We first focus the discussion on MoS2. The dy-
namic contribution of the BPDC will be given, follow-
ing Eq. S11, by the integration of the linear perturbed
electronic density (red dotted curve) within the Bader
volumes. The contribution within the Mo Bader volume
vanishes as the linear perturbed electronic density is an-
tisymmetric with respect to the Mo atom. Note that it
corresponds to the null curvature of the Bader charge in
Fig. S6 (c). The integration over the chalcogen Bader
volumes (the red-filled area in Fig. S7) of the perturbed
electronic density, however, will sum up when weighted
by the atomic position, giving a net contribution to the
BPDC. In contrast, the largest contribution to the BEC
(blue solid curve) arises within the Bader volume of Mo
(see Eq. S8 and Fig. S7) and is thus localized around the
Mo atom.

Switching now to TiS2. One can see that the overall
picture is different than shown for MoS2. Indeed, the
largest contribution to the BEC arises from outside the
Bader volume of Ti, while it was on contrary localized in
the transition metal atomic region in MoS2. Concerning
the dynamic contribution to the BPDC, the reasoning
is similar to the case of MoS2, where it is found that
the contribution within the Ti Bader volume is zero due
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FIG. S7. (Color Online) In-plane-integrated electronic den-
sity (linear electronic density) as function as the out-of-plane
(z) distance for (Top) bulk MoS2, (Bottom) bulk TiS2. Solid
green is the sum of the ground state electronic density with
the core-charge density. From the minima of this function,
we extract the corresponding Bader volume range (solid ver-
tical lines). In solid blue is the out-of-plane coordinate times
the linear perturbed electronic density with respect to a dis-
placement of the Mo atom in the out-of-plane direction, that
gives, when integrated, an estimation of the dielectric screen-
ing contribution to the BEC. In dotted red is depicted the
linear perturbed electronic density. Only the filled red area
corresponds to the contribution of the BPDC.

to symmetry, and all the contributions come from the
chalcogen Bader volumes.

With these analyses, we have a real-space picture of the
origin of the counterintuitive sign of the BEC. Indeed,
while most contributions to the Born effective charge
come from outside the transition metal Bader volume in
the case of TiS2, the contrary is observed for MoS2, with
a well-localized response around the transition metal
atom. This region cannot be properly described with the
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Bader approach, as the net contribution to the BPDC is
zero due to symmetry for that Bader volume. While it is
not important in TiS2 (most contribution to the dynam-
ical charge comes from the chalcogen Bader volumes),
it is, on the contrary, a large contribution in the case
of MoS2 referring to Fig. S7. As discussed by Ghosez
and Gonze [11], while the BPDC would be able to de-
scribe charge localization/delocalization phenomena, it
would fail to take into account any kind of local change
in polarization. By the present analysis, we show that
the sign of the BEC in MoS2 is primarily due to this
local change in polarization, while it plays little role in
TiS2, for which the BPDC gives excellent agreement with
the BEC. Quantifying such local polarization changes in
MoS2 requires the analysis of the electronic states close
to the band gap. While the other electronic states are
delocalized along the bonds, the last occupied band is
an anti-bonding state, with electrons localized close to
the Mo atoms, which explains the origin of the localized
change of polarization.

ANALYSIS OF THE BAND-BY-BAND
DECOMPOSITION OF THE BECS

The band-by-band decompositions of the BEC [18]
in monolayer MoS2 and bulk TiS2 are shown in Ta-
ble S2. The calculated BEC contributions of each band
are clearly anomalous and show a large variation as a
function of band index. When one sum ups over the
bands for each charge (the quantity in the last row) one
finds that the charge neutrality sum rule is fulfilled.

As mentioned in the main text, an evaluation of the
band-by-band decomposition of the BEC and the local-
ization tensor, which we do not show, is not helpful in
deducing which bands, are specifically responsible for the
anomalous net sign change.

EXPERIMENTAL CONFIRMATION

Finally, we propose in the main text that one can ex-
perimentally verify the sign of the BEC by measuring
the angle-resolved Raman spectrum of the longitudinal
optical mode as done in the work of Wolverson et al [19].
Here they state that the intensity of the Raman signal is
related to the Raman tensor R whose components can be
shown to be linearly related to the BEC of the material.
To demonstrate this correspondence, we will first note
that the intensity of the Raman signal, projected onto
the plane of the sample and as a function of angle, θ, can
be written as [19]

I(θ) ∝ u2 cos2 θ+w2 sin2 θ+ v2 + 2v(u+w) sin θ cos θ (S13)

and that the maximum and minimum values of the in-
tensity are found at angles given when the first derivative

0

60120

180

240 300

FIG. S8. (Color Online) Our calculated angle dependent Ra-
man susceptibility, in black, using Eq. (S13) with experimen-
tal data points, blue x’s, from Wolverson et al. [19]. The red
line corresponds to the same calculation as the black curve,
except we assumed that the sign of the BEC corresponds to
the nominal charges in ReSe2.

of I is equal to zero. The result of this calculation gives
the angle for the maximum and minimum values as:

tan(2θ) =
2v

u− w
(S14)

where, as we show below, u, v, and w are linearly depen-
dent on the BEC.

From Veithen et al. [20] the Raman intensity, as a func-
tion of the scattering polarization, es (with scattering
angle θ), is a sum over initial polarizations, ei, of the
form

I(θ) ∝ |es ·Rm · ei|2 ∝ |es · αm · ei|2 (S15)

which gives us the connection between the matrix ele-
ments of the Raman matrix R and the matrix elements
of the Raman susceptibility α. Namely, u = α11, v = α12

and w = α22.
The Raman susceptibility tensor, α, is defined as [20]

αmij =
√
V0

∑
κβ

∂χ
(1)
ij

∂τκβ
Um(κβ) (S16)

which, for longitudinal optical phonons [20], is propor-
tional to the BEC and can be written as:

αmij ∝ Xij −
∑
l

Z∗mlql ×
∑
l χ

(2)
ijl ql∑

l.l′ qlεl,l′ql′
(S17)

where Z∗ml =
∑
κβ Um(κβ)Z∗κβl is a mode dipole vector, ε

is the dielectric tensor, ql is the phonon unit vector in the

lth direction, and Xij =
∑
κβ

∂χ
(1)
ij

∂τκβ

∣∣∣∣
E0=0

is the derivative

of the component of the linear dielectric susceptibility.
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MoS2 TiS2

Band Moxx Mozz Sxx Szz Tixx Tizz Sxx Szz

Zion 6.00 6.00 6.00 6.00 4.00 4.00 6.00 6.00
1 0.05 −23.12 −1.02 10.57 −0.42 −36.74 −0.78 17.38
2 0.18 23.49 −1.09 −12.75 0.63 36.78 −1.32 −19.40
3 −1.19 −13.55 −0.28 5.78 8.97 −28.37 −5.49 13.10
4 0.13 4.05 −0.89 −3.03 −7.96 18.89 3.15 −10.28
5 4.67 3.75 −3.72 −2.87 1.66 −6.59 −1.83 2.37
6 −6.16 −11.19 2.32 4.60 −7.40 −11.17 2.71 4.37
7 −5.03 12.79 1.77 −7.40 0.38 22.66 −1.00 −12.05
8 121.05 7.24 −63.13 −4.62 6.45 1.74 −4.60 −2.09
9 −120.80 −9.52 60.58 3.76

Tot. −1.10 −0.07 0.55 0.04 6.30 1.21 −3.15 −0.60

TABLE S2. Band-by-band decomposition of the BEC of monolayer MoS2 and bulk TiS2 where the line Zion gives the ionic
charge of the pseudopotential. The total number of calculated bands for each case depends on the ionic charge of the pseu-
dopotential.

For bulk compounds such as the h-TMDs and the t-
TMDs one can evaluate Eq. (S17) and determine that
the symmetry of the crystal structure prevents one from
observing the Raman susceptibility since the second-

order non-linear optical susceptibility, χ
(2)
ij , is zero and

the Raman susceptibility is diagonal (v = 0). However
in compounds with reduced symmetry, such as ReSe2,
the second-order non-linear optical susceptibility is non-
zero [21]. We have calculated the Raman susceptibility
and second-order nonlinear optical susceptibility in bulk
ReSe2 and found that they are non-zero and in agreement
with the calculated and measured values of Wolverson et
al. [19].

In Fig. S8 we plot the polarization intensity as a func-
tion of angle for our calculations of the Raman suscepti-
bility tensor (black line) for the longitudinal optical mode
of ReSe2, the experimental data points from Wolverson
et al. [19] in blue X’s, and the red line is our calculation
assuming the sign of the BEC on the transition metal
and chalcogen are reversed (and thus in agreement with
the Bader static charge). Our calculation of the Raman
susceptibility tensor with opposite BECs assumes the re-
maining quantities used to calculate Eq. (S17) remain
unchanged.
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