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We study, in the framework of relativistic quantum constraint dynamics, the bound state
problem of two oppositely charged spin 1/2 particles, with masses m1 and mg, in mutual
electromagnetic interaction. We search for the critical value of the coupling constant o for
which the bound state energy reaches the lower continuum, thus indicating the instability
of the heavier particle or of the strongly coupled QED vacuum in the equal mass case.
Two different choices of the electromagnetic potential are considered, corresponding to
different extensions of the substitution rule into the nonperturbative region of «: (i)
the Todorov potential, already introduced in the quasipotential approach and used by
Crater and Van Alstine in Constraint Dynamics; (ii) a second potential {potential II),
characterized by a regular behavior at short distances. For the Tedorov potential we
find that for ma > mj there is always a critical value a. of @, depending on m2 /mi,
for which instability occurs. In the equal mass case, instability is reached at oz = 1 /2
with a vanishing value of the cutoff radius, generally needed for this potential at short
distances. For potential II, on the other hand, we find that instability occurs only for
mg > 2.16 m1.

1. Introduction

Strong external Coulomb fields are known to be unstable under spontaneous
electron—positron pair creation.! It is naturally expected that when the mass of the
heavy particle, responsible for the external strong Coulomb field, becomes finite
but still large enough, the aforementioned phenomenon should persist. This situa-
tion is best described by means of a two-particle bound system, where particle 1
is the electron (with mass m;) and particle 2 is the positively charged heavy par-
ticle (with mass ms), interacting electromagnetically through a strong Coulomb
coupling. When the coupling constant a increases, the bound state mass decreases
and, for a critical value a, of o (~ 1), it reaches the lowest value (mg —my). This
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is an indication that for o = a. the positively charged heavy particle may sponta-
neously emit, without loss of energy, an electron—positron pair, the electron having
the binding energy —2m; and the positron being free with zero kinetic energy. The
phenomenon is amplified for o > o.

The theoretical question then arises as to whether this phenomenon would persist
if the mass of the heavy particle became continuously smaller. In particular, in the
limit mg = my, one would obtain, for the corresponding critical coupling constant, a
zero mass bound state, having the same quantum numbers as a pseudoscalar boson,
which might lead to a spontaneous breakdown of chiral symmetry in QED.

Therefore, the study of the bound state spectrum of two oppositely charged
particles, interacting electromagnetically through a strong Coulomb coupling, with
the search for a massless bound state in the equal mass case, is a key probe of the
possible existence of a phase transition in QED.

In this connection, lattice calculations of quenched QED seem to predict a new
phase of QED for @ > a. (~ 0.3), with spontaneous chiral symmetry breaking.?
This conclusion is supported by the solution of the Bethe-Salpeter equation in
the ladder approximation.®* These results would imply an instability of the QED
vacuum itself accompanied by the occurrence of a zero mass bound state in the
two-body equal mass case.

The purpose of this paper is to investigate, in the framework of relativistic
quantum constraint dynamics,>® the stability properties, with respect to sponta-
neous pair creation, of charged particles heavier than the electron as well as of the
QED vacuum. This is done by studying the bound state problem of two oppositely
charged spin 1/2 particles with masses m; and my in mutual electromagnetic inter-
action and searching for the possibility that the bound state mass reaches the lower
continuum.

One of the main advantages of relativistic quantum constraint dynamics is that it
provides a three-dimensional manifestly covariant description of the internal motion
of the two-body system, once the redundant relative energy variable is eliminated
by means of the constraint. These equations correctly reproduce the muonium and
positronium spectra® up to terms of order a*. Furthermore, one can establish a
correspondence between the Feynman diagrams of the kernel of the Bethe—Salpeter
equation and the interaction potential of the constraint theory wave equations.’
When one of the particles becomes infinitely massive, the two-body wave equations
reduce to the one-body Dirac or Klein—Gordon equation in an external Coulomb
field.

Having the correct Dirac (or Klein—Gordon) limit, relativistic constraint
dynamics necessarily implies that for sufficiently large values of one of the particle
masses, the heavier particle becomes unstable with respect to spontaneous pair
creation above some critical value o, of the coupling constant o, as is the case for
strong external Coulomb fields® interacting with Dirac or Klein-Gordon particles.

Specifically, we wish to answer the following questions:
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(1) How do the stability properties depend on the masses mg and my (mg > my)
of the charged particles? In particular, does instability under spontaneous pair
creation, valid in the case of large mass asymmetries, also exist for the QED
vacuum, i.e. in the equal mass case?

(2) Do the stability properties of a bound state in relativistic constraint dynamics
depend on the specific way the interaction is introduced in the formalism?

The second question arises because introduction of the electromagnetic inter-
action in the nonperturbative regime in relativistic constraint dynamics is not
unique. Extension of the minimal substitution rule to higher orders depends on
the stage at which the latter is applied. In particular, two different expressions of
the interaction potential are found; depending on whether one applies the substi-
tution rule in the final eigenvalue equation of the relative motion, or in the initial
individual wave equations of relativistic constraint dynamics. In the first case, one
finds the Todorov potential, already introduced in the quasipotential approach'®
and later used by Crater and Van Alstine and their collaborators in relativistic
constraint dynamics.%® The main feature of the Todorov potential is that it is
dominated by the one-photon-exchange contribution even for large values of the
coupling constant and necessitates in this domain the use of a short distance regu-
larization cutoff. In the second case, another potential is found, the main feature of
which is to be less dominated by the one-photon-exchange contribution in the large
coupling regime, exhibiting a regular behavior at short distances. This potential
will henceforth be designated as “potential IL.”

The Todorov potential in the equal mass case was studied in its nonperturbative
regime by two of us.* It was found that the strongly coupled positronium remains
stable for any value of the coupling constant «, as long as a regularization cutoff is
used for the short distance singularity. In the zero cutoff limit, however, one finds
zero energy solutions for @ > 1/2, which can be interpreted as a signal of vacuum
instability.

The main results of the present paper can be summarized as follows:

(1) Potential II yields a ground state c.m. energy E such that, in the equal mass
case (my = my = m), one has E > 2m/e, for all values of the coupling constant
@, thus leading to a stable vacuum. Only for mg > 2.16 my do we find that
there is a critical value of « above which particle 2 becomes unstable under
spontanecus pair creation. ’

(2) For the Todorov potential, there exists a critical value o, for any mg > my. As
particular examples, we find that

1
Qo 3 for mg >~ my, o, =~ 0.75 for mg o dmy, (1.1)
for mrg ~ 1073, 7o being a regularization radius needed for this form of
interaction.!? In the equal mass case, instability occurs for a vanishing value of
the cutoff radius rg.
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Thus, the Todorov potential in relativistic constraint dynamics points to the
onset of a new phase of QED (with a condensate of particle-antiparticle pairs in
the ground state) for sufficiently strong coupling constants, in qualitative agreement
with the results obtained from lattice calculations of quenched QED? and the Bethe—
Salpeter equation in the ladder approximation.®*

Although the main aim of this paper is to investigate whether a reasonable
relativistic two-body wave equation can reproduce the instability phenomenon (with
respect to «) of quenched QED, let us, for the sake of completeness, comment on
the possible influence of radiative corrections on the above results. In lattice QED,
deviations from the quenched theory have been estimated by Gockeler et al.:'2 for
« =2 0.5 they are of the order of 20% — a typical order of magnitude — but these
authors conclude, for other reasons, that QED, considered as the limit of a cutoff
theory formulated on the lattice, is inconsistent for @ > 1 /50.

In the continuum theory, it has been known for a long time'®!4 that when the
coupling constant is an ultraviolet stable fixed point of the theory, then the photon
propagator behaves at short distances as a free propagator and contributions of
vacuum polarization become negligible in the first approximation. In that case the
electron bare mass vanishes and its physical mass is entirely of dynamical origin,
with a possible spontaneous chiral symmetry breaking.’® This is precisely the
situation that is expected from the occurrence of the critical Coulomb coupling a..
For this reason it is generally thought, although not yet proved, that o, if it exists,
must at the same time be an ultraviolet stable fixed point of the theory.241® When
this circumstance is achieved, vacuum polarization contributions can be neglected
fora~a,.

The situation is different for the case of potential II, which does not lead to
any phase transition. In this case, however, the multiphoton exchange diagrams are
assumed to sum up in such a way that the resulting potential is regular at the origin.
Radiative corrections have the tendency to increase the effective coupling constant
at short distances. This, however, has no qualitative effect on the potential, since
the latter is regular for any «.

A more accurate study in the present framework of the influence of vertex correc-
tions could be done by the introduction of effective anomalous magnetic moments of
fermions. The presence of such terms modifies, however, the structure of the wave
equations we are considering, by introducing in them new types of interaction. We
intend to analyze these effects in a future work.

2. Basic Equations of Relativistic Quantum Constraint Dynamics

The wave equations of relativistic quantum constraint dynamics for two particles of
masses m; (fermion) and my (antifermion) in mutual interaction are given by’

(111 = m)¥ =~ (72 pp ~ma)VE, (2.1)

(2 P2 +m2)¥ = ~(y1 - p1 + M)V, (2.2)
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where the indices 1 and 2 refer to particles 1 and 2, respectively; p1 and ps are the
four-momentum operators and 1 and 7, are the Dirac matrices relative to particles
1 and 2. V is a Poincaré-invariant interaction potential. The wave function Fisa
4 % 4 matrix function and the matrices 2, acting on the antifermion indices, act
on ¥ from the right. The properties of these wave equations are studied in the
Appendix.

The potential V is parametrized according to the expression 17

V = tanh E Cly - 72)} , (2.3)

where the Feynman gauge has been chosen in the lowest order of the interaction.
To this order the new potential C is related to the photon propagator. (The factor
1/2 has been introduced for convenience.)

The requirement that Egs. (2.1)—(2.3) possess the correct O(a*) nonrelativistic
limit in known vector interactions and the Dirac limit when one of the masses
becomes infinite does not, however, uniquely determine C. We shall discuss below
two possible choices of C suggested by the substitution rule.

Equations (2.1)~(2.3) can be solved by decomposing the wave function ¥ along
9 x 2 matrix components and eliminating these with respect to one of them. For
the sector of solutions with quantum numbers j = £ = s = 0, the reduced wave
function ¢ satisfies in the c.m. frame the eigenvalue equation (see Appendix)

2
1
|5 et - g mt +md)e®
2 212
+ _________(mlwgnz) + V2 — 4?0 +6h' + 4r2h"} v=0, (2.4)
where one has 1
_ 2 5
h=1In|1- _(ﬁz.l._ézﬂg.)_ 6‘20] , (2.5)

E being the c.m. value of the total energy,

=(p+p)2 =P, P=(pm+p), (2.6)

while 7 is the invariant c.m. distance (or transverse relative coordinate),

r?=—(z")?, (2.7)
P.z
mZ:xu————ﬁ—z—Pﬂ, T =12 — T, (2.8)
and where oh
W=—a (2.9)
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'The expression of potential C can be fixed with recourse to an extension of the
minimal substitution rule. The result, however, depends on the stage at which this
rule is applied. Two possibilities can be distinguished.

In the first place, one can apply the substitution rule in the final eigenvalue
equation (2.4). Actually, this equation, without the last three terms, which are
reminiscent of the fermionic nature of the constituents, is similar to the quasi-
potential equation obtained by Todorov!? in the spin 0 case. By redefinitions of
mass and energy variables, one can bring Eq. (2.4) (without the last three terms)
into a form similar to that of the Klein—Gordon equation of a fictitious particle
of mass mima/E and energy (E? — m? — m3)/2E in the presence of an external
electromagnetic field. The electric part of the latter is then identified with the
Coulomb potential. With the variables we are using, this procedure amounts to
identifying the term %ﬁe“c of Eq. (2.4) with (£ - V)Q, where V is just the Coulomb
potential:

e

Ve-=. (2.10)

This identification leads to the following expression of C (henceforth designated
as the Todorov potential, or potential I):

c=1n (1~-2-Y—). (2.11)

The Todorov potential was extensively used in the literature by Crater and Van
Alstine and their collaborators®?® in their spectroscopic evaluations of positronium,
muonium and quarkonium spectra, in the framework of constraint dynamics.

In the second place, the substitution rule can also be used in the individual
equations (2.1) and (2.2). To the lowest order of perturbation theory, the expression
of €' can be determined from the Bethe-Salpeter kernel® (in the Feynman gauge).
One finds that v

C= 5 (2.12)
V' being the Coulomb potential (2.10). It is seen in Egs. (2.1) and (2.2) [more
explicitly, in Egs. (A.4) and (A.5)] that the total energy E undergoes, to the
lowest order in V, the modification £ — E — V. I is then natural to extend
this substitution to higher orders, by demanding that in the expression of C itself
E be replaced by E — V. This substitution then yields the following expression of
C (henceforth designated as potential II):

C=—— (2.13)

where V is as defined in Eq. (2.10).
The passage from the lowest order expression (2.12) to the complete expression
(2.13) of C can also be understood on the basis of the gauge invariance property of
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Eqs. (2.1) and (2.2) combined with a definite behavior of the multiphoton exchange
diagrams. We sketch here the main steps leading to the result (2.13). (A more
detailed description of this aspect of the problem will be presented elsewhere.)

In the leading infrared approximation the effective potential C' must be a function
of the lowest order potential given on the right hand side of Eq. (2.12), the nth power
of it in the series expansion of C corresponding to the leading contribution of the n-
photon exchange diagrams. (Furthermore, the perturbation expansion in constraint
theory, which is very similar to that of the quasipotential theory, seems to be free of
spurious logarithms; this has been checked with two-photon exchange diagrams.'®)
In this approximation the gauge transformation operator of the wave function can
explicitly be constructed. It is

o

f=-55 (2.14)

U =exp |5 (72T 457571

where £ is the gauge parameter of the usual covariant photon propagator. [U(¢)
brings the wave function from the £ gauge representation to the Feynman gauge
representation.] This expression is obtained by first analyzing the structure of
Egs. (2.1) and (2.2) in the lowest order of the interaction with the photon prop-
agator taken in an arbitrary covariant gauge. Then the group property of the
gauge transformation and the fact that in the leading infrared approximation all
operators and potentials must be functions of the lowest order potential, with a
one-to-one correspondence between its power and the order of the perturbation
expansion, completely determine U(£). [The expression for U({) can also be ob-
tained, in its leading order, by starting from the gauge transformation operator of
the Bethe-Salpeter wave function® and then reducing it through its connection
with constraint theory® to a three-dimensional form.]

The knowledge of this operator, together with certain assumptions about the
structure of the multiphoton exchange diagrams (in the leading infrared approx-
imation), allows one to set up differential equations for the potentials with re-
spect to the gauge parameter £. In particular, the factorization assumption of the
multiphoton contributions to products, with unknown multiplicative coefficients,
generated by the one- and two-photon contributions, leads to the expression (2.13)
of C.

Therefore, the shift E — E—V in the denominator of the lowest order expression
(2.12) of the potential, which extends the minimal substitution rule concerning the
total c.m. energy factor to higher orders, can also be understood as a consequence, in
the leading infrared approximation, of a gauge-invariant summation of multiphoton
exchange contributions, provided the above-mentioned factorization rule is assumed.

Comparing potentials (2.11) and (2.13) we notice that they formally coincide up
to O(V?), and hence lead to the same O{a*) effects in perturbation theory. For both
choices of C, (2.11) and (2.13), Eq. (2.4) reproduces the correct O(a*) muonium
and positronium spectra for the 1 Sy sector and reduces to the Dirac equation for the
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(properly normalized) ground state radial wave function and its radial excitations
when one of the masses becomes infinite.®
In the following, we first consider the case of potential II.
3. Potential I
Potential II corresponds to the following choice of the function C in Eq. (2.3):

v
C= —-fm y (31)
where V is the Coulomb potential:
@
V=-—. (3.2)

We have solved Eq. (2.4) with (3.1) and (3.2). A particular feature of this poten-
tial is that it does not need any short distance regularization: no V-dependent term
in Eq. (2.4) is singular. Figure 1 shows the variation of the lowest 'S, eigenvalue
E with respect to o in the equal mass case. The quantity F approaches a constant
value for large o values and remains positive for any «. This can be understood
by noting that Eq. (2.4) defines a Schrédinger-like equation with effective potential
Vef given by

et _ B ac 20,20 _
Vet = 1 (e 1) +m*(e 1). (3.3)
2 H ¢ ¥ H
1.6 m =m =m -
~ 1.2 F -
&
k3
0.8
0.4 -
G H ] ] ]
0 4 8 i2 16 20
o

Fig. 1. Lowest 1S; eigenvalue E, as a function of the coupling constant for potential II between
equal mass particles. The horizontal line indicates the bound (3.5b).
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A necessary condition for V°f to support a bound state is that Ve be attractive
(negative). From Eq. (2.4), one can see that for [V[> F (we are interested in the
behavior for large values of the coupling constant), one has C ~ 1, ¢, C" ~ 0. The
requirement that V°f be negative then gives

m

Vitel

In fact, one can obtain a better lower bound by noting that when o tends to
00, C — 1 [see Eq. (3.1)] and A’ and 2" — O [see Eq. (2.5)]; there remains no term
in Eq. (2.4), except the Laplacian, which depends upon r. Therefore, the lowest
energy should correspond to a zero kinetic energy ({(V?) = 0). This is possible,
since then the effective potential extends over all space with the same value. One
then gets

E> (3.4)

z—e‘* ~m2e? >0, {3.5a)
or simply
2
B> (3.5b)

Our numerical results are consistent with Eq. (3.5b) and suggest that the lower
bound in (3.5b) is the limiting value of the energy for o — c0.

Figure 2 shows how E varies with « in the unequal mass case for various values
of ms, while m; (my > my) is kept fixed and equal to the electron mass. The
function which is plotted there (and also in Fig. 3) is the quantity

2 i 1 i i
—mmzaG.Sﬁ m2m139.6
—————— 2»0.6 —— mzmass.s
18- BY  [esmesee m2m1 “"'m22938.3 1
--=-=-mzs1.5 — m2=221697
2 Dirac
Eﬁ 1.2 2 m, =my a
b
= 0.8r =
0.4 - LN oeeall
O 1

8 10

Fig. 2. Same as Fig. 1, but for the unequal mass case. The mass m1 is taken equal to the electron
mass. The ordinate quantity is equal to 2 when E = mz -+ mj (noninteracting liit) and equal to
0 when E = mg — my. (See text for details.)
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W/m

1.2

Fig. 3. Same as Fig. 2, but for the Todorov potential. A cutoff radius satisfying mirg = 10~° has
been chosen.

__I/Y___E~(m2~—m1)
mln My ’

(3.6)

It should be noted that the upper continuum lies above my + m; and the lower
continuum lies below mg — m; [see Eq. (2.4) with C = 0]. Therefore the quantity
(3.6) is always contained in the interval [0, 2] for a bound state.

One can see from Fig. 2 that, as long as mq is greater than a lower bound
mgo (which will be specified below), there exists a critical value o, of «, for which
E = mgy — m;. This value of « is critical in the sense that when a = a., one can
have the spontaneous decay

pE = (eFpE) +e*, (3.7)

where p is the heavier particle (of mass mo) and e is the lighter particle (of mass
my), since the bound system (e~ p™) has energy ms —m;. In the equal mass case, a
zero energy state for the (eTe™) system would imply the instability of the vacuum
itself, according to the same argument.

The existence of a lower bound mgg of mg for the occurrence of o, can be
understood by noting that in the unequal mass case the effective potential Vef
from Eq. (2.4) is

E?
yeff = - et + % (m? +m2)e?® + terms in &' and A" (3.8)
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For |V| > E(a — o), terms in &’ and A" can be neglected, so that (3.8) yields,
st the threshold value E = mo —my, the following condition for Vet {6 be attractive:

,lﬁ(m%%—m%)
V14 e?

which leads to a lower bound mag of mo. Actually, map can be determined more
accurately, by generalizing, for m; < mg < mgq, the reasoning following Eq. (3.4).
One finds for the energy the bound

Mo — ity > (3.9)

my -+ Mo

B> (3.10)

€

This bound actually corresponds to the limiting value & — oo (see Fig. 2). Therefore
E is equal to ms — m; when

1
et - =216 m . (3.11)

g = Moy = My ——
This particular value (E = mg — my) is obtained at o, = oo only. For larger
values of mq, o is finite and smaller. Asmy increases, the critical value o, decreases
smoothly down to a, = 1, which is the limiting value for my — 00, as expected
from the static limit.
As noted above, these results disagree with studies of strongly coupled QED on
the lattice or with the (ladder) Bethe—Salpeter equation, so that potential II is not
appropriate for reproducing a transition to a “condensate” phase.

4. The Todorov Potential

The Todorov potential corresponds to the choice

szin (1——%Y-), (4.1)

2 E
with V given by Eq. (2.10). Because of the singularity in 1 /r?%, a cutoff radius is
needed to solve Eq. (2.4) with (4.1) for values of « greater than 1/2. We adopt the
cutoff

V(T):“%: T>70,
:—9-, r<rg. (4.2)
7o

For mq # m1, Eq. (2.4) leads to a critical value a = a., depending on ma/ms,
for any value of my (> m4). Indeed, by definition, a. is that value of a for which
there exists a bound state of energy E = mg — mi. In that case, Eq. (2.4) can be
written with (4.1) as
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[M(l__ﬂ“>2~i(mg+mg)<1_ﬂw)

4 Mg — My 2 Mg — My
+ W + V2 —49%p? + 60 + 47’2&"} =0, (4.3)
with 1
h=In [1 . %} ’ (4.4)
Putting V' = ~2 in Eq. (4.3), one sees that this equation contains a singular

interaction term (~ a?/r?). It is well known that such a singular term implies
an instability of the bound state equation for @ > 1/2.1:2% The instability is not
removed when a cutoff of the type (4.2) is introduced.?°

However, Eq. (4.3) also contains the term V(m?+m3)/(ms—m; ), which prevents
us from concluding at once that one also has o, = 1/2 for my = my. The equal
mass case was studied in detail in Ref. 11. As long as rp is different from 0, there is
no critical value of « for mo = m; and E remains positive. On the other hand, one
observes a critical value whenever ms = my ¢, with ¢ arbitrarily small and positive.
The function representing the lowest eigenvalue E versus a needs to be only slightly
distorted when my is slightly increased from ms = my to have a crossing point with
the line £ = mgy — m; (compare Fig. 3 with Fig. 1 of Ref. 11), and thus to present
a critical point. One sees from Fig. 3 that a. = 79/137 for ms = 0.6 MeV. There
is, however, a continuity of the energy eigenvalue as my — my. As is suggested in
Fig. 3, for my = 0.512 MeV the energy curve bends up when my further decreases;
the bending pushes the crossing point with the horizontal axis to larger and larger
values of . At the limit my = m;, one recovers a curve with no crossing point as
in Ref. 11.

This is also illustrated in Fig. 4, which gives a. as a function of ms/m; for
different values of my7g. One can infer from dimensionless quantities that

w_ f(%f_, mlro,a) . (4.5)

Ty

[W is defined in Eq. (3.6).] For myry small but different from 0, the critical value
o, tends to infinity as mq — my, in agreement with Ref. 11 (Fig. 1). It displays a
minimum for some value of my and then increases when ms — my. However, it is
clear from Fig. 4 that the minimum value of o, tends to 1/2 when the cutoff radius
is made smaller and smaller. Similarly, the value of a, at very large mo will tend to
unity, in agreement with the Dirac limit. Our numerical results do not allow us to
state with certainty what the function a.(ms/m1) for 7o = 0 is. In all likelihood,
it starts at o = 1/2 for ms = m; and goes continuvously and smoothly to o, = 1
for mq = co.
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Tt is interesting to note the completely different behavior of the function
a(mg/my) for potential II (Sec. 3). For this case, one has a continuous decrease
of o, when ms increases from the lower bound mgo [Eq. (3.11)], up to infinity (see
Fig. 4).

‘ - T
25 AT ,

!
]
f
} - |
&
L—Q——:Q{..,i RS AR

1 10 100 1000
mz/m

i

Fig. 4. Critical value a. as a function of the ratio mg/mi. The dashed curves correspond to
the Todorov potential, for two values of the cutoff radius: mire = 103 for the upper curve and
marg = 1078 for the lower curve. The full curve corresponds to potential II; the vertical line
represents the lower bound mago of mz [Eq. (3.11)].

5. Conclusion

We found, in the framework of relativistic quantum constraint dynamics, that the
instability, due to spontaneous pair creation, in electromagnetically bound systems,
depends crucially on the way electromagnetic interaction is extended to the strong
coupling regime. The two potentials we considered coincide up to O(a?) effects,
but drastically differ in the nonperturbative region of the coupling constant . The
Todorov potential continues to be dominated for large & by the one-photon-exchange
contribution and hence displays short distance singularities that are typical of the
relativistic Coulomb potential. In potential II, the multiphoton exchange contribu-
tions add up in such a way that they regularize the potential at the origin.
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The implications of these two potentials go in two different directions. The
‘Todorov potential leads to instability for all values of the ratio ms /my and with
1/2 S @ 51, the upper bound being reached for my/m; = oo and the lower bound
for ma >~ my; in the equal mass case instability occurs only for a vanishing value
of the cutoff radius ro. Qualitatively, these results agree with those obtained from
lattice calculations of quenched QED and from the Bethe-Salpeter equation in the
ladder approximation.

Potential II, on the other hand, does not lead to an instability of the QED
vacuum, although it predicts an instability of the bound system for 2.16 < m, /my <
co, with 1 < a, < oo, the lower bound of a, corresponding to msg/m; = co and the
upper bound to mg/m; = 2.16.

In order to better understand, at the quantum field theory level, the properties
of the above potentials, the knowledge of the subsets of Feynman diagrams that
generate them would be of great interest. Furthermore, the introduction of effective
anomalous magnetic moments of fermions would allow one to have an estimate of
the influence of vertex corrections on the previous results. Also, a more detailed
(analytic) study of the zero cutoff radius limit of the Todorov potential might clarify
its connection with spontaneous chiral symmetry breaking.
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Appendix

In this appendix we show how the wave equations (2.1) and (2.2) can be reduced,
for the states 'Sy, to the final eigenvalue equation (2.4). Equations (2.1) and (2.2)
imply the constraints’

»e:

(0! - p3)T = (m} -m3)¥, (A1)

[} ~p3, V¥ =0. (A.2)

Equation (A.1) allows the elimination of the relative energy variable, while
Eq. (A.2) means that V depends on the relative coordinates through the trans-
verse component z7 [Eq. (2.8)].

Equations (2.1) and (2.2) can also be obtained from a covariant three-
dimensional reduction of the Bethe-Salpeter equation, and the potential V can
be computed in perturbation theory from the Bethe-Salpeter kernel.?

Upon bringing the operators on the right hand side of Egs. (2.1) and (2.2) to the
right of V and using again the wave equations, one can transform Egs. {(2.1) and (2.2)
into two Dirac type equations, where each particle appears as being placed in the
external field created by the other particle.® Crater and Van Alstine!” observed that
if V is chosen in the hyperbolic form, as in Eq. (2.3), for the vector interactions,
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then in the Dirac type equations the resulting effective potential will also be pure
vector. Therefore, the parametrization (2.3) of the potential V results in a simple
correspondence between the “external field” interpretation and the quantum field
theory interpretation. However, it should be noted that the parametrization (2.3)
does not only contain effects of one-particle-exchange diagrams; rather, it corre-
sponds to a particular summation of subsets of ladder and crossed ladder higher
order diagrams. (The explicit rules of this summation have not yet been derived in
the literature.)

In order to solve Egs. (2.1) and (2.2) with the potential (2.3), one first uses the
wave function transformation

. \
¥ = cosh (—;- Cyy ")’2) . (A3)

Then, bringing the momentum operators to the right of C, one sees that Eqgs. (2.1)
and (2.2) become, in terms of the internal motion wave function Pz,

PL mQ—m‘? _ —
(et

—iCe %y 2"y me — ml} =0, (A4)

P ¢ m§—~m§ -C -c,. T T
{(2 € 2P, € Yor — € Yo - P

+iCe ™z + mz}?ﬂ =0, (A.5)

where the transverse and longitudinal components are defined as follows:

Al . - P
GE:%‘(Q"P)P;“ qa=q P, Pﬂ:(})2§1/27
(A.6)
1
PL:(P2)1/2> 2335(271"192}:
and a0

Equations (A.4) and (A.5) can be solved with respect to one of the 2 X 2 com-
ponents of 9. Upon decomposing ¢ on the basis of the v, and ~5 matrices as

P = %(1 + L) + % (1—vyp)_4 + é (I +vL)vs%++

+ = (=7 )r¥-—, (A.8)

AR
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we see that Eqs. (A.4) and (A.5) yield eight coupled compatible equations for the
above components. The component 9. . is the dominant one in the nonrelativistic
limit and determines the quantum numbers.

In general, in the unequal mass case, 11+ is not an eigenfunction of the total spin
and orbital angular momentum operators W2 and W2. However, the ground state
of the mass spectrum and its radial excitations are eigenfunctions with quantum
numbers s = 0 and £ = 0, and the corresponding equations simplify. Since in this
work we are interested in the ground state energy alone, we shall present the final
eigenvalue equation and the relationships between the components in this case only.

One obtains, in the c.m. frame, the following relationships among the compo-
nents:

(g = Pr) = =2y 9y, (A.9)
(s =) = 22Oy ), (A.10)
(Y- +9—y) = ‘}%6“%(81 ~s2) - ple T (Yyy +9p-_)], (A.11)

where s; and sy are the spin operators of particles 1 and 2, respectively, £ = P,
[cf. Eq. (2.6)] and A is as defined in Eq. (2.5).
Upon defining the wave function ¢ by the relation

(Yt + ) = TPy, (A.12)

one also ends up with the eigenvalue equation (2.4):

E? 1 (mz - m2)2 _
{826‘ [_Z_ €2C _ _2_ (m% + m%) + 14E2 2 e 20}

+ V2% —4r’n? 61 + 4r2h"}g0 =0. (A.13)

The term €2, which factorizes the brackets in the above expression, represents
the contribution of the spacelike part of the interaction (2.3), all other C-dependent
terms coming from its timelike part.
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