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Abstract: The effective interaction between two nucleons inside nuclear matter is calculated microscopi-
cally for several densities and several temperatures, assuming it is given by the Brueckner g-matrix,
derived from the separable Graz version of the Paris potential. Particular attention is paid to the
temperature dependence and to the way of putting the effective interaction into a Skyrme functional.
It is found that the latter task can be achieved with a very good accuracy and that the Skyrme
coefficients are weakly and quadratically temperature dependent. The g-matrix issued from the
Paris potential turns out to be rather different from the standard Skyrme forces in singlet odd
states. The charge dependence is investigated through the study of neutron matter. The connection
with the temperature dependence of the surface energy is also discussed.

1. Introduction

The study of hot nuclei is of large current interest '), both experimentally and
theoretically. The main issue is to know what is the limiting temperature, i.e., the
temperature beyond which a nucleus ceases to keep its cohesion (at least for a time
which makes its observation possible). From the theoretical side, this problem has
been attacked with statistical >*) as well as with dynamical calculations **). In both
cases (and in the latter, this is not the only one), an uncertainty arises because of
the poor knowledge of the temperature dependence of the nuclear effective forces.
Recently, nuclear matter calculations 1%} have shown that, fortunately, the effective
interaction on the whole does not depend very much on the temperature, when the
latter is raised from 0 to ~10 MeV. To quantify this statement, it can be said that
the change is at the most ~2-4%. However, a point still needs to be clarified. The
effective interaction is a complicated quantity which depends upon spin, isospin
and momentum of the nucleons. It may then happen that, even if the interaction
does not globally depend very much upon the temperature, some of its pieces can
display a stronger dependence. The purpose of this paper is to investigate this
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problem, studying in more detail nuclear matter calculation at zero and finite
temperatures. As a commonly used form of the effective interaction is the Skyrme
functional, we proceed as follows; we calculate the effective interaction by the
extended Brueckner formalism at various temperatures and densities. The effective
interaction is identified with the g-matrix calculated for the Paris potential. We
investigate whether the latter can be cast into a Skyrme functional. This turns out
to be the case, as it has also been demonstrated for simpler interactions ''). We
extract the parameters of the Skyrme functional and study their temperature and
density dependence. The Brueckner approach for the two-body interactions alone,
even truly realistic, does not give proper saturation properties. Therefore, our results
for the temperature dependence are expected to be more reliable than those for the
density dependence. We will focus primarily on the first ones.

The paper is organized as follows. Sect. 2 is a reminder of the basic theoretical
background about effective interactions and the g-matrix. In sect. 3, we present and
analyze our results. Finally, sect. 4 contains our discussion and our conclusion.

2. Theoretical background

The effective interaction, which we identify with the Brueckner g-matrix, depends
upon many variables, even in the case of an infinite uniform system of density p
and temperature T. In fact, we may write it as '%)

(klglk’) = f(k, k', cos 6, W, p, T, K ), (2.1

where k and k' are the initial and final relative momentum between the two interacting
nucleons, 6 is the angle between these two vectors, W is the so-called starting energy
and K is the total momentum of the pair. The g-matrix depends upon the latter
quantity through the energy denominators and through the occupation numbers
(for T #0) entering the Bethe-Goldstone equation (actually, there is an additional
dependence upon the angle between K and k, which is however negligible, in the
limit of a constant effective mass). On the energy shell, expression (2.1) drastically
simplifies, since k= k', and W is directly linked to K. Therefore one may write

(klonlk"y = fondk, cos 6, K) . (2.2)

From now on, we will not write explicitly the overall dependence upon p and T.

According to the physical problem one is interested in, one is led to further
simplification by averaging over the single-particle states. Here we will restrict
ourselves to the effective interaction relevant to static or quasistatic properties of
the nuclei. Then it is natural to consider the following quantity

J. d3k1 J d3k2 8(k, “kz“k)n(k1)n(k2)<klg0N;k'>

(leONIk’> = s (2~3)

f &k, j A&k, 8(ky— ky— K n(k)n(k,)
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where n(k) is the occupation number probability, namely
k - -1
n(k) = [1+exp (L)T——i«'“” : (2.4)

In the last expression, e(k) is the single-particle energy of state k and u is the
chemical potential. Eq. (2.3) may be written as

J dK o (K)fon(k, cos 6, K)

(k| Gonlk) = ) (25)

J dK w(K)

where the function w(K) is given in the appendix.

We would like to put this effective force in a Skyrme like functional. For a general
Skyrme force, the (non-antisymmetrized) matrix element between a bra (k| and a
ket |k), has the following simple form ") (on-shell)

(k| Vsklk') = [to+3tap® + 1,k + 1,k7 cos 6]
+ P [ toxo+itsx,p% + 1,6, k7 + hx,k” cos 6], (2.6)

where P, is the spin state projection operator. For simplicity, we have neglected
here the spin-orbit term, which is not very important in nuclear matter. It may be
useful at this point to study expression (2.6) in each substate. One readily has, using
antisymmetrized states

(SO) (k| Vsl =26,k*(1 = x;) cos 6, (2.7a)
(TO) (k| Vig|k')=26,k*(1+x,) cos 6, (2.7b)
(SE) (k| Vslk) =215(1—x0) +3t;(1 = x3)p* +21,(1 = x)K”, (2.7¢)
(TE) (k| Vsl &) = 2t6(1+ x0) +1t5(1+x3)p* +26,(1+ x,) 7. (2.7d)

Of course, the quantity (2.5) has a priori a more complicated functional depen-
dence upon k and cos @ (and p as well) than the one expressed in (2.6). Therefore
it is not possible to cast exactly (2.5) into (2.6) and one has to adopt some procedure.
Here we look at {2.5) as a power series of k and cos 6. We can then identify the
leading terms to expression (2.6) and study the importance of the deviation from
the latter form. For matter of convenience, we will consider below specific linear
combinations of the various substates. We first consider the following quantity

Ey= Y e(LST)(2J+1)Q2T+ 1){k|Gon LST)|kYP,(cos 6) , (2.8a)

LSTJ

Leven

where e(LST) =31+ (-1)""5""] and Gon(LST) is the quantity Gon projected on
state LST. If we limit ourselves to L=<4, we have

F,=FY+F® cos’ 0+ F¥ cos* 6. (2.8b)
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The quantities F{" are functions of k” and p (and T of course). We may always write

FY? =120 (p) + n{"(p) k'] +O(K", p),

(2.8¢)

where the second term is at least of the order of k* The first term is written so
because if the g-matrix Gy was exactly a Skyrme interaction, one would have the

following identifications

0=ttt al=n, =gl =0,
Similarly, we can write
Fo=73 e(LST)2J+ DT +1)}k|Gon(LST)|KYP,(cos 6)

T s
Loga

Fy=F% cos 6+ F5 cos® 0,
F?=36[£"(p)k*]+O(K", p) .
In the same conditions as for eq. (2.8d), one would have
glp)=n, &(p)=0.
We will also consider
Fy= SZTJ e(LSTY(~1)5 (27 + )T + 1){k|Gon( LST)|E'YP,(cos 6) ,
F,=FY+F? cos® 0+ F$" cos* 0,
F{ = 12068 (0)+ 0 (0)k*]+ Ok, p) .
In the same conditions as for eq. (2.8d) , one would have
£ = ot a¥=nm, &=l =0,
Finally, we have
Fo= Y e(LSTH—=1)""'2J+ 1) T+ 1){k|Gon(LST)|k"YP,(cos 6) ,

877
Loag

F,=F{" cos 0+ F cos’ 9,
F{=36[£7(p)k*]+O(k%, p)
and the limiting relations
&) =0x,  7(p)=0.
Actually, the quantity F, is simply
' P ay——
Fi=1Y Y (kSMs TMT]GON“‘ SMs TMr),

SMg TMr

(2.8d)

(2.92)

(2.9b)
(2.9¢)

(2.9d)

(2.10a)

(2.10b)
(2.10¢)

(2.10d)

(2.11a)

(2.11b)
(2.11¢)

(2.11d)

(2.12)

where the prime means that only the even partial waves are retained. It is easy to
find similar definitions for F,, F; and F,. We give in table 1 the explicit coefficients
entering expression (2.12) for the most important quantities F/’ when a projection

on the total angular momentum J is performed.
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TaBLE 1

Coefficients entering the expansion of the quantities F{ (egs. (2.9)) in terms of the (non-antisymmetrized)
partial-wave matrix elements of the g-matrix

'S, 'S, 'P, Ps Py *P; 'Dy ’D, D, Dy °F,
FO 6 6 -15 -3 -5
F® 45 9 15
Fib 54 6 18 30 —45
F$ 75
F® -6 6 15 -3 -5
F@ ~45 9 15
FiV —54 6 18 30 —45
F 75

3. Numerical results

3.1. INTRODUCTION

We have calculated the various quantities F\/ defined in the previous sections
for several densities ranging from ~p, to ~2p,, where p, is the saturation density
and for various temperatures extending from T =0to 7 =15 MeV. These variations
encompass the conditions encountered in medium-energy heavy-ion collisions and
the so-called coexistence zone for nuclear matter. The interaction used is the Graz
potential. It is a separable potential which has the same structure and yields the
same phase shifts as the Paris potential Y 1t has also been shown to give roughly
the same results for the Brueckner g-matrix and for the rearrangement term %Y as
the original Paris potential.

3.2. SKYRME-LIKE PARAMETERS

We first analyzed the quantities F © in the following way. We first verified that
to a good accuracy, they closely fit (see later for a discussion) egs. (2.8d), (2.94d),
(2.10d) and (2.11d) except for the quantity &9 The latter requires some discussion.
In the extensive Skyrme phenomenology, the form (2.8d) is assumed and the
exponent « is determined by fitting some properties of several nuclei. However, it
should be realized that only the vicinity of p, is investigated. Here, we are interested
in a very broad range of densities, especially in the p < p, side. If one tries a low
density expansion, one has good reasons to assume that &9 can be expanded as a
rapidly converging series in kg (this is the relevant parameter and not 2,

&0 =T+t p P g i 3.1
We therefore analyzed Fi® with expression (2.8d) and also with (3.1) limited to the
first three terms. We first tried to fit the Skyrme parameters to the & functions for

each temperature under study %), This procedure reveals that the exchange
coefficients are practically temperature independent (see fig. 1). On the contrary,
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Fig. 1. Variation with temperature T of the exchange parameters for the microscopically calculated
effective interaction. See text for detail.

the quantities ¢t do show some dependence. However, due to the fitting procedure
which introduces some distortion and to the error bars inherent to our calculation,
the temperature dependence so extracted is, at least for some of the parameters,
not purely quadratic in T, although the original ingredients of the calculation, the
matrix elements in definite partial waves, turn out to be quadratic to a very good
approximation. This is shown in fig. 2 for two of them. We therefore adopt the
following procedure. We assume that the exchange coefficients are temperature-
independent and that the other parameters are quadratic, as (=0, 1,...)

t=t(T=0)[1+B.T"] (3.2)

in the domain of temperature under study, and fit the coefficients to the £ functions
for all temperatures at the same time. The results are shown in table 2. The coefficient
which shows the largest temperature dependence is t; which changes by 10% when
T changes from 0 to 5 MeV. Note that that on general grounds '%) one expects an
analytical dependence upon the temperature, with a development which starts like
eq. (3.2).

3.3. COMPARISON WITH EXISTING SKYRME FORCES

In table 3, we compare the coefficients obtained from our calculation with those
of existing Skyrme forces. There is a large spreading of the values of the parameters
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Fig. 2. Matrix elements of the g-matrix {averaged as in eq. (2.3)) in two partial waves for (a) k=0 and
{(b) k=1fm™, calculated for p = p, and various temperatures. The linearity in T7 is illustrated. See text
for detail.

TABLE 2

Values of the parameters of the Skyrme functional (egs. (2.6), (3.1)
and (3.2)) fitted to the calculated g-matrix for temperature ranging
from 0 to 15 MeV and for density between 2p, to 2,

t (T=0) B; (107> MeV™2)

t, (MeV-fm®) ~1492 0.878
t, (MeV-fm®) 192.5 0.423
t, (MeV-fm®) 148.4 —-0.010
t; (MeV-fm*) 7011 0.808
1} (MeV-fm®) —~1588 ~4.445
Xo 0.218

Xy —0.130

Xy —1.054

X5 0.450

x4 ¢

3

among the various cases. This reflects the fact that the observables used to constraint
the phenomenological Skyrme interactions do not uniquely define a force. As we
already mentioned in the introduction, the parameters obtained in our analysis
cannot be considered (at least for all of them) as a theoretical tool for removing
definitely the undeterminancy. It is certainly useful to give a guideline for some
parameters, but the lack of good saturation properties inherent to the Paris potential
prevents us from attaching too much weight to those relevant parameters (7, and £5).
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TABLE 3

Comparison (at T =0) between the Skyrme-like parameters for our calculated effective interaction with

those of some phenomenological effective interactions: SIIT force ), SkM force *°), the modified SIII

force '°) and the force of ref. '7). Column (A) corresponds to eq. (3.1), whereas column (B) corresponds
to the standard form (2.6)

Our results
SII SkM STIT* Ref. ')
(A) (B)

to (MeV-fm?) 1492 —1500 —1128.75  —2645 ~1121 ~1789
t; (MeV-fm®) 192.5 192.5 395 385 400 301
, (MeV-fm®) 148.4 148.4 —95 =120 —533 502
t; (MeV-fm®) 6200 14000 15595 14000 12764
9 (MeV-fm*) 7011
¥ (MeV-fm®) ~1588
] i 1 : 1
Xo 0.22 0.2 0.45 0.09 0.43 0.353
X —0.13 —0.16 0 0.35 -25
X, ~1.05 -1 0 ~0.98 -1.7
X5 0.45 0.47 0 0 0.475

3

The difficulty of the analysis lies in the fact that most physical properties are
linked to several parameters at the same time. For some of them the relationship is
not even known. Nevertheless we will make some comments.

A striking feature of table 3 is that f, (and x,) are quite different (opposite sign)
in our results and in the celebrated SIII and SkM forces. However, as pointed by
Tondeur '”) (who proposed for t, and x, qualitatively similar values as ours), the
positive sign of £, and the negative sign of x, are dictated by the repulsive nature
of the effective force in odd states, in particular in the singlet ones, a feature which
is not tested separately in the abundant “skyrmiology”.

It is interesting to consider more physically meaningful combinations of par-
ameters. Some of them are given in table 4. The first quantity is linked to compression
and the second one determines the effective mass, more precisely the k-mass 18
which comes from the nonlocality of the interactions. The Paris potential yields the
same mass as SIII, but not as SkM, which has a slightly larger mass. The interaction
of ref. '7) has the particular feature of having an effective mass = 1. The third quantity
in table 4 is related to the gradient terms in the Skyrme energy functional (in
symmetric systems) and therefore is connected to the surface energy. It will be
discussed later on. The next three quantities enter the expression of the isospin
symmetry energy. Similarly, the last three quantities contribute to the spin symmetry
energy ). For the (isospin) symmetry energy, the most important is the first of
these three coefficients. One can see that the Paris potential yields about the same
value as SIIL. Actually, detailed calculations **?') reveal that the energy symmetry
is the same in both cases (~30 MeV). Concerning the spin symmetry energy, the
Paris potential yields about the same value as for the isospin symmetry energy 2,
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TABLE 4

Same as table 3, but parameters are grouped in expressions corresponding to the physical quantities of
the first column. See text for detail

(A) S SkM SIIT* Ref. 1)
B/A o+t pl? —~937 164 ~1144 171 —610
m* 3t,+56+46x, 702 710 555 708 0.6
(Ve 94,-55-3hx, 1370 4030 4065 4697 2759
E; (2%, +1) ~2100 2145 -3121 —2085 -3052
41,+56,%, —34,%, ~58.7 ~380 —480 340 -1.5
t(2x;+1) 11834 14000 15595 14000 24870
Eq to{—2x,+1) ~900 ~129 —2168 —-161 -525
41,4500, =31, %; 236 ~380 —480 620 —4516
(2%, +1) 366 14000 15595 14000 739

This in fact results from subtle compensations between x,, x; and x; contributions.
The value of x, in SIII combined with vanishing x, and x; gives a smaller spin
symmetry energy, a well known deficiency of the standard Skyrme interactions,
partially corrected in SkM.

3.4. DENSITY DEPENDENCE

We are here primarily concerned with the quantity £{”(p) defined in eq. (2.8¢).
We study a large enough range of density to describe it accurately with expression
(3.1). The quantity £° is given in fig. 3. The latter clearly shows the quadratic
dependence upon p'/?. When focusing on p =~ p,, as it is usually done, a linear
dependence is largely sufficient. That is why static properties are generally repro-
duced by Skyrme forces with @ =1. Only the description of vibrations requires a
different exponent.

3.5. DEVIATIONS FROM SKYRME FUNCTIONAL

We observe in general that the quantities F™% are generally much smaller (at

least one order of magnitude) than the leading terms. As an illustration, we give in
fig. 4 the comparison at T =0 between the quantities F® and F{®. This more or
less justifies the use of the Skyrme functionals in the study of static and quasistatic
properties, since only the values of k< kg are relevant (see the appendix).

3.6. SURFACE ENERGY

It has been established **) that for fermion systems described by a energy func-
tional of the Skyrme-type, i.e., by an energy density of the form
2

h 2
%:2—’;1— 7+ F(p)+ B|Vp|*+ Gpr, (3.3)
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Fig. 3. Quantity £{? (egs. (2.8a-c) as calculated microscopically for various temperatures (symbols} and
the fits of two of them (full lines) by quadratic forms in p'/? (see eq. (3.1)).
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Fig. 4. Variation with the relative momentum k of the quantities F\” and F{” (see text), for normal
density and T =5MeV.
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where F(p) is some function of the density and 7 is the kinetic energy density, there
exists a simple relation between the surface tension and the coefficients of the
functional (3.3), provided semiclassical approximations are made for relating 7 and
p. It writes at T=0

o=apeh, (3.4)

with
2

h
=5 B+gpo[G(B*7)+B], (3.5)
m 5

where B and y are the coefficients in the so-called Weiszicker term (8 =4, ¥ =3).
One sees that a is directly related to the gradient terms. On the contrary b is related
to bulk properties only: density, binding energy, compressibility modulus. Its explicit
form depends upon the detail of the function F(p) and can be found in ref. ) for
some typical examples of F(p). The temperature dependence of o (defined as the
work necessary to create a unit surface at constant T) has been studied in ref. .
It can be cast into

o=o,(1-B'T?, (3.6)

for temperature-independent coefficients in (3.3). If B and G depend upon tem-
perature, eq. (3.6) should be replaced by

o=o[1-(B'+B")T], (3.7)

where 8" is the T coefficient of the expansion of a (eq. (3.5)) due to the temperature
dependence of G and B. It is related to the coefficients B; of eq. (3.2). Using table
2, we find 8”=0.2x107° MeV 2, which should be compared to the value of 8’~107*
for standard Skyrme force >*). We can thus conclude that the temperature dependence
of the effective interactions has negligible effects on the surface energy.

3.7. NEUTRON MATTER

We also performed the same analysis for neutron matter. It turns out that the
extracted values of the Skyrme parameters are the same as those of nuclear matter
(to less than ~4% ) at the same density.

4. Conclusion

We have calculated microscopically the effective interaction between two nucleons
inside nuclear matter. We assumed that the latter can be identified with the g-matrix,
calculated with the Graz version of the Paris potential, when averaging over the
total momentum of the nucleons is performed. We looked at its expansion as function
of both the relative momentum and the cosine of the angle between the incident
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and final relative momentum and found that it largely reduces to the Skyrme
functional for practical purposes. We compared the calculated effective interaction
with conventional Skyrme forces. We found that they are very similar, except for
two features:

(1) the coefficient x, is totally different, which indicates that the Skyrme forces
are not microscopically founded for the singlet odd states;

(2) the calculated coefficients ¢, and f; are different from the ones of the best
Skyrme forces. This is of course due to deficient saturating property of the Paris
potential at this approximation of the Brueckner-Bethe expansion. Moreover, we
found a more complicated density dependence, even at low density.

We paid particular attention to the temperature dependence of the effective
interaction. We think our method is very well suited for this study, since this
dependence arises from the “heating” of the Pauli operator in a Brueckner approach.
We found that the exchange parameters are temperature-independent and that the
other ones are weakly dependent in the 0-15 MeV range, including those which are
connected to the surface energy.

The method is very promising and should be extended to the case of scattering
nucleons in the intermediate energy domain.

One of us (A.L.) would like to thank the Dipartimento di Fisica, Universita di
Catania, for the warm hospitality extended to him. The numerical calculations
performed on CRAY supercomputer have been supported by both the FNRS and
the INFN.

Appendix A

EXPRESSION FOR THE NUMBER OF PAIRS WITH RELATIVE MOMENTUM k

The number of pairs with relative momentum k per unit volume is given by

dn 1 [ &k [ Ik
ﬁ:ﬂ oy J om0 ()3~ ko= ), (A1)

where n(k) is the occupation number probability (eq. (2.4)). Using c.m. coordinates
K =ik, + k), g=k, —k,, one can put (A.1) into

dn_ 1
&k (2m)%

J PK n(|K+iK)n(K—ik)) . (A2)

Of course, dn/d’k does not depend upon the direction of k for an homogeneous
system. If we call ¢ the angle between K and k, one obtains

dn L 2 i 1 1
&k (2arp L dKK J(~1 d(cos &)n(|K +3k|)n(|K —3k|) (A3)
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or

dn_1 j “ 4K o(K)
T w (A.4)
in the notation of sect. 2. The second integral in (A.3) can be performed analyti-
cally ) for T#0 when a quadratic approximation is used for the single-particle
energy e(k)=a+ bk*. We just reproduce the formula here for w(K)

1 2K* (1. 1+exp(A-—B) }
K)= 1
@) (2Tr)51—exp(2A)1Bn1+exp(A+B) (A.5)
with
+b(K2+K/4) - bkK
Pl 2 M= B=Zr (A.6)

The limit of relation (A.5) for T- 0 is not easy to work out, but explicit formulae
are also given in ref. ). The formula for w(K) is then

1 forO0=sik<k.—K

]

2

2K 2 FENIR
w(K)=——=x{(ki-k*/4—K*/kK forkp— K <ik<vki—K>

2=y C
forvVki—K?><lk<kg, orfor K> k.
(A.7)
In this case, dn/dk® can be calculated explicitly. One readily obtains
dn 1
aﬁ=m><%(kp~%k)z(kp+%k)- (A.8)

For T #0, the integration has been performed numerically.
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