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The Elongator complex is required for proper development of the cerebral cortex.
Interfering with its activity in vivo delays the migration of postmitotic projection neurons,
at least through a defective α-tubulin acetylation. However, this complex is already
expressed by cortical progenitors where it may regulate the early steps of migration
by targeting additional proteins. Here we report that connexin-43 (Cx43), which is
strongly expressed by cortical progenitors and whose depletion impairs projection
neuron migration, requires Elongator expression for its proper acetylation. Indeed,
we show that Cx43 acetylation is reduced in the cortex of Elp3cKO embryos, as
well as in a neuroblastoma cell line depleted of Elp1 expression, suggesting that
Cx43 acetylation requires Elongator in different cellular contexts. Moreover, we show
that histones deacetylase 6 (HDAC6) is a deacetylase of Cx43. Finally, we report that
acetylation of Cx43 regulates its membrane distribution in apical progenitors of the
cerebral cortex.
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INTRODUCTION

The neocortex is a highly organized structure made of six distinct neuronal layers, which differ in
terms of connectivity and gene expression profile (Molyneaux et al., 2007). The establishment of
the laminated cortical structure implies a coordinated generation, migration and differentiation of
neurons during embryonic development (Noctor et al., 2001). Excitatory projection neurons arise
from progenitor cells located in the ventricular (VZ) and subventricular zones (SVZ) of the dorsal
telencephalon (Götz and Huttner, 2005). Newborn neurons migrate radially along radial glial
fibers to the cortical plate (CP) and settle into neuronal laminae. Neuronal migration is a dynamic
and highly regulated process including distinct phases associated with specific morphologies
(Ohtaka-Maruyama and Okado, 2015). Numerous molecular pathways controlling neuronal
migration have been identified, including cytoskeletal regulators such as doublecortin, filamin A,
and Lis1 (Kriegstein and Noctor, 2004; Liu, 2011; Moon andWynshaw-Boris, 2013). We previously
reported that Elongator is a critical player in the control of cortical neuron migration (Creppe
et al., 2009; Tielens et al., 2016). Elongator is a macromolecular complex composed by two copies
of six individual subunits (Glatt et al., 2012), with Elp3 being the enzymatic core that contains an
acetyltransferase (HAT) domain (Winkler et al., 2002). Several functions have been attributed to
Elongator (Nguyen et al., 2010; Glatt andMüller, 2013). Besides its central role as a tRNA-modifying
protein (Ladang et al., 2015; Laguesse et al., 2015; Delaunay et al., 2016), Elp3 has been shown to
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regulate the acetylation of three proteins: histone H3 in the
nucleus (Winkler et al., 2002), bruchpilot at the drosophila
neuromuscular junction (Miskiewicz et al., 2011) and α-tubulin
in migrating post-mitotic projection neurons (Creppe et al.,
2009). We previously showed that reducing Elongator activity
in post-mitotic neurons correlates with reduced α-tubulin
acetylation and impaired migration to the CP (Creppe et al.,
2009). However, as Elongator subunits are also found in the
VZ/SVZ of the developing cortex (Creppe et al., 2009; Laguesse
et al., 2015), we hypothesized that other targets of Elongator
(direct or indirect) play a role in the regulation of early steps
of migration, contributing to the overall migration impairment
observed after depletion of Elongator.

The GAP junction protein connexins (Cx) are highly
expressed in neural progenitor cells during cortical development
where they regulate different aspects of neurogenesis (Sutor
and Hagerty, 2005; Elias and Kriegstein, 2008; Orellana et al.,
2013). Among them, connexin-43 (Cx43) is highly expressed by
neurons and neuronal progenitors during development (Rouach
et al., 2002). Cx43 controls the differentiation and the interkinetic
nuclear migration of neuronal progenitors (Liu et al., 2010;
Santiago et al., 2010; Rinaldi et al., 2014), the tangential to radial
migratory switch of migrating interneurons invading the cortical
wall (Elias et al., 2010), and the radial migration of projection
neurons (Elias et al., 2007; Elias and Kriegstein, 2008; Cina et al.,
2009; Liu et al., 2012; Qi et al., 2016). During radial migration,
Cx43 is expressed at the contact point between migrating
neurons and radial glial fibers, and targeting Cx43 impairs
neuronal migration (Elias et al., 2007; Cina et al., 2009). Cx43 is
regulated by numerous post-translational modifications (Solan
and Lampe, 2009; Johnstone et al., 2012) including lysine
acetylation, which controls its subcellular localization in mouse
cardiomyocytes (Colussi et al., 2011).

Here, we showed that Cx43 interacts with both Elp1 and
Elp3 in the developing mouse cortex as well as in different
cell lines, and that proper acetylation of Cx43 requires
Elongator activity, a post-translational modification removed
by histones deacetylase 6 (HDAC6). We thus investigated
the possible function of Cx43 acetylation and demonstrated
that this post-translational modification regulates Cx43 cellular
localization in Hela cells and in the developing cortex.

MATERIALS AND METHODS

Animals
Time-pregnant NMRI (Janvier Labs, Saint Berthevin,
France), FoxG1cre/WT and Elp3loxp/loxp mice backcrossed in
129/SvJ genetic background were housed under standard
conditions. This study was carried out in accordance with the
recommendations of the guidelines of the Belgian Ministry of
Agriculture in agreement with European Community Council
Directive for the care and use of laboratory animals of 22
September 2010 (2010/63/EU) and approved by the local ethics
committee. The generation of the conditional Elp3 knock-out
mouse required breeding of Elp3loxp/loxp mice with FoxG1cre/WT

mice (Hébert and McConnell, 2000), as previously described

(Laguesse et al., 2015). The following primers were used for
genotyping FoxG1 and Cre recombinase: 5′-GCC GCC CCC
CGA CGC CTG GGT GAT-3′, 5′-TGG TGG TGG TGA TGA
TGA TGG TGA TGC TGG-3′ and 5′-ATA ATC GCG AAC
ATC TTC AGG TTC TGC GGG-3′.

RNA Extractions and qRT-PCR
Total RNA was extracted from cortices of E14.5 embryos. RNA
extraction was performed using the All prep DNA/RNA/protein
kit (Qiagen, Hilden, Germany). All RNA samples were treated
with DNAse I (Roche, Basel, Switzerland). Synthesis of cDNA
was performed on total RNA, which was reverse-transcribed
with SuperScript III reverse transcriptase (ThermoFisher
Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. Resulting cDNA was used for quantitative PCR,
using Faststart Universal SYBR Green Master (Roche). Thermal
cycling was performed on an Applied Biosystem 7900HT Fast
Real-Time PCR detection system (Applied Biosystems, Foster
city, CA, USA). The quantity of each mRNA transcript was
measured and expressed relative to Glyceraldehyde-3-Phosphate
deshydrogenase (GAPDH). The following primers were designed
with Primer3 software: GJA1 forward 5′-GGA CTG CTT TCT
CTC ACG TC-3′ and GJA1 reverse 5′-GAG CGA GAG ACA
CCA AGG AC-3′; GAPDH forward 5′-GCA CAG TCA AGG
CCG AGA AT-3′ and GAPDH reverse 5′-GCC TTC TCC ATG
GTG GTG AA-3′.

Cell Cultures, Stable Line Establishment
and Transfections
Human Glioblastoma (U87) and Adenocarcinoma (Hela) cells
were cultured in DMEM medium supplemented with Bovine
fetal serum (FBS) 10%. Mouse Neuroblastoma cells (N2A)
were cultured in DMEM supplemented with FBS 10% and
glutamine 2 mM. Human embryonic kidney HEK-293 lentiX
cells (Clontech, Moutain View, CA, USA) and HEK-293
cells were cultivated in DMEM supplemented with FBS
10%, glutamine 1%. To generate HEK-293 stably expressing
ELP3-FLAG proteins, cells were transfected with pIRES-Elp3-
puro construct and selected in 1 µg/ml puromycin (Sigma
Aldrich, St Louis, MO, USA). Cells were maintained in selecting
media for 3 weeks and surviving cells were used for experiment
after transgene expression confirmation. Cell transfections were
performed using lipofectamine 2000 according tomanufacturer’s
protocol (ThermoFisher Scientific). Cells were lysed or fixed
48 h after transfection. Trichostatin A (TSA; 5 mM in
DMSO, Sigma-Aldrich) was added to the medium at a final
concentration of 1 µM for 4 h before cell fixation or
lysis.

Plasmids Constructs and Preparation
ORFs encoding human Elp3 were cloned into pIRESpuro
(Clontech) with a FLAG tag at the C terminus. Flag-HDAC6 in
pcDNA3 has been described previously (Viatour et al., 2003).
All constructs were sequence verified. Cx43 was subcloned from
the clone image MC205621 (Origene, Rockville, MD, USA)
by high fidelity PCR using NheI-Cx43 forward primer and
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EcoRV-reverse primer and inserted into the pCAGGS-IRES-
GFP vector. To obtain Cx43-4KR, directed mutagenesis was
performed on the pCAGGS-Cx43-IRES-GFP (Agilent, Santa
Clara, CA, USA), replacing K9R, K162R, K234R and K264R.
Plasmids DNAwere prepared using a Plasmid EndofreeMaxi Kit
(Qiagen).

Lentivirus Production and Infection
Lentivirus production and lentiviral infections were performed
as previously described (Creppe et al., 2009). Briefly, HEK-293
lentiX cells were transfected with the lentiviral packaging vectors
VSVG and R8.91 and the pLL3.7 shELP1 or pLL3.7 shSCR
using Fugene6 (Promega, Madison, WI, USA) in Opti-MEM
medium. Twenty-four hours after transfection, medium
was changed to DMEM-FBS 10%. Seventy-two hours after
transfection, supernatant containing the viral particles
was collected and passed through 0.22 µm filter. The
supernatant was then used to infect N2A cells two times
consecutively for 6 h with Polybrener (Sigma-Aldrich) added
at 5 µg/mL. Efficacy of infection was determined by GFP
expression.

Immunohistochemistry
Embryonic brains (E14.5) were dissected in 0.1 M phosphate-
buffered saline pH7.4 (PBS) and were fixed at 4◦C in
4% paraformaldehyde (PFA) for 1 h. Fixed samples were
cryoprotected overnight in 20% sucrose in PBS at 4◦C, embedded
in OCT Compound (VWR International, Leuven, Belgium)
and sectioned (12 µm) onto slides (SuperFrost Plus, VWR
International) using a cryostat. Cells were fixed at RT in
4% PFA for 15 min and rinsed three times with PBS.
Frozen cryosections and fixed cells were washed three times
in PBS-Triton 0.1% (PBST) and blocked for 1 h at room
temperature in PBST containing 10% donkey serum (Jackson
Immunoresearch Laboratories, West Grove, PA, USA). Sections
were incubated overnight at 4◦C with the following primary
antibodies: anti-Elp3 (1:1000, gift from J. Svejstrup, Cancer
Research UK London Research Institute, South Mimms, UK),
anti-Cx43 (1:500, rabbit, Abcam, Cambridge, UK), anti-Cx43
IF1 (1:500, mouse, Max Planck institute, Munchen, Germany,
Sosinsky et al., 2007), anti-GFP (1:500, goat, Abcam). After
washing, sections were incubated for 1 h at room temperature
with either anti-mouse, anti-rabbit, or anti-goat secondary
antibodies coupled to Rhodamine-redX or FITC (Jackson
Immunoresearch Laboratories). Nuclei were counterstained with
Hoechst 33342 (1:1000, ThermoFisher Scientific), washed in
PBST and coverslipped using Aqua Polymount (Polysciences Inc,
Washington, DC, USA). The slides were stored in the dark at
4◦C. For images analyses, sections were analyzed by confocal
microscopy using A1Ti confocal microscope (Nikon) and ImageJ
software. Images of cortical slices were acquired with a 40×
objective with a z-interval of 1 µm (z-stack = 5 images) or with
a 60× objective with a z-interval of 1 µm (z-stack = 5 images).
The quantifications of intracellular and membrane fluorescent
signal intensities in Hela cells were conducted using ImageJ
software.

Immunoprecipitation and Western Blot
Analysis
Dissected E14.5 embryonic cortices were incubated in lysis
buffer (50 mM Tris-HCl pH 7.4, 450 mM NaCl, 1% triton,
10 mM NaF, 1 mM Na3VO4 and proteases inhibitors, Roche).
Cells were lysed in another lysis buffer (50 mM Tris-HCl pH
7.4, 150 mM NaCl, 1% triton, 10 mM NaF, 1 mM Na3VO4
and proteases inhibitors, Roche). Proteins were extracted by
centrifugation (10,000 g) for 10 min at 4◦C, and quantified using
BCA method (Pierce). Immunoprecipitation (IP) was carried
out using the following antibodies at 1/250: anti-HA (rabbit,
Santa Cruz Technology SCT, Santa Cruz, CA, USA), anti-HA
(mouse, SCT), anti-Flag (mouse, Sigma-Aldrich), anti-ELP1
(Close et al., 2006), anti-ELP3 (gift from J. Svejstrup, Cancer
Research UK London Research Institute, South Mimms, UK),
anti-Cx43 (rabbit, Abcam), followed by 1 h incubation with
protein A/G plus agarose beads. Anti-HA IP was carried out
as control. Beads were washed out six times with the lysis
buffer. Protein samples were then mixed with loading buffer
and incubated at 95◦C for 5 min, then separated by SDS-PAGE
and transferred to 0.45 µm PVDF membranes (Millipore,
Billerica, MA, USA). Membranes were blocked 1 h in a solution
containing non-fat milk, then incubated O/N at 4◦C with the
following antibodies anti-ELP1 (Close et al., 2006), anti-Cx43
(Abcam), anti-pan-acetylated lysine (Cell signaling technology,
Danvers, MA, USA). HRP-conjugated antibodies were applied
for 1 h at RT (conjugated anti-mouse, anti-rabbit, GEHealthcare,
Waukesha, WI, USA). Membranes were developed with the
ECL chemiluminescent reagent (Thermo scientific, Rockford, IL,
USA) using Hyperfilm ECL (GE Healthcare). ImageJ was used
for optical density quantification.

Statistical Analyses
Statistics for dual comparisons were generated using unpaired
two-tailed Student’s t-tests. Statistical analyses were performed
using graphPad Prism 5.0 Software (GraphPad software Inc.,
San Diego, CA, USA). Values are presented as mean ± SEM
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 for all statistics.

RESULTS

Elongator Interacts with Connexin 43 in
the Developing Cortex
Cx43 is expressed in neurons and progenitors of the developing
cortex of the rat brain, with high levels of expression in the
VZ/SVZ and reduced levels in the CP (Elias et al., 2007;
Qi et al., 2016). We analyzed the expression of Cx43 in
E14.5 embryonic mouse brain and observed a punctate staining
throughout the cortical wall, with a stronger labeling of the
VZ cells (Figures 1A–H). The different subunits of Elongator
are expressed in migrating projection neurons, but are also
found in the VZ/SVZ progenitor cells (Creppe et al., 2009;
Laguesse et al., 2015). We thus immunolabeled embryonic
cortices to detect Cx43 and Elp3, and we observed a strong
co-expression of both proteins in cortical progenitor cells that
are lining the ventricle (Figures 1B,F–H). Co-IP experiments on
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FIGURE 1 | Elongator interacts with connexin 43 (Cx43) in the developing cortex. (A) Scheme illustrating the location of the coronal section (12 µm) of
E14.5 wild-type (WT) cortex. (B–H) Immunodetection of Cx43 (red) and Elp3 (green) in E14.5 WT cortex showing co-expression of both Elp3 and Cx43 in cortical
plate (CP) neurons (C–E) and in the ventricular (VZ)/subventricular zones (SVZ) neuronal progenitors (F–H). (I–L) Immunoprecipitates from E14.5 mouse embryos
cortices were subjected to anti-ELP1 or anti-Cx43 western blot analysis; corresponding western blots were performed on crude cell extracts (inputs).
(M) Immunoprecipitates from HEK293 cell line stably expressing flag-ELP3 were subjected to anti-Cx43 western blot analysis and showed an interaction between
Cx43 and ELP3. Corresponding western blots were performed on crude cell extracts (inputs). (N) Forty-eight hours after transfection of Cx43 in N2A cells,
immunoprecipitates from N2A cells homogenate were subjected to anti-ELP1 western blot and showed an interaction between Cx43 and ELP1. Bar scale, 50 µm.
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FIGURE 2 | Cx43 is acetylated in the developing cortex.
(A,B) Immunoprecipitates from E14.5 WT (A) or Elp3cKO (B) mouse embryos
cortices were subjected to anti- pan acetyl lysine western blot analysis.
Corresponding western blots were performed on crude cell extracts (inputs).
Data are presented as the average ratio of acetylated Cx43 to Cx43 ± SEM,
and are expressed as percentage of WT controls. Significance was
determined using two-tailed unpaired t-test t(4) = 5.11, p = 0.007. n = 3.
(C) Cx43 mRNA levels were determined by qRT-PCR in E14.5 WT and
Elp3cKO cortex. Data are presented as the average ratio of Cx43 to
glyceraldehyde-3-Phosphate deshydrogenase (GAPDH) ± SEM, and
expressed as percentage of WT control. Significance was determined using
two-tailed unpaired t-test t(4) = 0.668, p = 0.54. n = 4. ∗∗p < 0.01.

microdissected tissue from the cerebral cortex of E14.5 embryos
demonstrated an in vivo interaction between Cx43 and both
Elp1 and Elp3 (Figures 1I–L). We also generated a HEK293 cell
line stably expressing flag-Elp3, and we detected a comparable
interaction between flag-ELP3 and Cx43 in vitro (Figure 1M).
This interaction was further confirmed in a neuroblastoma cell
line (Figure 1N).

Connexin 43 is Acetylated in the
Developing Cortex
In the developing mouse heart, Cx43 assembles into GAP
junctions expressed at the intercalated discs that physically
delimitate cardiomyocytes, and Cx43 acetylation has been shown
to control such localization (Colussi et al., 2011). To determine
whether Cx43 is acetylated in the developing mouse cortex,
we performed western blot to detect acetylated lysine(s) in
Cx43 immunoprecipitate from E14.5 mouse cortical extracts
(Figure 2A). The acetylation level of Cx43 but not its expression
(Figure 2B (inputs), Figure 2C) was reduced in the cortex
of E14.5 Elp3cKO embryos (breeding of Elp3loxlox mice with
FoxG1: Cre mice (Hébert and McConnell, 2000), as previously
described (Laguesse et al., 2015)), as compared to WT embryos
(Figure 2B). Altogether, these results show that Elongator is
required for the proper acetylation of Cx43 in the mouse
developing cerebral cortex.

Elongator and HDAC6 Regulate Connexin
43 Acetylation
The transfer or removal of acetyl groups on lysine residues is
mediated by two classes of enzymes: the lysine acetyltransferases
(KATs) and lysine deacetylases (KDACs), also known as
HDACs (Menzies et al., 2016; Simon et al., 2016). HDACs are
grouped into four classes, depending on sequence homology.
Classes I, II and IV are Zinc-dependent HDACs, whereas
class III consists of NAD+-dependent sirtuins (SIRT1 and 2).
HDACs play important roles in the regulation of transcription,
but they also act on a large set of non-histones proteins,
like transcription factors, translation-associated proteins,
proteins involved in cytoskeleton regulation or cell signaling,
to regulate several functions (Yao and Yang, 2011; Roche
and Bertrand, 2016). In order to identify the enzyme
responsible for Cx43 deacetylation, we treated cultured
U87 cells with TSA, a potent inhibitor of class I, II and IV
HDACs but not class III sirtuins (Codd et al., 2009), or
DMSO as control. As shown in Figure 3A, TSA treatment
of U87 cells significantly increased Cx43 acetylation levels,
suggesting that the Cx43 deacetylase is a member of HDAC
family. HDAC6 is found in the cytoplasm and promotes
the deacetylation of multiple targets including α-tubulin,
cortactin and HSP90 (Kovacs et al., 2005; Zhang et al., 2007;
Li et al., 2011). We thus tested the ability of HDAC6 to
promote Cx43 deacetylation. As shown in Figure 3B,
HDAC6 overexpression reduced the acetylation of Cx43 in
N2A cells, suggesting that HDAC6 is a deacetylase that targets
Cx43. We next deciphered whether Elongator also promotes
Cx43 acetylation in N2A cell line. For this purpose, we infected
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N2A cells with a lentivirus delivering shRNA against ELP1,
because it has previously been reported to destabilize the
Elongator complex (Petrakis et al., 2004; Close et al., 2006;
Creppe et al., 2009). As shown in Figure 4A, ELP1 depletion
in N2A cells resulted in decreased Cx43 acetylation level. We
further showed that inhibition of HDACs activity was not
sufficient to counteract the impact of the depletion of ELP1 on
Cx43 acetylation (Figure 4B). Altogether, these results suggest
that Elongator is necessary for proper acetylation of Cx43,
a post-translational modification removed at least in part by
HDAC6.

Acetylation of Cx43 Regulates its
Membrane Localization In Vitro
It has been previously shown that acetylated Cx43 delocalizes
from the membrane and is mainly found in the cytoplasm and in
the nucleus (Colussi et al., 2011). We thus analyzed the cellular
localization of Cx43 in Hela cells before and after TSA treatment.
We overexpressed Cx43 and showed that in basal conditions,
Cx43 formed connexons at the contact points between cells
(Figure 5A). However, TSA treatment delocalized Cx43 from
the membrane to a more cytoplasmic position (Figures 5B,E), in
line with previous results (Colussi et al., 2011). As Cx43 contains
many lysine residues, we used the posttranslational modification
database PHOSIDA to identify potentially acetylable lysines
(Gnad et al., 2011). We identified four lysines (K) predicted to be
acetylated with more than 90% confidence: K9, K162, K234 and
K264. In order to generate a non-acetylable form of Cx43, we
replaced the four corresponding lysines by arginine residues (R),
as previously described (Li et al., 2002; Qiang et al., 2010; Colussi
et al., 2011; Jiménez-Canino et al., 2016). Cx43-4KR was also
found in connexons connecting Hela cells (Figures 5C,E), but
unlike Cx43-WT, TSA treatment did not trigger its delocalization
from the membrane, and Cx43-4KR was still found at the
contact points between cells after TSA treatment (Figures 5D,E).
This suggests that the cellular localization of Cx43 is regulated
through acetylation, which triggers Cx43 delocalization from the
membrane.

Increased Cx43 Membrane Localization in
the VZ Progenitor Cells of Elp3cKO
As Cx43 acetylation regulates its subcellular localization and is
reduced in Elp3cKO embryonic cortices, we assessed the impact
of the loss of Elp3 on Cx43 localization. We labeled Cx43 in
E14.5 WT and Elp3cKO cortex with a specific antibody, which
detects Cx43 only when present at the membrane (IF1 antibody;
Sosinsky et al., 2007) and analyzed its distribution in the cortical
wall. In WT cortex, we observed membrane Cx43 labeling
throughout the cortical wall with some accumulation detected
in the VZ/SVZ, as compared to the IZ and CP (Figures 6A–F).
In the Elp3cKO cortex, we observed a reduced Cx43 labeling
in the IZ/CP compared to the WT littermate (Figures 6G,H),
which is likely the consequence of the reduced neuron population
observed upon loss of Elp3 in cortical progenitors (Laguesse
et al., 2015). However, as shown in Figures 6I–L, our results
showed a stronger labeling of Cx43 in the VZ progenitor cells of

FIGURE 3 | Histones deacetylase 6 (HDAC6) regulates Cx43 acetylation
levels. (A) U87 cells were treated with trichostatine A (TSA) or DMSO as
control (CTL) for 4 h. Immunoprecipitation (IP) were carried out using anti-pan
acetyl lysine antibodies or anti-HA as control, followed by western blot analysis
using specific anti-Cx43 antibody (upper panel); or Cx43 IP was carried out
and followed by western blot using anti-pan acetyl lysine antibody (lower
panel). Corresponding western blot were performed on crude cell extracts
(inputs). Data are presented as the average ratio of acetylated Cx43 to
Cx43 ± SEM, and are expressed as percentage of control. Significance was
determined using two-tailed unpaired t-test t(4) = 3.29, p = 0.03. n = 3. Stars
indicate the band corresponding to Cx43. (B) N2A cells were transfected with
Cx43 and HDAC6 or the empty plasmid as control (CTL) and were lysed 48 h
later. IPs were carried out using anti-Cx43 or anti-HA antibodies and followed
by western blot analysis using a pan acetyl lysine antibody. Data are presented
as the average ratio of acetylated Cx43 to Cx43 ± SEM, and are expressed
as percentage of control. Significance was determined using two-tailed
unpaired t-test t(4) = 5.12, p = 0.007. n = 3. ∗p < 0.05; ∗∗p < 0.01.

Elp3cKO embryos compared to the WT cortex, without change
of total Cx43 protein andmRNA expression (Figures 2B,C). This
suggests that the reduced acetylation of Cx43 occurring upon loss
of Elongator activity promotes its membrane localization.

DISCUSSION

Here we present evidences showing that Cx43 is acetylated
and interacts with Elongator in the developing cortex as well
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FIGURE 4 | Elongator depletion results in reduced Cx43 acetylation levels. (A,B) N2A cells were transfected with Cx43 and were infected 24 h later with
Ltv-shElp1 or Ltv-SCR as control (CTL). Seventy-two hours after lentiviral infection, cells were treated with TSA or DMSO for 4 h (B) and IP of Cx43 was carried out,
followed by western blot using an anti-pan acetyl lysine antibody. Corresponding western blots were performed on crude cell extracts (inputs). Data are presented as
the average ratio of acetylated Cx43 to Cx43 ± SEM, and are expressed as percentage of control. Significance was determined using two-tailed unpaired t-test
t(3) = 6.77, p = 0.007. n = 3. ∗∗p < 0.01.

as in several cell lines. We further show that depletion of
Elongator in vivo impairs the acetylation of Cx43, suggesting
that Elp3 promotes Cx43 acetylation in the developing cerebral
cortex. We also identified HDAC6 as a deacetylase of Cx43.
Finally, our data suggest that the acetylation of Cx43 regulates
its localization in cortical progenitors.

We previously reported that Elongator controls the radial
migration of projection neurons partly through α-tubulin

acetylation (Creppe et al., 2009). However, Elongator is also
functionally expressed in cortical progenitor cells, where loss
of its activity results in impaired tRNA modification and
protein translation, triggering the unfolded protein response
that ultimately leads to defects in neurogenesis (Laguesse et al.,
2015). Given that Elongator functions in neuronal migration
and is expressed in cortical progenitors, we reasoned that
Elongator could triggers the early steps of neuronal migration
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FIGURE 5 | Acetylation regulates Cx43 localization. (A–D) Hela cells were transfected with Cx43-WT-GFP (A,B) or Cx43-4KR-GFP (C,D) and were treated with
TSA or DMSO as control (CTL) for 4 h. Immunodetection of Cx43 (red, cx43 rabbit, Abcam) in transfected Hela cells (green, GFP) and DAPI (blue) showed the
different cellular localization of Cx43-WT and Cx43-4KR upon TSA treatment. Yellow arrows indicate connexons between two adjacent cells; blue arrows indicate
intracellular Cx43 labeling. (E) Cx43 membrane localization was determined by measuring the ratio of membrane and intracellular immunofluorescence intensity.
∗∗p < 0.01.

in the projection neuron progenitors. Cx43 is mainly expressed
in the VZ/SVZ of the developing cortex and its loss has

been reported to delay radial migration of projection neurons
(Elias and Kriegstein, 2008; Cina et al., 2009), a phenotype
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FIGURE 6 | Cx43 membrane localization is enhanced in Elp3cKO cortical progenitors. (A–L) Immunodetection of membrane Cx43 (red, Cx43 IF1 antibody)
and DAPI (blue) in the cortical wall of WT (A–F) and Elp3cKO (G–L) E14.5 embryos show increased membrane distribution of Cx43 in the VZ progenitor cells of
Elp3cKO embryos compared to WT embryos. Bar scale, 50 µm.

similar to the one observed upon knockdown of Elongator
subunits (Creppe et al., 2009). We found that Cx43 interacts with

both Elp1 and Elp3 in the developing cortex, as well as in
several cell lines. We also showed the existence of a co-expression
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of Cx43 and Elongator throughout the cortical wall, which is
stronger in neuronal progenitors lining the lateral ventricle. This
suggests a potential regulation of Cx43 by Elongator in the
VZ/SVZ of the developing cortex.

Cx43 is regulated by several post-translational modifications,
including phosphorylation (Solan and Lampe, 2009; Alstrom
et al., 2015), ubiquitination (Ribeiro-Rodrigues et al., 2015;
Leithe, 2016), nitrosylation (Johnstone et al., 2012; Lohman et al.,
2016) and acetylation (Colussi et al., 2011; Meraviglia et al.,
2015). These modifications regulate a great variety of biological
processes, including degradation, changes in binding partners
or subcellular localization. We showed that Cx43 is acetylated
in the developing cortex, and that its acetylation is reduced
in the cortex of Elp3cKO embryos. Our results suggest a new
role for Elp3 in the regulation of Cx43 acetylation in vivo,
which is further supported by results obtained in cell lines.
Thus, along with α-tubulin in migrating projection neurons
(Creppe et al., 2009) and bruchpilot at the pre-synaptic density
of the Drosophila neuromuscular junctions whose acetylation
is necessary for proper structure of the synapse (Miskiewicz
et al., 2011), we suggest that Cx43 is another putative target
of Elp3 in VZ/SVZ progenitors of the developing cortex.
However, whether Cx43 acetylation is directly regulated by the
acetyltransferase activity of Elp3, or indirectly via the upregulated
unfolded protein response observed in cortical progenitors
of Elp3cKO embryos (Laguesse et al., 2015) is still an open
question.

Interestingly, Cx43 acetylation in cardiomyocytes requires
the activity of the histone acetyltransferase p300/CBP-associated
factor (PCAF), which is a member of the Gcn5-related
N-acetyltransferase (GNAT) HAT family that also comprises
Elp3 (Sterner and Berger, 2000). Similar to Elp3, PCAF has
been shown to acetylate non-histones proteins such as β-catenin
(Ge et al., 2009), Akt1 (Zhang et al., 2015), Stat3 (Cai et al.,
2014) and lin28 (Wang et al., 2014). It would be interesting
to test whether PCAF is also involved in the regulation of
Cx43 acetylation in the developing cortex. On the other hand, we
showed that Cx43 acetylation is increased upon TSA treatment,
suggesting that Cx43 deacetylation depends on HDACs, and
we further identified HDAC6 as one deacetylase of Cx43.
HDAC6 has a cytoplasmic localization and has been shown
to acetylate α-tubulin, as well as other cytoplasmic targets
such as HSP90, Cortactin or β-catenin (Li et al., 2011; Yao
and Yang, 2011). Interestingly, Colussi et al. (2011) showed a
constitutive association of HDAC3, -4 and -5 with Cx43 in
cardiomyocytes, and a co-localization at the membrane but also
in cytoplasmic and nuclear compartments. These HDACs are
known to dynamically shuttle between the nucleus and the
cytoplasm in a signal-dependent manner (Li and Yang, 2016). It
would thus be of interest to test whether these HDACs could also
regulate Cx43 acetylation in the developing cortex.

Phosphorylation and acetylation of Cx43 have been shown
to regulate its cellular localization (Sosinsky et al., 2007; Colussi
et al., 2011; Qi et al., 2016). Indeed, in migrating neurons,
Cx43 phosphorylation at Ser279 and Ser282 has been found to
block its membrane expression and to promote proteasome-
dependent degradation (Qi et al., 2016). In cardiomyocytes,

Cx43 acetylation leads to its delocalization from the membrane
toward intracellular compartment (Colussi et al., 2011). In line
with the latter result, we showed in Hela cells that Cx43-WT
was present at the membrane under normal conditions, but
delocalized from the membrane following TSA treatment. The
non-acetylable Cx43-4KR was also found at the membrane
in normal conditions, but TSA treatment did not modify its
cellular localization, strengthening the idea that Cx43 acetylation
regulates its subcellular localization. Our data also showed an
excessive membrane localization of Cx43 in the VZ progenitor
cells upon loss of Elp3, suggesting that Elp3-dependent
acetylation regulates Cx43 cellular localization in neuronal
progenitor cells during cortex development.

Cx43 is a GAP junction subunit expressed in many cell types
and tissues (Oyamada et al., 2005). Six Cx43 monomers associate
to form hexameric hemichannels, also called connexons, which
can combine with connexons on adjacent cells to form GAP
junctions allowing the exchange of small molecules and ions
(Laird, 2006). Besides the communication properties of GAP
junctions, it has been reported that connexons can transport ATP
and assist in calcium signaling (Goodenough and Paul, 2003)
and also promote adhesion in migrating projection neurons
(Lin et al., 2002; Elias et al., 2007, 2010; Cotrina et al., 2008;
Elias and Kriegstein, 2008). Specifically, it has been shown that
Cx43 is necessary for radial migration of projection neurons as
well as for the tangential to radial migratory switch in migrating
interneurons, and that this function of Cx43 is mediated by
adhesion properties of GAP junctions/connexon rather than
their channel function (Elias et al., 2007, 2010; Kameritsch
et al., 2012). It would thus be interesting to test whether
Cx43 acetylation controls the adhesion properties of connexons
between cortical progenitor cells or between migrating neurons
and radial glia, and determine if replacing the endogenous
Cx43 with Cx43-4KR would lead to adhesion and/or migration
defects.
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